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PROBABILITY THEORY AND FUZZY LOGIC

How does fuzzy logic relate to probability 
theory?

This is the question that was raised by 
Loginov in 1966, shortly after the publication 
of my first paper on fuzzy sets (1965).

Relationship between probability theory and 
fuzzy logic has been, and continues to be, an 
object of controversy.
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PRINCIPAL VIEWS

Inevitability of probability

Fuzzy logic is probability theory in 
disguise

The tools provided by fuzzy logic are 
not of importance

Probability theory and fuzzy logic are 
complementary rather than competitive
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CONTINUED

My current view:

It is a fundamental limitation to base 
probability theory on bivalent logic
Probability theory should be based on 
fuzzy logic
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THERE IS A FUNDAMENTAL CONFLICT BETWEEN 
BIVALENCE AND REALITY

we live in a world in which almost everything is 
a matter of degree

but
in bivalent logic, every proposition is either true 
or false, with no shades of gray allowed

in fuzzy logic, everything is, or is allowed to 
be, a matter of degree

in bivalent-logic-based probability theory, PT, 
only certainty is a matter of degree

in perception-based probability theory, PTp, 
everything is, or is allowed to be, a matter of 
degree
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INEVITABILITY OF PROBABILITY
The only satisfactory description of uncertainty 
is probability. By this I mean that every 
uncertainty statement must be in the form of a 
probability; that several uncertainties must be 
combined using the rules of probability; and that 
the calculus of probabilities is adequate to 
handle all situations involving 
uncertainty…probability is the only sensible 
description of uncertainty and is adequate for all 
problems involving uncertainty. All other 
methods are inadequate… anything that can be 
done with fuzzy logic, belief functions, upper and 
lower probabilities, or any other alternative to 
probability can better be done with probability 
[Lindley (1987)]
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CONTINUED

The numerous schemes for 
representing and reasoning about 
uncertainty that have appeared in the 
AI literature are unnecessary –
probability is all that is needed 
[Cheesman (1985)]
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BASIC PROBLEMS WITH PT
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IT IS A FUNDAMENTAL LIMITATION TO BASE 
PROBABILITY THEORY ON BIVALENT LOGIC

• A major shortcoming of bivalent-logic-
based probability theory, PT, relates to the 
inability of PT to operate on perception-
based information

• In addition, PT has serious problems with 
(a) brittleness of basic concepts
(b) the “it is possible but not probable” 
dilemma
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PREAMBLE

It is a deep-seated tradition in science 
to strive for the ultimate in rigor and 
precision. But as we enter into the age 
of machine intelligence and automated 
reasoning, other important goals come 
into view.
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CONTINUED

We begin to realize that humans have a 
remarkable capability—a capability 
which machines do not have—to 
perform a wide variety of physical and 
mental tasks without any 
measurements and any computations. 
In performing such tasks, humans 
employ perceptions of distance, speed, 
direction, size, likelihood, intent and 
other attributes of physical and mental 
objects.
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CONTINUED

To endow machines with this 
capability, what is needed is a theory in 
which the objects of computation are, 
or are allowed to be, perceptions. The 
aim of the computational theory of 
perceptions is to serve this purpose—
purpose which is not served by 
existing theories.
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KEY IDEA

In the computational theory of 
perceptions, perceptions are dealt with 
through their descriptions in a natural 
language
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COMPUTATIONAL THEORY OF 
PERCEPTIONS (CTP) BASIC POSTULATES

perceptions are intrinsically imprecise

imprecision of perceptions is a 
concomitant of the bounded ability of 
sensory organs—and  ultimately the 
brain—to resolve detail and store 
information
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KEY POINTS

a natural language is, above all, a system for 
describing and reasoning with perceptions
in large measure, human decisions are 
perception-based
one of the principal purposes of CWP 
(Computing with Words and Perceptions) is 
that of making it possible to construct 
machines that are capable of operating on 
perception-based information expressed in a 
natural language
existing bivalent-logic-based machines do 
not have this capability
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ILLUSTRATION
AUTOMATION OF DRIVING IN CITY TRAFFIC

a blind-folded driver could drive in city 
traffic if

a) a passenger in the front seat could 
instruct the driver on what to do

b) a passenger in the front seat could 
describe in a natural language his/her 
perceptions of decision-relevant 
information

• replacement of the driver by a machine is a 
much more challenging problem in case (b) 
than in case (a)



LAZ  4/24/2003

•it is 35 C°
•Eva is 28
•probability is 0.8         
•
•

•It is very warm
•Eva is young
•probability is high
•it is cloudy
•traffic is heavy
•it is hard to find parking 
near the campus 

INFORMATION

measurement-based 
numerical 

perception-based 
linguistic 

MEASUREMENT-BASED VS. PERCEPTION-BASED INFORMATION

• measurement-based information may be viewed as special case of 
perception-based information
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MEASUREMENT-BASED VS. PERCEPTION-
BASED CONCEPTS

measurement-based perception-based

expected value usual value

stationarity regularity

continuous smooth

Example of a regular process

T= (t0 , t1 , t2 …)

ti = travel time from home to office on day i.
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WHAT IS CWP?

Version 1.  Measurement-based

a box contains 20 black and white balls 
over 70% are black
there are three times as many black balls as white 
balls

what is the number of white balls?
what is the probability that a ball drawn at 
random is white?

THE BALLS-IN-BOX PROBLEM
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CONTINUED

Version 2.  Perception-based

a box contains about 20 black and white 
balls
most are black
there are several times as many black 
balls as white balls

what is the number of white balls?
what is the probability that a ball drawn at 
random is white?
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CONTINUED

Version 3.  Perception-based

a box contains about 20 black balls of various 
sizes
most are large
there are several times as many large balls as 
small balls

what is the number of small balls?
what is the probability that a ball drawn at 
random is small?

box
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COMPUTATION (version 1)

measurement-based
X = number of black 
balls
Y2 number of white 
balls
X ≥ 0.7 • 20 = 14
X + Y = 20
X = 3Y
X = 15 ;  Y = 5
p =5/20 = .25

perception-based
X = number of black 
balls
Y = number of white 
balls
X = most × 20*
X = several *Y
X + Y = 20*
P = Y/N
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THE  TRIP-PLANNING  PROBLEM

I have to fly from A to D, and would like to get there as 
soon as possible
I have two choices: (a) fly to D with a connection in B; or

(b) fly to D with a connection in C

if I choose (a), I will arrive in D at time t1
if I choose (b), I will arrive in D at time t2
t1 is earlier than  t2

Should I choose (a) ?

