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Structural Reliability Methods

> Analytical Methods

— general procedure:
» iterative selection of samples from unknown performance function
» regression methods to approximate performance function
» search technique to find most probable point(s)

— no info regarding sample points (success/failure) is used
> Sampling Methods

— general procedure:
» sample of observations from unknown performance function
» success/failure evaluation at each point

— no info on performance function is used in analysis
> Importance sampling lies between these extremes and therefore utilizes more
information in making probability estimates offering one explanation as to why IS
methods are so efficient
> Proposed Approach - Field Analysis Method

— also lies between the extremes and can be used with any sampling method, including
importance sampling, to improve efficiency

— utilizes spatial statistics to probabilistically characterize the likelihood of any point being
the success or failure region
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Spatial Estimation of Response Function

> Assumptions:

— Underlying response model fixed but unknown function of random variables

Z(S) = Z(X;, Xpyeeer Xg)
— Z(s) can be locally characterized by a linear combination of known functions:

p+1

9= .98+

— where: §(s) is an intrinsically stationary random process, 8 = (5. B..---: )
is a vector of unknown parameters and f (s) are an independent set of
known functions, i.e  x°, xI, X, X,, X2, ...

> Expected value and covariance of Z(s) can be estimated:
E[Z(s)]=m
E{[Z(s) - m|[Z(s+h) -m]} =C(s;s+h) =C(|h])

> A specific form must be chosen for C(h), however the analysis is very
robust to the particular form chosen
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Spatial Estimation of Response Function (cont.)

O
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An estimate the mean of the response at any particular point in
the design space is composed of a linear combination of
neighboring observations

2s)= 3 AZ(6)

where the weights are found from:

given: c= (C(SO — Sl) ,,,,, C(So _SN)’ f0 (So) ,,,,, fp (So))T

C(s -s;), 1=L..,N; j=L..,N
K=0f_n(8), 1=5L.,N; j=N+1L.,N+p+1
- 0, i=N+L..,N+p+L j=N+L..,N +p +1
An estimate of the variance of the response at any point can then
be estimated: oZ(s,)=C(0)-w'c
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Failure Probability Estimation

> At each point on the response surface an estimate of the mean
and variance of the estimation error is now available

» Under the assumption of a Gaussian error process, it is possible
to estimate the probability that any selected point is a member of
either the success or failure region

PHZ(5) <7, |S=5} = q»@zcma ZS“)@)%

> If N points are selected then an estimate of the probability of
failure is given by:

L chrit_l'l(s|)|:|
2% o)

Ps N
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Pseudo-random Sampling

> Monte Carlo
— developed in nuclear weapons programsin the 1940's
— let s =[0,1]° be as-dimensional cubeand let ¢y bedefinedon |

— let (X « « ) be a pseudo-random sample of N points from °

IREAVEEERERANN

— Given these samples Monte Carlo analysis provides an approximation of a
continuous average with discrete average

[ fmd==3" (x)
N
— PLUS:
» sampling can be conducted sequentially (easy to add new samples)
» error bounds not dependent on dimension s O(N‘”)
— MINUS
» Probabilistic error bounds depends on equidistribution of sample pointsin
» no methodical method of constructing sample to achieve error bound, therefere
» rate of convergenceisvery slow

() sandia National Laboratories

LANL UQWG 2/21



Pseudo-random Sampling

> Latin Hypercube Sampling
— also based on pseudo-random sampling
— form of stratified sampling in which

the samples are ‘forced’ to be dispersed across 4
the support space e
— number of samples dictates the number of %
regions -
- PLUS: g

» gignificant reduction in number of samples
compared to traditional MC

— MINUS
» samples do not provide good uniformity across |°
» samples can not be generated sequentialy
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Quasi-random Sampling

> Quasi-random sample is commonly referred to as a low-discrepancy
sequence

> Low discrepancy sequence is one that places sample points nearly
uniformly in the sample space of interest

> Low-discrepancy - low integration error

> Deterministic error bounds - OfN"(logN)*~
> Variety of sequences

— Halton (simple, leaped, RR2)

— Hammersley

— Fauer

— Sobol
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Simple Halton Sequence

> Defined in s-dimensional space by using s prime bases to generate a
sequence of N quasi-random vectors

x, =(®, ()@, (N),...®, (), n=12..N

where the radix inverse function is defined:

