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Abstract

Estimating the Error in Simulation Prediction Over the Design Space (U)

This study addresses the assessment of accuracy of simulation predictions. A procedure is developed to validate
a simple non-linear model defined to capture the hardening behavior of a foam material subjected to a short-
duration transient impact. Validation means that the predictive accuracy of the model must be established, not just
in the vicinity of a single testing condition, but for all settings or configurations of the system. The notion of
validation domain is introduced to designate the design region where the model’s predictive accuracy is
appropriate for the application of interest. Techniques brought to bear to assess the model’s predictive accuracy
include test-analysis correlation, calibration, bootstrapping and sampling for uncertainty propagation and
metamodeling. The model’s predictive accuracy is established by training a metamodel of prediction error. The
prediction error is not assumed to be systematic. Instead, it depends on which configuration of the system is
analyzed. The study shows how predictive accuracy can be assessed even in the presence of a calibrated model by
calibrating to one point in the design space, then assessing with respect to experimental data elsewhere in the
design space. Finally, the prediction error’s confidence bounds are estimated by propagating the uncertainty
associated with specific modeling assumptions.
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Motivation

 The motivation of this work is the development of tools for
Verification and Validation (V&V) because our objective
is to make decisions based on validated simulations.

* A key component of V&YV is the assessment of predictive
accuracy.

 Example: Bill Press is asking us to demonstrate that our
“science-based predictions” are credible.

 Example: What are the benefits in terms of improving the
confidence in our simulations of performing another test?
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IHustration

* What do we mean by “assessing the predictive accuracy”
of a numerical simulation?

Error in the Model
prediction of y {p }_, 0ac > {y }
10%4 y =M(p)
9% I
Wt T |
“For the setting of p=3, we
(7Y | [EEEEEE can predict y with an expected
accuracy of 7% +/- 1%, at the
6% e > significance level of 96%.”

1.0 20 3.0 40 5.0

* Prediction accuracy includes the assessment of the sources
of uncertainty and lack-of-knowledge.
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Why Do We Make Assumptions?

Assumptions enable model-building.
Reality of Interest Conceptual Model Computational Model

< =
: £
= £
= =
z&'ﬁf (From Collins, Hasselman & al.,
SA-500 D AIAA Journal, 1974. )

Modellng assumptions reduce the uncertainty! It may
result into a false sense of confidence in the predictions.

 The extent to which modeling assumptions influence the
predictions and decisions must be quantified.
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The First Step is the Definition of the
Domain of Validation

Prediction only.

yles (Testing not performed here.)

Prediction
error (e)

=M ; . .
y=M(p,;p,) Validation

Total error .
experiment

e =l

1400 -

Total error
e =[yTeyl|

MP]

* Prediction errors must be estimated through the design
space, including in regions where physical experiments
are not available.
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~= The Second Step is the Assessment of
Uncertainty From Modeling Assumptions

. . Error
Prediction
error (e)
P, PDF
z ;|
//
P
PDF Prediction PDF PDF PDF .
error Measurement Mesh Modeling
uncertainty convergence error
— + [ 2N N J +
Error Error Error Error

* The uncertainty introduced by the modeling assumptions
(or modeling error) must be assessed and quantified.
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Hyper-foam Impact Experiments

* Physical experiments are performed to study the
propagation of an impact through an assembly of metallic
and crushable (foam pad) components.

Output
Acceleration
Signal

<4+—Tightening Bolt
Input

Acceleration
Signal
Carriage (Impact Table)

VY YYY YOy

Steel Impactor

Hyper-foam Pad
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Configurations Tested

* Several configurations of the system are tested by varying
the foam pad thickness (%) and drop height (d).

¢ Comparison of Impact Test Data -- Tests 10 & 27
Foam Pad 1500k = AR —— L SN ————— N—— Ir‘] —_ ' S—
=== |lnput1 |
.......... Thickness. /1 ) ngh Dl‘Op — Qutput 1 |
T ) S1000_ e e L Gt 2 o
'~§ — Output 3 i
Height, d l l l l < :
2 3 4 5 6 71 8 9 10
v Time (milli-second)
|
1500 ‘ ‘ 4 ‘ !
Low Drop High Drop B Low Drop _ gﬁ:’;uh ;
(d=13”, 0.3 m) (d=155”, 4.0 m) = (0] o]0 )| e _ 8U:PU:§ ooy
= — Oulput 3 |
(h=0.25, 6.3 mm) 10 Replicates 5 Replicates g
Thick Layer
(h=0.50”, 12.6 mm) 10 Replicates 5 Replicates _ g
Time (milli-second)
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The Domain of Validation

50,

 The crushing behavior of the foam
material is represented by a 1D
strain-stress constitutive equation.

F(x()= Ky (x(t)

[— Cubic Stiffness Model |

©
t=1

SDOF Internal Force (Ibf)
L3

 “How good is this model over this o

range of operating conditions?”