A

C

B

D

(a)

(b)
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CONTINUED

now, let us take a closer look at the problem
the connection time, cB , in B is short
should I miss the connecting flight from B to D, the 
next flight will bring me to D at t3
t3 is later than t2
what should I do?

decision = f ( t1 , t2 , t3 ,cB ,cC )

existing methods of decision analysis do not have the 
capability to compute f

reason: nominal values of decision variables ≠
observed values of decision variables 
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CONTINUED

the problem is that we need information about 
the probabilities of missing connections in B 
and C.

I do not have, and nobody has, measurement-
based information about these probabilities

whatever information I have is perception-
based
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THE KERNEL PROBLEM —THE SIMPLEST B-HARD 
DECISION PROBLEM

time of arrival 

0

missed connection

alternatives
a b

• decision is a function of t1, t2, t3 and   
perceived probability of missing connection

• strength of decision

t1

t3

t2
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DECISION

a b0 a b a

a b a b a b

time of arrival
t3

t1 t2

t3

t1 t2

b

t3

t1
t2

t3

t1

t2

t3

t1

t2
t3

t1

t2
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TEST PROBLEMS

Most Swedes are tall
What is the average height of Swedes?

Prob {Robert is young} is low
Prob {Robert is middle-aged} is high
Prob {Robert is old} is low

What is the probability that Robert is 
neither young nor old?
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cij = measured cost of travel 
from i to j

tij = perceived time of travel
from i to j

traveling salesman problem airport shuttle problem
TSP ASP

CONTINUED

ii

jj
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PROBLEMS WITH PT

Bivalent-logic-based PT is capable of 
solving complex problems
But, what is not widely recognized is that 
PT cannot answer simple questions drawn 
from everyday experiences
To deal with such questions, PT must 
undergo three stages of generalization, 
leading to perception-based probability 
theory, PTp
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BASIC STRUCTURE OF PROBABILITY THEORY

PROBABILITY THEORY

measurement-
based

perception-
based

bivalent-logic-
based

fuzzy-logic-
based

PTp

Bayesian
subjective

PT generalization

frequestist
objective

•In PTp everything is or is allowed to be perception-based 



LAZ  4/24/2003

THE NEED FOR A RESTRUCTURING OF 
PROBABILITY THEORY

to circumvent the limitations of PT three stages 
of generalization are required

1. f-generalization
2. f.g-generalization
3. nl-generalization

PT PT + PT ++ PTp

f-generalization f.g-generalization nl-generalization
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FUNDAMENTAL POINTS

the point of departure in perception-based probability 
theory (PTp) is the postulate:

subjective probability=perception of likelihood

perception of likelihood is similar to perceptions of time, 
distance, speed, weight, age, taste, mood, resemblance 
and other attributes of physical and mental objects
perceptions are intrinsically imprecise, reflecting the 
bounded ability of sensory organs and, ultimately, the 
brain, to resolve detail and store information

perceptions and subjective probabilities are f-granular 
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SIMPLE EXAMPLES OF QUESTIONS 
WHICH CANNOT BE ANSWERED THROUGH 

THE USE OF PT

• I am driving to the airport. How long will it take 
me to get there?
Hotel clerk:  About 20-25 minutes
PT: Can’t tell

• I live in Berkeley. I have access to police 
department and insurance company files. What is 
the probability that my car may be stolen?
PT: Can’t tell

• I live in the United States. Last year, one percent 
of tax returns were audited. What is the 
probability that my tax return will be audited?
PT: Can’t tell
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CONTINUED
• Robert is a professor. Almost all professors have a 

Ph.D. degree. What is the probability that Robert has a 
Ph.D. degree?
PT: Can’t tell

• I am talking on the phone to someone I do not know. 
How old is he? 
My perception: Young
PT: Can’t tell

• Almost all A’s are B’s. Almost all B’s are C’s. What 
fraction of A’s are C’s?
PT: Between 0 and 1

• The balls-in-box example
• The trip-planning example
• The Robert example
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BRITTLENESS  (DISCONTINUITY)

• Almost all concepts in PT are bivalent in the sense 
that a concept, C, is either true or false, with no 
partiality of truth allowed. For example, events A 
and B are either independent or not independent. A 
process, P, is either stationary or nonstationary, 
and so on. An example of brittleness is: If all A’s are 
B’s and all B’s are C’s, then all A’s are C’s; but if 
almost all A’s are B’s and almost all B’s are C’s, 
then all that can be said is that proportion of A’s in 
C’s is between 0 and 1. 
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BRITTLENESS OF BIVALENT-LOGIC-BASED 
DEFINITIONS

when a concept which is in reality a matter of 
degree is defined as one which is not, the 
sorites paradox points to a need for 
redefinition
stability
statistical independence
stationarity
linearity
…
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BRITTLENESS OF DEFINITIONS

statistical independence
P (A, B) = P(A) P(B)

stationarity
P (X1,…, Xn) = P (X1-a,…, Xn-a) for all a

randomness
Kolmogorov, Chaitin, …

in PTp, statistical independence, stationarity, 
etc are a matter of degree
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BRITTLENESS OF DEFINITIONS 
(THE SORITES PARADOX)

statistical independence
A and B are independent PA(B) = P(B)
suppose that (a) PA(B) and P(B) differ by an 
epsilon; (b) epsilon increases
at which point will A and B cease to be 
independent?
statistical independence is a matter of 
degree
degree of independence is context-
dependent
brittleness is a consequence of bivalence
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THE DILEMMA OF “IT IS POSSIBLE BUT NOT 
PROBABLE”

• A simple version of this dilemma is the following. 
Assume that A is a proper subset of B and that the 
Lebesgue measure of A is arbitrarily close to the 
Lebesgue measure of B. Now, what can be said 
about the probability measure, P(A), given the 
probability measure P(B)? The only assertion that 
can be made is that P(A) lies between 0 and P(B). 
The uniformativeness of this assessment of P(A) 
leads to counterintuitive conclusions. For 
example, suppose that with probability 0.99 Robert 
returns from work within one minute of 6pm. What 
is the probability that he is home at 6pm? 
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CONTINUED

A A

B B

U U

A= proper subset of B A ∩ B: proper subset of A

P(B)P(A)0 ≤≤ 1BP0 A ≤≤ )(
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CONTINUED

• Using PT, with no additional information or 
the use of the maximum entropy principle, 
the answer is: between 0 and 1. This 
simple example is an instance of a basic 
problem of what to do when we know what 
is possible but cannot assess the 
associated probabilities or probability 
distributions. A case in point relates to 
assessment of the probability of a worst 
case scenario.
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EXAMPLE -- INFORMATION ORTHOGONALITY
A,B,C are crisp events
principal dependencies: (a) conjunctive; (b) serial
conjunctive:   PA, B (C)=? given PA (C) and PB (C) 

ε−5.