-s-1

—_ — -1 -2
®, (n) =0nn--n =nb” +nb® +-- +nb

— ;nibj—i—l

> Integer coefficients n; (O< n;sb,) result from expansion of integer n in
base b;:
—_ — 2 s
n=nn_---nnn =n +nb +nb" +.--+nb
S .
=y nb

i=0
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Example

Halton sequence for N=6, s=3
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X % X3
n |b=2 |b,=3 b,=5
1 |05 0.333333 [0.2
2 10.25 |0.666667 |04
3 075 ]0.111111 |0.6
4 10.125 |0.444444 0.8
5 |0.625 [0.777778 |0.04
6 |0.375 [0.222222 |0.24
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Example

Halton sequence for N=12, s=3

X5

X5

b=2 |b=3 b,=5 b,=2 b,=3 b,=5
1 |05 0.333333 | 0.2 7 0.875 | 0.555556 | 0.44
2 1025 |0.666667 | 0.4 8 0.0625 | 0.888889 | 0.64
3 |0.75 |0.111111 |06 9 0.5625 | 0.037037 | 0.84
4 10.125 |0.444444 | 0.8 10 |[0.3125 | 0.37037 |0.08
5 [0625 |0.777778 {004 |11 |0.8125 | 0.703704 | 0.28
6 |[0.375 |0.222222 |0.24 |12 |0.1875 | 0.148148 | 0.48
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Discrepancy

Unmodified Halton
LHS
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Comparisons

Example 1:

:ﬁ«m—iui

Relative Failure Probability - Ex. 1
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Comparisons

Example 6: g,

= X_+2X +2X +X, —=5X_ -5X,

6
+0.001y sin(100X )

Relative Failure Probability - Ex. 6
15
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0.5 : : : :
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|[EN=50 mN=200 0N=500 o0 N=5000|
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g-MC Discussion

» Qverall the Halton Leaped quasi-Monte Carlo sampling proved
to have lower mean estimation error and/or have faster
convergence

» There were unique cases where LHS was better however:

— primarily for very small samples and
— repeated samples were inconclusive (sometimes better/worse)
> Major benefit of Halton-type sequences was the abillity to

sequentially add samples as results converged - this is not
possible with LHS

» Performance function evaluation is becoming computationally
burdensome (100K processor hours for single evaluation)

» Ability to reduce the number of samples and sequentially
sample is becoming critical
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Test Cases

» Test Cases (all treated as ‘black boxes - no derivative info used)

- Casel: Zl(xl’xz) = 2X, @_(Xl _1)2 —2

with:
X, ~Ln(u=30=15)
X, ~Ln(u =30 =2.25)

— Case 2:

12x,X2
X, X.2
where: k = 3.52,k, =4.0

Z, (%, %55 X5, X,4) = I

Random Mean Coefficient of
Variable Variation
X 10000000 0.03
X, 0.00025 0.05
X3 0.980 0.05
Xy 20.0 0.05
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Sample Generation

> Sample Generation
— quasi-Monte Carlo
— use of Halton sequence permits iterative generation of samples

— could use importance sampling methods to focus new samples, but
was not beneficial in these two test cases
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Intermediate Results - Case 1

(based on only first 20 samples)

181
16
14

X, 121

10 +

() sandia National Laboratories

LANL UQWG 2/21

PDF representation-

«— | Thedarker the color the higher

the probability that the region
contains the limit state function
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MPP Location and Resampling

> Probability-based identification of the location of MPP(s) can be

accomplished by combining the likelihood function and the spatial PDF
of the random field

8
16%
14%
X5 12% pdf x likelihood

10*: )

. MPP (unknown)

2 4 6 8 10

N » )] (0]
el

X
> Resampling can then be biased in the area of the MPP locations similar
to the approach used in various importance sampling methods
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R_esults - Case 1 and Case 2
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Conclusions

» Good things:

— For all test cases investigated thus far, the new method requires
significantly fewer function evaluations in comparison with
traditional analytically-based FORM/SORM methods

— The number of function evaluations is not dependent on the
dimension of the design space

— Without sampling bias, the number of function evaluations will
always be less than or equal to the number required for a full quasi-
Monte Carlo evaluation and pseudo-MC methods such as LHS

» Bad things:

— New method can run into numerical problems in the far extremes of
the design space
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Cassandra Project

This approach along with a large number of
other methods, is an integral part of the
Cassandra uncertainty analysis library
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