Foam Error (e) PDF
Thickness (h)

Foam
- /Impact
Q... Experiments ;
N =) W57 @ 4— Foam

@@~ Drop ‘
Height (d)

Experiments

Drop Height (d)
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Response Features

* The response features of interest are the peak acceleration
(PAC) and the time-of-arrival (TOA) at output sensor 2.

|
-~ Input Signal

Variability Observed in the Test Data (KS_08-17) 1.6 -9~ Output at Sensor 2 i : : 7
1600, input 1 IR W N S W N i
—— Output 1 fit 14 - -
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Single Degree of Freedom Modeling

* A single degree-of-freedom (SDOF) oscillator is developed
to predict the features PAC and 7TOA without describing
the crushable foam and dynamics with high-fidelity.

T ) S
X (t) — SDOF Model 1

-------- l —— SDOF Model 2

0.8 | — SDOF Model 3
C
_____ TX base (t)

mX(t)+cxX(t)+F(t)=mXpage(t) > =

—— SDOF Model 4
—— SDOF Model §

0.6

F(x())

04+

0.2

0

SDOF Acceleration (x 10" g)
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Dimensionality

* The dimensionality of the problem remains 2D, no matter
which numerical simulation is implemented.

Ti(t)

m . | Variable Description
S 1 Foam Thickness (inch)
Jr| > . .
F(x(t)) ¢ T "2 | Drop Height (inch)
. 3 Tilt Angle 1 (degree)
Xpase(t) UL
nanns \'\'-_::f- 4 Tilt Angle 2 (degree)
Variable Description S Bolt Preload (psi)
1 Foam Thickness (inch) % 6 Stress Scaling (unitless)
=
2 Drop Height (inch) = 7 Strain Scaling (unitless)
3 Damping (Ibf sec/inch) ﬁ 8 Input Scaling (unitless)
-+ Stiffness (Ibf/inch9) § 9 Friction (unitless)
S Exponent (unitless) é 10 Bulk Viscosity (unitless)
I

;,A 4 Drop Height
‘JW‘: P
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Calibration

 Material model parameters are calibrated by optimizing a
multivariate T-test statistics of test-analysis correlation.

%10 Comparison of simulation and test input and output acceleration for Test 30
6
Hyperfoam Sllress-Sirafn Curve : g:m g‘&létu?(;%c_
40 i : i —— Testinput acc.
—#— Test Data 5t —— Test output acc.
-6~ Optimized Model
35
30 Aok |
25+ =
z %
'E' g 3 g ad
-g 20 =
? E
15 = 8k 2
o
s
10+
1k
~ i L 1 1 1 L L
10 20 30 40 50 60 0
Strain (%)
L o
Calibrated Strain-stress Curve 4 | ‘
0 0.005 0.01 0.015

Time (sec

Post-calibration )Correl%;l
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Prediction Errors Are Estimated at
Discrete Locations in the Design Space

* The material model F = k,,x7 is calibrated w.r.t. settings
(h=""; d=13), then used to predict other configurations.

Prediction of the PAC Feature by the SDOF Model Prediction of the TOA Featu re by the SDOF Model
) : “
Configuration Used for |
14 Calibration
]

& 08~ - g 15-
% . g B E
% 06 S
4 (3 : 1-
Fo4 !
o % os
< 02 £ 05

. \ 4 =

S 0.1
" . & 1"~ v _
12’."‘“‘“-‘_“_“ f__h‘,.—-/'"_’- 4 12:’&‘-“"‘*»‘ : __,,.---""'_\'o
10}"""“-\,_& _’_’,_,‘_--—""' 3 105"“&,‘_ . _,-f_-"""f- 1
Foam Thickness‘:‘\""‘-». g . : T e 2
(x10°meter) . ' Drop Height (meter) FORM THICNEE S oo™ T e (meter)
6 0 (x 10" meter) 6 4 p Reig
! Prediction of PAC Features Prediction of 7TOA Features
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Prediction Errors Are Extrapolated
Throughout the Design Space

 The prediction errors are extrapolated over the design
space using a family of polynomial metamodels.

Type-1 Model Type-11 Model

— Definition of prediction errors:
— |, Test T =1 [ Test
e(h;d) = (y —y(h;d)) Syyly -y(h;d))

— Family of metamodels:

e(h;d)=cy+coh+csd
e(h;d)=cy+cyh+c3d+c4hd

e(h;d) =c+cyh+czd+cyhd+esh? +gd”s w gl
e(h;d) =c|+coh+cqyd+cghd+esh?+cgd?
+¢7dh? +cghd? +coh> +cod*

N\

M-Error (%)

~
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Criticism

e Calibration can be useful, but it generally does not assess
whether a numerical model can be used with confidence.

* Experimental variability has not been accounted for.

* The functional form of the prediction error metamodels
has been assumed ...

* ... So are the material model, initial condition, physical
modeling, parameter calibration values, and loading.

* The effect of these assumptions must be quantified.
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Effect of Experimental Variability

* The data features y’*’ are bootstrapped from the available
replicate impact tests for each configuration (%;d).