ε2

C

A B
ε−5. ε−5.
ε2

A B

C

0
2
0C

1
50
50C

1
50
50C

==Ρ

≈
+
−

=Ρ

≈
+
−

=Ρ

ΒΑ

Β

Α

ε

ε
ε
ε
ε

)(

.

.)(

.

.)(

,

1C
1C
1C

=Ρ
=Ρ
=Ρ

ΒΑ

Β

Α

)(
)(
)(

,

ε−5.

counterintuitive



LAZ  4/24/2003

SERIAL

PA (C) =?  given PA (B) and PB (C) 

0C
1C
1B

=Ρ
−=Ρ

=Ρ

Α

Β

Α

)(
)(
)(

ε

counterintuitive

A

B

C
scenario ε ε−1
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REAL-WORLD EXAMPLE

C= US-born

A= professor

B= engineer

•most engineers are US-born

•most professors are US-born

•most (engineers^professors) are not US-born 
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F-GENERALIZATION

f-generalization of a theory, T, involves an 
introduction into T of the concept of a fuzzy set
f-generalization of PT, PT + , adds to PT the 
capability to deal with fuzzy probabilities, fuzzy 
probability distributions, fuzzy events, fuzzy 
functions and fuzzy relations

A A

XX

1

0 0

μμ
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F.G-GENERALIZATION

f.g-generalization of T, T++, involves an 
introduction into T of the concept of a granulated 
fuzzy set
f.g-generalization of PT, PT++ , adds to PT+ the 
capability to deal with f-granular probabilities, f-
granular probability distributions, f-granular 
events, f-granular functions and f-granular 
relations

A

X0

A

X0

1 1
μμ



LAZ  4/24/2003

EXAMPLES OF F-GRANULATION (LINGUISTIC 
VARIABLES)

color: red, blue, green, yellow, …

age: young, middle-aged, old, very old

size: small, big, very big, …

distance: near, far, very, not very far, …

• humans have a remarkable capability to perform a wide variety 
of physical and mental tasks, e.g., driving a car in city traffic, 
without any measurements and any computations
• one of the principal aims of CTP is to develop a better 
understanding of how this capability can be added to machines

1

0 100 age

μ
young middle-aged old 
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NL-GENERALIZATION

A

PT PTP

AP
nl-generalization

nl-generalization

crisp set PNL-defined set 

crisp probability PNL-defined probability
crisp relation PNL-defined relation
crisp independence PNL-defined independence 
…
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NL-GENERALIZATION

Nl++-generalization of T. Tnl , involves an addition 
to T++ of a capability to operate on propositions 
expressed in a natural language
nl-generalization of T adds to T++ a capability to 
operate on perceptions described in a natural 
language 
nl-generalization of PT, PTnl , adds to PT++ a 
capability to operate on perceptions described in 
a natural language
nl-generalization of PT is perception-based 
probability theory, PTp
a key concept in PTp is PNL (Precisiated Natural 
Language)
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PERCEPTION  OF  A  FUNCTION

if X is small then Y is small
if X is medium then Y is large
if X is large then Y is small0 X

0

Y

f f* :perception

Y

f* (fuzzy graph)
medium x large

f

0

S M L

L

M
S

granule
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TEST PROBLEM

A function, Y=f(X), is defined by its fuzzy graph 
expressed as

f1 if X is small then Y is small
if X is medium then Y is large
if X is large then Y is small

(a) what is the value of Y if X is not large?
(b) what is the maximum value of Y

0

S M L

L
M
S

X

Y

M × L
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BIMODAL DISTRIBUTION 
(PERCEPTION-BASED  PROBABILITY  

DISTRIBUTION)

A1 A2 A3

P1

P2

P3

probability

P(X) = Pi(1)\A1  + Pi(2)\A2 +  Pi(3)\A3
Prob {X is Ai }  is Pj(i)

0
X

P(X)= low\small + high\medium + low\large
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CONTINUED

function: if X is small then Y is large +…
(X is small, Y is large)

probability distribution: low \ small + low \ medium + 
high \ large +…

Count \ attribute value distribution: 5* \ small + 8* \
large +…

PRINCIPAL RATIONALES FOR F-GRANULATION

detail not known
detail not needed
detail not wanted
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BIMODAL PROBABILITY 
DISTRIBUTIONS (LAZ 1981)

1A

2A
3A

X

P U 

nn11 APAPP \\* +⋅⋅⋅+=
nn11 APAPP \\\\ +⋅⋅⋅+=

(a) possibility\probability (b) probability\\possibility

gP33

P22

P11

A33A22A11
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BIMODAL PROBABILITY DISTRIBUTION

X: a random variable taking values in U

g: probability density function of X

X

g 

iii APP \* Σ=

g

X
iA

iP

ii AP \
*P

{ } ii P is A is   Prob X

{ } duuguAob
iAUi )()( is X Pr μ∫=

f-granulation

P33

P22

P11

A33A22A11
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CONTINUED

P* defines a possibility distribution of g

problems

a) what is the probability of a perception-based event A  
in U

b) what is the perception-based expected value of X 

))()(())()(()( duuguduugug
nuii AUPAUP μμμμπ ∫∧⋅⋅⋅∧∫=
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PROBABILITY OF A PERCEPTION-BASED EVENT

problem: Prob {X is A} is ?B knowing π(g)

)( )()(A} is {X Prob gfduuguAU =∫= μ

Extension Principle

))g(f(
)g(

2

1

π
π

)g(sup)v( g 12 π=π

subject to: )g(fv =
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CONTINUED

)))()((

))()(((sup)(
11

duugu

duuguv

nn AUP

AUPgA

μμ

μμμ

∫∧

⋅⋅⋅∧∫=

subject to 

duuguv AU )()(μ∫=
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EXPECTED VALUE OF A BIMODAL PD

