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Four Goals for Structural Health Monitoring

»Step 1: Damage Identification
»Step 2: Damage Localization
= Step 3: Damage Quantification

=Step 4: Damage Prognosis
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Structural Health Monitoring

Is this bridge damaged? ‘ Perform pattern comparison.

» Los Alamos Weapon Response Group, Engineering Sciences & Applications Division 3



Five Steps for Structural Health Monitoring

= Step 1: Operational Evaluation
= Step 2:

= Step 3: Data Normalization
=Step 4: Feature Extraction

= Step 5: Statistical Inference
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Environmental Variation
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Example of Debris in Expansion Joint of the
Alamosa Canyon Bridge

This debris can effect the boundary conditions of the
structure and its response to environmental changes
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Statistical Pattern Recognition Paradigm for SHM
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Data Normalization Example [Sohn et al. 2002]

List of time series emploved in this study

| Case Description Inputlevel | Data#perinput | Totaldata# |
0 No bumper 3,4,5,6,7 Volts 15 sets 75 sets
Bumper between m1-m?2 3,4,5,6,7 Volts 5 sets 25 sets
3,4,5

1
2 Bumper between m5-m6 ,4,5,6,7 Volts 5 sets 25 sets
3 Burnper between m7-m& 4,5, 6,7 Volts 5 sets 20 sets
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Outline of Damage Diagnosis using
AR-ARX, Auto-Associative Network and Hypothesis Test

1. COLLECT BASELINE DATA 2. FEATURE EXTRACTION 3. DATA NORMALIZATION
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4. FEATURE EXTRACTION 5. STATISTICAL INFERENCE 6. DECISION MAKING
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Auto-Associative Neural Network for Data Normalization

Mapping function G De-mapping function H

Predict o and

G_'Oj‘i

Mapping Bottleneck De-mapping Output
layer layer layer layer
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Damage Localization

No bumper Bumper between m1 and m2
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Real World Application [Sohn et al. 2001]

(a) Surface-Effect Fast Patrol Boat

(b) Fiber optic strain gauges

ARA
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Raw Dynamic Strain Time Series Data
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Damage Classification using O'(Ey)/O'(Ex)
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A Moment Resisting Frame Structure Model
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Establishment of Decision Boundaries

Mormalized Time Series
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Normality Assumption of Data

» Let's look at the baseline prediction errors to see whether they
have a normal distribution or not.
= A normal probability plot graphically assesses whether the data
come from a normal distribution.
» |f the data are normal, the 0990 L.
plot will be linear. Otherwise, [ i
there would be curvature in [T T S
the pot. g
LL
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Why Extreme Value Statistics ?

* |n general, the distribution type of the parent data is
unknown, and there are infinite numbers of candidate
distributions.

* There are only three types of distributions for extreme
(maximum or minimum) values regardless the distribution
type of the parent data [Fisher and Tippett, 1928].

= That means, the model selection for the extreme values
becomes much easier, because there are only three
models to choose.(Gumbel, Weibull, Frechet distributions)

ok
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Feasible Cumulative Density Functions for Maxima

From Castillo [1988]:

—A
= Gumbel F(x)ZCXp{—exp(—xg ﬂ —0<x<0, 0>(
( 1 if x>2
= \Weibull: F(x)=1 Y
exp{— (ij } otherwise

( é‘ ﬂ
exp{( lj } if x24
* Frechet: F(x)=1 X

0 otherwise

5

» Los Alamos Weapon Response Group, Engineering Sciences & Applications Division 19




Fitting to Gumbel Distribution

Normal Probability Plot
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Order statistic (maxima)

« Divide the original times series with 8192 data points into 128

time series with 64 points.

« Compute the maximum value from each block and fit the 128

maxima to a Gumbel distribution.
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Establishment of Decision Boundaries
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Detection of Rattling
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Discontinuity Detection via Holder Exponent

= Definition: The Holder Exponent is a measure of the
regularity of the signal. The regularity of the signal is the
number of continuous derivatives that the signal
possesses.

» Objective: ldentify discontinuity in signals that can be
caused by certain types of damage.

= Application: Examples of damage that might induce
discontinuity into the dynamic response signal include:

— Opening and closing of cracks
— A loose joint that is allowing contact (rattle) to occur
s
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Holder Exponent Analysis
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Holder Exponent Analysis
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Scalogram from Wavelet Transform

(a) Response at Low Excitation Level
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Holder Exponent Analysis

(1) Find the max drop (2) Threshold = C x max drop

(3) Discontinuity > Threshold
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Summary

» Cast structural health monitoring problems in the
framework of statistical pattern recognition.

* Developed various signal-based damage detection
algorithms.

* Embed damage detection algorithms into on-board
microprocessors.

* Address data normalization issue explicitly.

* Decision making is based on rigorous statistical
modeling.

* Provide a suite of data interrogation algorithms for
structural health monitoring in the format of GUI
software called DIAMOND Il (patent pending).

ok
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