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Structural Reliability Methods

❍ Analytical Methods
– general procedure:

» iterative selection of samples from unknown performance function
» regression methods to approximate performance function
» search technique to find most probable point(s)

– no info regarding sample points (success/failure) is used

❍ Sampling Methods
– general procedure:

» sample of observations from unknown performance function
» success/failure evaluation at each point

– no info on performance function is used in analysis

❍ Importance sampling lies between these extremes and therefore utilizes more
information in making probability estimates offering one explanation as to why IS
methods are so efficient

❍ Proposed Approach - Field Analysis Method
– also lies between the extremes and can be used with any sampling method, including

importance sampling, to improve efficiency

– utilizes spatial statistics to probabilistically characterize the likelihood of any point being
the success or failure region
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Spatial Estimation of Response Function

❍ Assumptions:
– Underlying response model fixed but unknown function of random variables

– Z(s) can be locally characterized by a linear combination of known functions:

– where:         is an intrinsically stationary random process,
is a vector of unknown parameters and          are an independent set of
known functions, i.e

❍ Expected value and covariance of Z(s) can be estimated:

❍ A specific form must be chosen for C(h), however the analysis is very
robust to the particular form chosen
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❍ An estimate the mean of the response at any particular point in
the design space is composed of a linear combination of
neighboring observations

where the weights are found from:

given:

An estimate of the variance of the response at any point can then
be estimated:

Spatial Estimation of Response Function (cont.)
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Failure Probability Estimation

❍ At each point on the response surface an estimate of the mean
and variance of the estimation error is now available

❍ Under the assumption of a Gaussian error process, it is possible
to estimate the probability that any selected point is a member of
either the success or failure region

❍ If N points are selected then an estimate of the probability of
failure is given by:
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Pseudo-random Sampling

❍ Monte Carlo
– developed in nuclear weapons programs in the 1940's
– let                      be a s -dimensional cube and let         be defined on
– let                         be a pseudo-random sample of N  points from
– Given these samples Monte Carlo analysis provides an approximation of a

continuous average with discrete average

– PLUS:
» sampling can be conducted sequentially (easy to add new samples)
» error bounds not dependent on dimension s

– MINUS:
» Probabilistic error bounds depends on equidistribution of sample points in
» no methodical method of constructing sample to achieve error bound, therefore
» rate of convergence is very slow
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❍ Latin Hypercube Sampling
– also based on pseudo-random sampling

– form of stratified sampling in which
the samples are ‘forced’ to be dispersed across
the support space

– number of samples dictates the number of
regions

– PLUS:
» significant reduction in number of samples

compared to traditional MC

– MINUS:
» samples do not provide good uniformity across

» samples can not be generated sequentially

Pseudo-random Sampling
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Quasi-random Sampling
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❍ Quasi-random sample is commonly referred to as a low-discrepancy
sequence

❍ Low discrepancy sequence is one that places sample points nearly
uniformly in the sample space of interest

❍ Low-discrepancy  →→→→  low integration error

❍ Deterministic error bounds -

❍ Variety of sequences
– Halton (simple, leaped, RR2)
– Hammersley
– Fauer

– Sobol
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Simple Halton Sequence

❍ Defined in s-dimensional space by using s prime bases to generate a
sequence of N quasi-random vectors

where the radix inverse function is defined:

❍ Integer coefficients ni (0≤ ni≤bj) result from expansion of integer n in
base bj :
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Example

n
x1

b1 2=
x2
b2 3=

x3
b3 5=

1 0.5 0.333333 0.2

2 0.25 0.666667 0.4

3 0.75 0.111111 0.6

4 0.125 0.444444 0.8

5 0.625 0.777778 0.04

6 0.375 0.222222 0.24

Halton sequence for N=6, s=3
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Example

0.480.1481480.1875120.240.2222220.3756

0.280.7037040.8125110.040.7777780.6255

0.080.370370.3125100.80.4444440.1254

0.840.0370370.562590.60.1111110.753

0.640.8888890.062580.40.6666670.252

0.440.5555560.87570.20.3333330.51

x3

b3=5

x2

b2=3

 x1

b1=2
nx3

b3=5

x2

b2=3

 x1

b1=2

n

Halton sequence for N=12, s=3
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Discrepancy
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Comparisons
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Comparisons
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q-MC Discussion

❍ Overall the Halton Leaped quasi-Monte Carlo sampling proved
to have lower mean estimation error and/or have faster
convergence

❍ There were unique cases where LHS was better however:
– primarily for very small samples and
– repeated samples were inconclusive (sometimes better/worse)

❍ Major benefit of Halton-type sequences was the ability to
sequentially add samples as results converged - this is not
possible with LHS

❍ Performance function evaluation is becoming computationally
burdensome (100K processor hours for single evaluation)

❍ Ability to reduce the number of samples and sequentially
sample is becoming critical
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Test Cases

❍ Test Cases (all treated as ‘black boxes - no derivative info used)
– Case 1:

– Case 2:
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Sample Generation

❍ Sample Generation
– quasi-Monte Carlo
– use of Halton sequence permits iterative generation of samples

– could use importance sampling methods to focus new samples, but
was not beneficial in these two test cases
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Intermediate Results - Case 1
(based on only first 20 samples)
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MPP Location and Resampling

❍ Probability-based identification of the location of MPP(s) can be
accomplished by combining the likelihood function and the spatial PDF
of the random field

❍ Resampling can then be biased in the area of the MPP locations similar
to the approach used in various importance sampling methods
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Results - Case 1 and Case 2
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Conclusions

❍ Good things:
– For all test cases investigated thus far, the new method requires

significantly fewer function evaluations in comparison with
traditional analytically-based FORM/SORM methods

– The number of function evaluations is not dependent on the
dimension of the design space

– Without sampling bias, the number of function evaluations will
always be less than or equal to the number required for a full quasi-
Monte Carlo evaluation and pseudo-MC methods such as LHS

❍ Bad things:
– New method can run into numerical problems in the far extremes of

the design space
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Polymer AgingPolymer Aging

Stress VoidingStress Voiding

CorrosionCorrosion

Small Lot
Manufacturing

Small Lot
Manufacturing

Cassandra Project

This approach along with a large number of
other methods, is an integral part of the
Cassandra uncertainty analysis library

This approach along with a large number of
other methods, is an integral part of the
Cassandra uncertainty analysis library