)( )(*)( gfduuugPE U =∫=

Extension Principle

))du)u(g)u((

)du)u(g)u(((sup)v(

nn AUP

AUp
g

*)P(E

μ∫μ∧

⋅⋅⋅∧μ∫μ=μ
11

subject to: duuugv U )(∫=
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PERCEPTION-BASED DECISION ANALYSIS

ranking of f-granular probability distributions 

0 X

0 X
maximization of expected utility ranking of fuzzy numbers

PAA

PBB
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USUALITY CONSTRAINT PROPAGATION RULE

X: random variable taking values in U
g: probability density of X

X isu A

Prob {X is B} is C

X isu A Prob {X is A} is usually

)du)u(g)u(()g( AUusually μ∫μ=π

))du)u(g)u(((sup)v( AUusuallygC μ∫μ=μ

subject to: duuguv BU )()(μ∫=
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CATEGORIES OF UNCERTAINTY

category 1:  possibilistic
examples

crisp: 0 ≤ X ≤ a ;fuzzy: X is small
category 2:  probabilistic

example 
X isp N (m, σ 2) 

category 3:  possibility2  (possibility of possibility) (type 2)
example: 

grade of membership of µ in A is low 
category 4:  probabilistic2  (probability of  probability) 

(second order probability)
example:  P(A) isp B
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CONTINUED
category 5:  possibilistic\probabilistic  (possibility 

of probability)
example:

X isp (P1\A1+…+Pn\An)   , Prob {X is Ai} is Pi

category 6:  probabilistic\\possibilistic (probability 
of possibility)

X isrs (P1\\A1+…+Pn\\An)

1A
2A

3A

U 

P2 

category 6 = fuzzy-set-valued granular probability distributions
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NEW TOOLS

CN

IA GrC PNL

CWP+ + +

computing 
with numbers

computing 
with intervals

computing 
with granules

precisiated 
natural 
language

computing with words 
and perceptions

PTpCTP: computational
theory of perceptions

PTp: perception-based
probability theory

THD: theory of hierarchical
definability

CTP THD • a granule is defined 
by a generalized 
constraint
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GRANULAR  COMPUTING
GENERALIZED  VALUATION

valuation = assignment of a value to a variable

X = 5      0 ≤ X ≤ 5 X is small            X isr R
point       interval      fuzzy interval    generalized

singular value

measurement-based 
granular values

perception-based 
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PRECISIATED 
NATURAL LANGUAGE
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CWP AND PNL

• a concept which plays a central role in CWP is 
that of PNL (Precisiated Natural Language)

• basically, a natural language, NL, is a system for 
describing perceptions

• perceptions are intrinsically imprecise
• imprecision of natural languages is a reflection of 

the imprecision of perceptions
• the primary function of PNL is that of serving as a 

part of NL which admits precisiation
• PNL has a much higher expressive power than 

any language that is based on bivalent logic



LAZ  4/24/2003

PRINCIPAL FUNCTIONS OF PNL

knowledge—and especially world 
knowledge—description language

Robert is tall
heavy smoking causes lung cancer

definition language
smooth function
stability

deduction language
A is near B
B is near C
C is not far from A
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PNL

PNL is a subset of precisiable
propositions/commands/questions in NL
PNL is equipped with two dictionaries: 
(1) from NL to GCL; and (2) from GCL to 
PFL; and (3) a modular multiagent
deduction database (DDB) of rules of 
deduction (rules of generalized 
constrained propagation) expressed in 
PFL
the deduction database includes a 
collection of modules and submodules, 
among them the WORLD KNOWLEDGE 
module

KEY POINTS
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THE CONCEPT OF PRECISIATION

p• •p*

proposition
translate of p
precisiation of p

NL (natural language) PL (precisiable language)

translation
precisiation

•p is precisiable w/r to PL = p is translatable into PL
•criterion of precisiability: p* is an object of computation
PL: propositional logic

predicate logic
modal logic
Prolog
LISP
SQL

•
Generalized Constraint Language (GCL) : p* = GC-form
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PRECISIABILITY

Robert is tall: not PL-precisiable; PNL-precisiable
all men are mortal: PL-precisiable
most Swedes are tall: not PL-precisiable; PNL-
precisiable
about 20-25 minutes: not PL-precisiable; PNL-
precisiable
slow down: not PL-precisiable; PNL-precisiable
overeating causes obesity: not PL-precisiable; 
PNL-precisiable
Robert loves Anne: PNL-precisiable
Robert loves women: not PNL-precisiable
you are great: not PNL-precisiable
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PRECISIATION

precisiation is not coextensive with meaning 
representation
precisiation of p = precisiation of meaning of p

example:
p = usually Robert returns from work at about 6pm.
I understand what you mean but can you be more precise?
yes
p Prob (Time (Robert.returns.from.work) is 6*) is 
usually

µ µ
1 1

0 0
6 0.5 1

usually6*
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EXAMPLES

PL: propositional logic
• Robert is taller than Alan taller (Robert, Alan)

Height (Robert)>Height (Alan)
PL: first-order predicate logic 

• all men are mortal           ∀x (man(x)          mortal(x))
• most Swedes are tall not precisiable

PL: PNL
most Swedes are tall        ΣCount (tall.Swedes/Swedes)

is most
• principal distinguishing features of PNL are:

PL : GCL (Generalized Constraint Language)
DL (Deduction Logic): FL (fuzzy logic)
PNL is maximally expressive
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THE CONCEPT OF A GENERALIZED CONSTRAINT 
(1985)

X isr R

constrained variable

constraining relation

GC-form

modal variable (defines modality)

principal modalities:
•possibilistic (r = blank) :  X is R     ,  R=possibility distribution of X
•probabilistic (r = p)    :  X isp R   :  R=probability distribution of X
•veristic (r = v)                :  X isv R   :  R=verity (truth) distribution of X
•usuality (r=u) :  X isu R   :  R=usual value of X
•random set (r=rs) :  X isrs R  :  R=fuzzy-set-valued distribution of X
•fuzzy graph (r=fg) :  X isfg :  R=fuzzy graph of X
•bimodal (r=bm) :  X isbm R :  R=bimodal distribution of X
•Pawlak set (r=ps) :  X isps R  :  upper and lower approximation to X

granular value of X
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GENERALIZED CONSTRAINT 
•standard constraint: X ∈ C
•generalized constraint: X isr R 

X isr R 
copula

GC-form (generalized constraint form of type r)

type (modality) identifier 

constraining relation 

constrained variable

•X= (X1 , …, Xn )
•X may have a structure: X=Location (Residence(Carol))
•X may be a function of another variable: X=f(Y)
•X may be conditioned: (X/Y)
• .../ps/fg/rs/u/p/v/blank///.../¡Ü/:r �½�¼=
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CONSTRAINT QUALIFICATION