Statistical Bilinear Metamodel of PAC2 Errors

200
Distribution of Coefficionts of PAC pr Modals Distribution of Coefficients of TOA Type-11 Models B e L e o o i T
80 50 5 = ol
G ]
E ¢, &= 8w B A e e
E —— Mean Error
% a0 % 40 30 20 % 40 2 ] 400/ =" 98% Confidence (+/- 25)
¢, (ToA) c, (Toa)
B0 &0 100 L L 1 1 L
- - w0 0.1 0.2 0.3 04 0.5 0.6 0.7
£ § £w f Foam Thickness (inch), Drop Height = 75"
E 4 § 40 g g
i 20 l § n g » 8 :1 200 T T T T T T T
A '\ I . " Y 5
-0 5 s a1 o 1 2 3 5 ] 7 [] - 2 ] T | E e —— o 5
CCCC €, [PAC) €, (Toa) €, (ToA) E 0 ::_,___.---_--_-------------------
PAC Error Metamodel 70A Error Metamodel § | ——tvv.e T
e U RS SRR v . W 9 i
g | Tt
o — MeanError | TTmmean
e(h,d) =ci+ 02h+ C3d+ C4hd 400 === 98% Confidence (+/- 25)
L 1 1 1 1 1 |
20 40 60 80 100 120 140

Bilinear Error Metamodel 60 _
Drop Height (inch), Foam Thickness = 0,39"
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Varying the Modeling Assumptions

* Instead of neglecting a potential lack-of-knowledge about
the form of the error metamodel, such uncertainty is
represented, using probabilities here.

Define Possible Alternatives\

“The model is linear.” . . Sample a Probability Law to
e(h;d) = ¢, +cyh+cyd Assign a Probability  propagate the Uncertainty

Eivors foi Do Haight = 261 in

Assumption | Probability o

“The model is bilinear.” -
e(h;d) =¢;+coh+c3d+ceyshd Linear 1.5%

>» Bilinear 42.2%
“The model is quadratic.”

ti 0
e(h,d) :C]+Czh+C3d+C4hd+C5h2+c6d2 Quadra 1C 42.2 /0
Cubic 14.1%

“The model is cubic.”
e(h;d) =c;+cyh+cyd+cyhd+csh? +cqd?

+c,dh? +cghd? +cgh’+¢;od?

L
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Prior and Posterior Probabilities

 The Bayes Theorem is used to assign probabilities, based
on prior information and likelihood of each assumption.

) Test Priors (May come from
Posteriors —p Pr(p|yTeSt) _ gty [P)Pr(p) < past experience, legacy

I L(y " [p)Pr(p) data, expert judgment).

Likelihood function (“goodness-of-fit” | 00
of each model). 50

T T -1 T 45 = :rio
L(y'®|p) = ke_(y -y0))'S; (Y™ -y(®))

Prior and Posterior Probabilities of Error Models

rs
osteriors

40

35

Probability (%)

Assumption | Priors | Likelihood | Posteriors

20

Linear 30% | 4.5910° 1.5% "
Bilinear 30% 1.28 103 42.2% .
Quadratic | 30% | 1.28103 42.2%
Cubic 10% | 1.28 103 14.1% T T ol
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Propagation of Modeling Uncertainty

Sampling the posterior probability law provides a family
of error metamodels (1,000 Monte Carlo simulation).

40 Samples of PAC Predu:tmn Errnr Models sl Smipies ot 9 Pre&;liction Erlror Moderls

30— . o
| [ DropHeight=285m | | Prediction errors e(h;d)
= 20 _,/"‘ . _,1;’-"'_:;;“ =)
5 A at any point (h;d) of the | ="
g = = des1gn domaln — —
o {I__ i _,___.:.__j

1 1 1 =
6 7 8 9 10 1 12 13 6 7

] 1 ]
Foam Thickness (x 1073 meter) Egan_‘;h.mknﬁ (x 1073 meter)
T T T T T

B Intervals [eMm, €y bound
= 100
s 8
W ogh e S
-
o 4
2| — Foam Thlckness 1[].49):10 m l
1 I 1 1 i | _— L 1 1 1 | 1 1
0.5 1 1.5 2 2 5 3 35 4 0.5 1 1.5 2 25 3 3.5 4
Drop Height (meter) Drop Height (meter)
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Confidence Intervals of Accuracy

* The confidence intervals express the effect that modeling
uncertainty has on the expected prediction accuracy.

PAC Errors for Drop Height = 2.63 m TOA Errors for Drop Height = 2.63 m
T T T T T T
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* Away from the physical tests, the prediction accuracy does
not necessarily deteriorate ... but the uncertainty of the
redictive assessment tends to grow.
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Conclusion

* The concept of prediction accuracy is demonstrated with a
simple model, a single source of experimental variability,
and a single source of modeling uncertainty.

* The assessment of prediction accuracy is a pre-requisite to
questions such as ...

— What is the benefit of another physical experiment?

— Which model is the best one for a particular application?

* A calibrated model can still be used for making
predictions elsewhere in the design space ... as long as the
prediction accuracy can be quantified.

« Extension to non-probabilistic approaches is considered.
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