•constraint qualification: (X isr R) is q

•q

•example: (X is small) is unlikely

possibility
probability
verity (truth)

qualifier
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INFORMATION: PRINCIPAL MODALITIES

possibilistic: r = blank
X is R (R: possibility distribution of X)

probabilistic: r = p
X isp R (R: probability distribution of X)

veristic: r = v
X isv R (R: verity (truth) distribution of X) 

if r is not specified, default mode is possibilistic
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EXAMPLES (POSSIBILISTIC)

Eva is young Age (Eva) is young

Eva is much younger than Maria
(Age (Eva), Age (Maria)) is much younger

most Swedes are tall  
ΣCount (tall.Swedes/Swedes) is most

X R

X

X

R

R
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EXAMPLES (PROBABILISITIC)

X is a normally distributed random 
variable with mean m and variance σ2

X isp N(m, σ2)

X is a random variable taking the values 
u1, u2, u3 with probabilities p1, p2 and p3, 
respectively

X isp (p1\u1+p2\u2+p3\u3)
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EXAMPLES (VERISTIC)

Robert is half German, quarter French and 
quarter Italian

Ethnicity (Robert) isv (0.5|German + 
0.25|French + 0.25|Italian)

Robert resided in London from 1985 to 
1990

Reside (Robert, London) isv [1985, 
1990]



LAZ  4/24/2003

BASIC STRUCTURE OF PNL

p• • •
p* p**

NL PFLGCL

GC(p) PF(p)
precisiation

precisiation
(a)

abstraction        
(b)

world 
knowledge 
database

DDB

•In PNL, deduction=generalized constraint propagation
DDB: deduction database=collection of protoformal rules 
governing   generalized constraint propagation
WKDB: PNL-based 

deduction 
database

WKDB
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EXAMPLE OF TRANSLATION

P: usually Robert returns from work at about 6 pm
P*: Prob {(Time(Return(Robert)) is 6 pm} is usually
PF(p): Prob {X is A} is B
X: Time (Return (Robert))
A: 6 pm
B: usually

p ∈ NL
p* ∈ GCL
PF(p) ∈ PFL
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BASIC STRUCTURE OF PNL

DICTIONARY 1 DICTIONARY 2 

NL GCL
p GC(p)

GCL PFL

GC(p) PF(p)

MODULAR DEDUCTION DATABASE
POSSIBILITY
MODULE

PROBABILITY 
MODULE

RANDOM SET 
MODULE

FUZZY LOGIC 
MODULE

agent

FUZZY ARITHMETIC 
MODULE

EXTENSION 
PRINCIPLE MODULE
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GENERALIZED CONSTRAINT LANGUAGE (GCL)

GCL is generated by combination, 
qualification and propagation of generalized 
constraints
in GCL, rules of deduction are the rules 
governing generalized constraint propagation
examples of elements of GCL
• (X isp R) and (X,Y) is S)
• (X isr R) is unlikely) and (X iss S) is likely
• if X is small then Y is large

the language of fuzzy if-then rules is a 
sublanguage of PNL 
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THE  BASIC  IDEA

P NL GCL

p NL(p)

GCL PFL

PF(p)

GC(p)

GC(p)

perception description of 
perception

precisiation
of perception

precisiation
of perception

abstraction

precisiationdescription

GCL (Generalized Constrain Language) is maximally expressive 
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DICTIONARIES

1: 

most Swedes are tall Σ Count (tall.Swedes/Swedes) is most 

p p*  (GC-form)

proposition in NL precisiation

2: 

Σ Count (tall.Swedes/Swedes) is most 

p*  (GC-form)

protoformprecisiation
PF(p*)

Q A’s are B’s
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TRANSLATION FROM NL TO PFL

examples
Eva is young A (B) is C

Eva is much younger than Pat (A (B), A (C)) is R

usually Robert returns from work at about 6pm

Prob {A is B} is C

Age Eva young

Eva much 
younger

Age PatAge

usually
about 6 pm

Time (Robert returns from work)
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HIERARCHY OF DEFINITION LANGUAGES

PNL

F.G language

F language

B language

NL

fuzzy-logic-based 

bivalent-logic-based 

NL: natural language
B language: standard mathematical bivalent-logic-based language
F language: fuzzy logic language without granulation
F.G language: fuzzy logic language with granulation
PNL: Precisiated Natural Language

Note: the language of fuzzy if-then rules is a sublanguage of PNL

Note: a language in the hierarchy subsumes all lower languages
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SIMPLIFIED HIERARCHY

PNL

B language

NL

fuzzy-logic-based 

bivalent-logic-based 

The expressive power of the B language – the standard 
bivalence-logic-based definition language – is 
insufficient

Insufficiency of the expressive power of the B language 
is rooted in the fundamental conflict between bivalence 
and reality
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EVERYDAY  CONCEPTS  WHICH  
CANNOT BE  DEFINED  REALISTICALY  

THROUGH  THE  USE  OF  B

check-out time is 12:30 pm
speed limit is 65 mph
it is cloudy
Eva has long hair
economy is in recession 
I am risk averse
…
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PRECISIATION/DEFINITION  OF  PERCEPTIONS
Perception:   ABOUT  20-25  

MINUTES

time

time 

time 

time 

20 25

20 25

20 25
P

0

0

1

0

0

1

1
B definition:

F definition: 

F.G definition: 

PNL definition: f-granular probability distribution

μ

μ

μ

20 25

fuzzy graph

fuzzy interval

interval
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INSUFFICIENCY  OF  THE  B  LANGUAGE

Concepts which cannot be defined
causality
relevance
intelligence

Concepts whose definitions are problematic
stability
optimality
statistical independence
stationarity
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DEFINITION OF OPTIMALITY
OPTIMIZATION=MAXIMIZATION?

• definition of optimal X requires use of PNL 

gain

0

yes

Xa a b0

a b0 X

X

Xa b0 c

gain

gain gain

unsure 

no hard to tell 
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MAXIMUM ?

0

Y

X

f m

0

Y

X

extension principle

f

0

Y

X

Pareto maximum

f 

a) ∀x (f (x)≤ f(a))

b) ~ (∃x (f (x) > f(a))

b) ~ (∃x (f (x) dominates f(a))

a
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MAXIMUM ?

0

Y

X

f

0

Y

X

f (x) is A 

Bi

Ai

f =Σi Ai × Bi 
f: if X is Ai then Y is Bi, i=1, …, n
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EXAMPLE

• I am driving to the airport. How long will it 
take me to get there?

• Hotel clerk’s perception-based answer: 
about 20-25 minutes

• “about 20-25 minutes” cannot be defined 
in the language of bivalent logic and 
probability theory

• To define “about 20-25 minutes” what is 
needed is PNL
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EXAMPLE

PNL definition of “about 20 to 25 minutes” 

Prob {getting to the airport in less than about 25 min} is unlikely 
Prob {getting to the airport in about 20 to 25 min} is likely 
Prob {getting to the airport in more than 25 min} is unlikely 

granular 
probability 
distribution

P 

likely

unlikely 

Time
20 25
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PNL-BASED DEFINITION OF STATISTICAL 
INDEPENDENCE

0

S M L

L

M
S ΣC(S/S)

ΣC(M/L) L/S L/M L/L

M/M

S/S

M/S

S/M

M/L

S/L1

2

3

1 2 3

X

Y

Σ (M/L)= ΣC (M x L) 
ΣC (L) 

• degree of independence of Y from X=
degree to which columns 1, 2, 3 are identical 

PNL-based definition

contingency table
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PROTOFORM LANGUAGE
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ORGANIZATION OF KNOWLEDGE

•much of human knowledge is perception-based

examples of factual knowledge
•height of Eiffel Tower is 324 m (with antenna)

(measurement-based)
•Berkeley is near San Francisco (perception-based)
•icy roads are slippery (perception-based)
•if Marina is a student then it is likely that Marina is young 
(perception-based)

FDB
DDB

factual database deduction database

fact rule

measurement-based
perception-based

knowledge
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THE CONCEPT OF PROTOFORM

• a protoform is an abstracted prototype of a class of 
propositions

examples:
most Swedes are tall 
many Americans are foreign-born 

overeating causes obesity                     Q A’s are B’s
obesity is caused by overeating Q B’s are A’s

Q A’s are B’s

P-abstraction

P-abstraction

P-abstraction



LAZ  4/24/2003

THE CONCEPT OF PROTOFORM

protoform: abbreviation of “prototypical form”
PF(p): protoform of p
PF(p): deep semantic structure of p
PF(p): abstraction of precisiation of p
abstraction is a form of summarization
if p has a logical form, LF(p), then PF(p) is an abstraction of 
LF(p)

all men are mortal ∀x(man(x) mortal(x)) ∀x(A(x) B(x))

LF PF

KEY POINTS
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CONTINUED

if p does not have a logical form but has a 
generalized constraint form, GC(p), then PF(p) is 
an abstraction of GC(p)

most Swedes are tall 
is most

QA’s are B’s

)Swedes/Swedes.tall(CountΣ⎯→⎯

GC(p)

PF(p)
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PROTOFORM AND PF-EQUIVALENCE

• P is the class of PF-equivalent propositions 
• P does not have a prototype 
• P has an abstracted prototype: Q A’s are B’s 
• P is the set of all propositions whose protoform is: Q A’s are B’s

knowledge base 
(KB) PF-equivalence class (P)

P
q

protoform (p): Q A’s are B’s 

most Swedes are tall

few professors are rich 
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CONTINUED

abstraction has levels, just as summarization 
does
p and q are PF-equivalent at level α if at level of 
abstraction α, PF(p)=PF(q)

p•

q•

NL

most Swedes are tall QA’s are B’s

a few professors are rich QA’s are B’s
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DEDUCTION (COMPUTING) WITH PERCEPTIONS

deduction 

example 

p1
p2
•
•
pn

pn+1

Dana is young
Tandy is a few years older than Dana 
Tandy is (young+few)

deduction with perceptions involves the use of 
protoformal rules of generalized constraint propagation 
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DEDUCTION MODULE
• rules of deduction are rules governing 

generalized constraint propagation
• rules of deduction are protoformal
examples

generalized modus ponens

X is A                     
if X is B then Y is C
Y is A ° (B C) )),()(sup()( vuuv CBAy →∧= μμμ

Prob (A) is B
Prob (C) is D

)))()(((sup)( duuguv
U

ABgD ∫= μμμ
subject to duuguv

U
C )()(∫= μ
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REASONING WITH PERCEPTIONS: 
DEDUCTION MODULE

GC-form
GC(p)

perceptions
p

GC-forms
GC(p)

terminal 
data 
set 

terminal 
protoform 

set 

initial 
protoform 

set 

protoforms
PF(p)

translation 
explicitation
precisiation

IDS IGCS 
initial data set initial generalized 

constraint set

IGCS IPS 

TPS TDSIPS

abstraction 
deinstantiation

goal-directed
deduction 

deinstantiation

initial protoform set
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PROTOFORMAL CONSTRAINT PROPAGATION

Dana is young Age (Dana) is young X is A

p GC(p) PF(p)

Tandy is a few 
years older 
than Dana

Age (Tandy) is (Age (Dana)) Y is (X+B)

X is A
Y is (X+B)
Y is A+B

Age (Tandy) is (young+few)

)uv(+)u((sup=)v( BAuB+A -μμμ

+few
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EXAMPLE OF DEDUCTION

most Swedes are tall 
? R Swedes are very tall 

most Swedes are tall Q A’s are B’ss/a-transformation

Q A’s are B’s
Q½ A’s are  2B’s

most½ Swedes are very tall r1

1

0

μ

0.25 0.5

2/1most

most
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COUNT-AND MEASURE-RELATED RULES

Q A’s are B’s

ant (Q) A’s are not B’s r0

1

1

ant (Q)
Q

Q A’s are B’s

Q1/2 A’s are  2B’s
r0

1

1

Q

Q1/2

most Swedes are tall 
ave (height) Swedes is ?h

Q A’s are B’s 
ave (B|A) is ?C

))a(
N

(sup)v( iBiQaave μμ=μ ‡”1

)(1
ii aNv ∑=

),...,( 1 Naaa =,

crisp μ

μ
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CONTINUED

not(QA’s are B’s) (not Q) A’s are B’s

Q1 A’s are B’s
Q2 (A&B)’s are C’s
Q1 Q2 A’s are (B&C)’s

Q1 A’s are B’s
Q2 A’s are C’s
(Q1 +Q2 -1) A’s are (B&C)’s
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INTERPOLATION

)du)u(g)u((* A
U
μπ ∫

)du)u(g)u(()du)u(g)u(()g(
ni AU)n(PiAU)1(Pi μμμμπ ∫∧⋅⋅⋅∧∫=

)du)u(g)u(()du)u(g)u((sup)v(*
ni AU)n(PiAU)1(Pig μμμμπ ∫∧⋅⋅⋅∧∫=

is ?A

subject to: du)u(g)u(v AU μ∫=

1du)u(gU =∫
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CONTINUED

∏(g): possibility distribution of g
∏(g): )du)u(g)u(()du)u(g)u((

ni AU)n(PiA
U

)(Pi μ∫μ∧⋅⋅⋅∧μ∫μ 1

extension principle

∏(g)

∏*(f(g))

∏*(v) = supg(∏(g))

subject to:
v = f(g)



LAZ  4/24/2003

EXPECTED VALUE

)du)u(g)u(()du)u(g)u(()g(
ni AU)n(PiAU)1(Pi μμμμπ ∫∧⋅⋅⋅∧∫=

)du)u(ug(*
U
∫π is ?A

)du)u(g)u(()du)u(g)u((sup)v(*
ni AU)n(PiAU)1(Pig μμμμπ ∫∧⋅⋅⋅∧∫=

subject to: du)u(ugv U∫=
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CONTINUED

Prob {X is Ai} is Pj(i), i=1, …, m   ,    j=1, …, n
g(u)du=1

G is small ∀u(g(u) is small)
∫

Prob {X is A} is ?v

Prob {X is Ai} =
U
∫ g(u)μAi

(u)du

construct: )du)u()u(g()v(
i)i(j)i(j AUPP μμμ ∫=
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INTERPOLATION OF BIMODAL DISTRIBUTIONS

p1
p2 p

pn

P

0

A1 A2 A An

X

g(u): probability density of X

pi is Pi : granular value of pi , i=1, …, n
(Pi , Ai) , i=1, …, n      are given
A is given
(?P, A)
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INTERPOLATION MODULE AND PROBABILITY 
MODULE

Prob {X is Ai} is Pi , i = 1, …, n

Prob {X is A} is Q

∧⋅⋅⋅∧μ∫μ=μ )du)u(g)u(((sup)v( A
U

PgQ 11

))du)u(g)u((
nnn A

U
P

U
P μ∫μ∫μ

subject to

du)u(g)u(U A
U
μ∫=
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PROBABILISTIC  CONSTRAINT  PROPAGATION  RULE 
(a special version of the generalized extension principle)

duuug AU )()( μ∫ is R

duuug BU )()( μ∫ is ?S

)))()(((sup)( duuugv AURgS μμμ ∫=

subject to

1)(

)()(

=∫

∫=

duug

duuugv

U

BU μ



126126
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CONJUNCTION

•determination of r involves interpolation of a bimodal 
distribution

X is A
X is B

X is A   B∩

X isu A
X isu B

X isr A   B∩
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USUALITY — QUALIFIED RULES

X isu A
X isun (not A)

X isu A
Y=f(X)

Y isu f(A)

))((sup)( )(|)( uv AufvuAf μμ ==
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USUALITY — QUALIFIED RULES

X isu A
Y isu B

Z = f(X,Y)

Z isu f(A, B)

)()((sup)( ),(|, vuw BAvufwvuZ μμμ ∧= =
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PRINCIPAL COMPUTATIONAL RULE IS 
THE EXTENSION PRINCIPLE (EP)

point of departure:  function evaluation

X=a
Y=f(X)
Y=f(a)

Y

0 Xa

f(a)
f
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EXTENSION PRINCIPLE HIERARCHY

Extension Principle 

argumentfunction
EP(0,0)

EP(0,1) EP(0,1b)

EP(0,2)

EP(1,0)

EP(1,1)EP(1,1b)EP(2,0)

Dempster-Shafer 

Mamdani (fuzzy graph)
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VERSION EP(0,1) (1965; 1975)

Y

0 X
A

f(A) f

X is A
Y=f(X)
Y=f(A)

subject to
))((sup)( uv Auf(A) μμ =

)(ufv =
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VERSION EP(1,1) (COMPOSITIONAL RULE OF 
INFERENCE) (1965)

Y

0 X
A

f(A) R 

X is A
(X,Y) is R

Y is A   RD

),(�È)((sup)( vuuv RAuY μμμ =
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Y

0 Xa

fuzzy graph (f*)

EXTENSION PRINCIPLE EP(2,0) (Mamdani)

ii BA ×

iii BaA=Y �È)(μΣ

iii BAf ×= Σ*
aX =

(if X is AI then Y is BI)
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VERSION EP(2,1)
Y

0 X
A

f* (granulated f)

X is A
(X, Y) is R

Y is Σi mi ∧ Bi

f*(A)

R = Σi Ai×Bi

mi = supu (µA(u) ∧ µAi (u)): matching coefficient 
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VERSION EP(1,1b)  (DEMPSTER-SHAFER)

X isp (p1\u1 + … + pu\un)

(X,Y) is R 

Y isp (p1\R(u1) + … + pn\R(un)) 

Y is a fuzzy-set-valued random variable 

µR(ui) (v) = µR (ui, v)
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VERSION GEP(0,0)

f(X) is A
g(X) is g(f -1(A))

)))(((sup)(
))(1(

ufv AuAfg
μμ =-

)(ugv =
subject to
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GENERALIZED EXTENSION PRINCIPLE

f(X) is A 
g(Y) is B 
Z=h(X,Y)

Z is h (f-1(A), g-1 (B))

(g(u)))μ(f(u))(μsup(w)μ BAvu,Z ∧=

subject to

h(u,v)w =
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U-QUALIFIED EXTENSION PRINCIPLE
Y

0 X

If X is Ai then Y isu Bi, i=1,…, n
X isu A
Y isu ΣI mi∧Bi

m = supu (µA(u)∧µAi(u)): matching coefficient 

Bi

Ai
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THE  ROBERT  EXAMPLE

• the Robert example relates to everyday 
commonsense reasoning– a kind of 
reasoning which is preponderantly 
perception-based

• the Robert example is intended to serve as 
a test of the deductive capability of a 
reasoning system to operate on 
perception-based information
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THE ROBERT EXAMPLE

the Robert example is a sequence of 
versions of increasing complexity in 
which what varies is the initial data-set 
(IDS)

version 1
IDS: usually Robert returns from work at 

about 6 pm
questions:

q1 : what is the probability that Robert is 
home at t* (about t pm)?
q2 : what is the earliest time at which the 

probability that Robert is home is high? 
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CONTINUED

version 2:
IDS: usually Robert leaves office at about 
5:30pm, and usually it takes about 30min 
to get home

q1, q2 : same as in version 1

version 3: this version is similar to version 2 
except that travel time depends on the 
time of departure from office.

q1, q2: same as version 1
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THE  ROBERT  EXAMPLE  (VERSION 3)

IDS: Robert leaves office between 5:15pm and 
5:45pm. When the time of departure is about 
5:20pm, the travel time is usually about 20min; 
when the time of departure is about 5:30pm, the 
travel time is usually about 30min; when the time 
of departure is about 5:40pm, the travel time is 
about 20min

• usually Robert leaves office at about 5:30pm
• What is the probability that Robert is home at 

about t pm?
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THE  ROBERT  EXAMPLE

Version 4
•Usually Robert returns from work at about 6 pm

Usually Ann returns from work about half-an-hour later
What is the probability that both Robert and Ann are
home at about t pm?

1

0
6:00 t time 
•

Robert AnnP 

•
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THE  ROBERT  EXAMPLE
Version 1.

My perception is that Robert 
usually returns from work at 
about 6:00pm

q1 : What is the probability that 
Robert is home at about t pm?

q2 : What is the earliest time at 
which the probability that 
Robert is home is high?
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PROTOFORMAL DEDUCTION

THE ROBERT EXAMPLE 

IDS p: usually Robert returns from work at about 6 pm.
TDS q: what is the probability that Robert is home at 

about t pm?

1. precisiation:
p Prob {Time (Robert returns from work is 

about 6 pm} is usually
q Prob {Time (Robert is home) is about t pm}

is ?D
2. calibration: µusually , µt* , t* = about t 
3. abstraction:

p* Prob {X is A} is B
q* Prob {Y is C} is ?D 
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CONTINUED

4. search in Probability module for applicable rules 
(top-level agent)

Prob {X is A} is B
Prob {Y is C} is D not found 

Prob {X is A} is B
Prob {X is C} is D

Prob {X is A} is B
Prob {f(X) is C} is D

found: 

5. back to IDS and TDS. Go to WKDB (top-level agent)
• A/person is at home at time t if A returns before t
• Robert is home at t* =Robert returns from work before t* 
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THE  ROBERT  EXAMPLE
event equivalence

Robert is home at about t pm= Robert returns from work
before about t pm 

1

0
T t time 

••

time of return 

before t*

t* (about t pm)

Before about t pm=   ≤ o about  t  pm 

μ
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CONTINUED

6.  back to Probability module 

Prob {X is A} is B
Prob {X is C} is D

))du)u(g)u(((sup)v( A
U

BgD μ∫μ=μ

du)u(g)u(v cU
μ∫=

7. Instantiation : D =Prob {Robert is home at about 6:15}
X =Time (Robert returns from work)
A = 6*
B =usually
C = ≤ 6:15*
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THE BALLS-IN-BOX EXAMPLE

• a box contains N balls of various sizes

• my perceptions are:

– a few are small
– most are medium
– a few are large

• a ball is drawn at random

• what is the probability that the ball is 
neither small nor large

IDS (initial data set)
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PERCEPTION-BASED ANALYSIS

a few are small Σ Count(small) is few Q1 A’s are B’s 

most are medium

a few are large 

Σ Count(medium) is most     Q2 A’s are C’s

Σ Count(large) is few       Q3 A’s are D’s

}u,...,{u=A n1 ; iu =size of i th ball; u= )u,...,(u ni

:)u,...,(u n11Π possibility distribution function of
induced by the protoform  

)u,...,(u ni

Q1 A’s are B’s

))(uμΣ  
N
1  (μ-)u,...,(u iBiQn 111Π

1
N
1
N 1

N
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CONTINUED

:)u,...,(u n1Π possibility distribution function induced by IDS

)u,...,(u)u,...,(u)u,...,(u)u,...,(u nnnn �È�È= 1312111 ΠΠΠΠ

query: (proportion of balls which are neither large nor small)
is? Q4

))(μμ-(1�È)(uμ-((1Σ   
N
1=  Q iearglismalli4

protoformal deduction rule (extension principle)

(u))(u)(u)(sup=(v) uQ 3214
ΠΠΠμ �È�È

subject to )))(uμ-(1�È))(μμ-((1Σ   
N
1=  V iBiBi 31
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SUMMATION—BASIC POINTS

Among a large number and variety of perceptions 
in human cognition, there are three that stand out 
in importance

1. perception of likelihood
2. perception of truth (similarity, compatibility, 

correspondence)
3. perception of possibility (ease of attainment)
These perceptions, as most others, are a matter of 
degree
In bivalent-logic-based probability theory, PT, only 
perception of likelihood is a matter of degree
In perception-based probability theory, PTp, in 
addition to the perception of likelihood, 
perceptions of truth and possibility are, or are 
allowed to be, a matter of degree
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CONCLUSION

Conceptually, computationally and 
mathematically, perception-based 
probability theory is significantly 
more complex than measurement-
based probability theory.  
Complexity is the price that has to be 
paid to reduce the gap between 
theory and reality. 
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COMMENTS

from preface to the Special Issue on Imprecise 
Probabilities, Journal of Statistical Planning and 
Inference, Vol. 105, 2002

“There is a wide range of views concerning the 
sources and significance of imprecision. This 
ranges from de Finetti’s view, that imprecision 
arises merely from incomplete elicitation of 
subjective probabilities, to Zadeh’s view, that most 
of the information relevant to probabilistic analysis 
is intrinsically imprecise, and that there is 
imprecision and fuzziness not only in probabilities, 
but also in events, relations and properties such as 
independence. The research program outlined by 
Zadeh is a more radical departure from standard 
probability theory than the other approaches in this 
volume.” (Jean-Marc Bernard)
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CONTINUED

From: Peter Walley (Co-editor of special issue)

"I think that your ideas on perception-based 
probability are exciting and I hope that they 
will be published in probability and statistics 
journals where they will be widely read. I think that 
there is an urgent need for a new, more innovative 
and more eclectic, journal in the area. The 
established journals are just not receptive to new 
ideas - their editors are convinced that all the 
fundamental ideas of probability were established 
by Kolmogorov and Bayes, and that it only remains 
to develop them! "
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CONTINUED

From: Patrick Suppes (Stanford)

“I am not suggesting I fully understand what the final 
outcome of this direction of work will be, but I am 
confident that the vigor of the debate, and even more 
the depth of the new applications of fuzzy logic, 
constitute a genuinely new turn in the long history of 
concepts and theories for dealing with uncertainty.”
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STATISTICS
Count of papers containing the word “fuzzy” in the 
title, as cited in INSPEC and MATH.SCI.NET 
databases. (data for 2002 are not complete)

Compiled by Camille Wanat, Head, Engineering 
Library, UC Berkeley, April 17, 2003

INSPEC/fuzzy
1970-1979 569
1980-1989 2,404
1990-1999 23,207
2000-present 8,745
1970-present 34,925

Math.Sci.Net/fuzzy
443
2,466
5,472
2,319
10,700


