Role of uncertainty quantification in validating physics simulation codes *Ken Hanson*

T-16, Nuclear Physics; Theoretical Division Los Alamos National Laboratory

Computational Methods in Transport Workshop Lake Tahoe, September 9-14, 2006

This presentation available at http://www.lanl.gov/home/kmh/

LA-UR-06-6221

Overview

- Validation and uncertainty quantification (UQ)
- Bayesian analysis
- Techniques for forward and inverse probability calculations
- Implications for simulation codes
- Examples
 - ► metal plasticity
 - neutron cross sections and criticality
 - inconsistent cross-section measurements
- Advanced Bayesian analysis

Validation

- Validation of physics simulation code goal is to determine how well the code reproduces actual physical behavior in a specified application
- Uncertainty quantification (UQ) determines 'how well'
- Not mentioned, but important:
 - operating range of physical conditions
 - uncertainties in initial and boundary conditions of experiment
 - range of applicability
 - code user's experience and credentials

Bayesian analysis provides means for UQ

- Bayesian approach to analysis
 - focus is on uncertainties in parameters, as much as on their best (estimated) value
 - supports scientific method
 - ▶ model-based
 - experimental evidence should play decisive role
 - permits use of prior knowledge, e.g., previous experiments, modeling expertise, physics constraints
- Goal is to estimate
 - model parameters and their uncertainties
 - predictive accuracy of models

Uncertainties and probabilities

- Bayesian view uncertainties in parameters are characterized by probability density functions (pdf)
- Probability interpreted as quantitative measure of "degree of belief"
- This interpretation is referred to as "subjective probability"
 - different for different people with different knowledge
 - ► changes with time
 - ▶ in science, we to try avoid bias, seek consensus
- Rules of classical probability theory apply
 - provides mathematical rigor and consistency

Parameter estimates and uncertainty

- Estimated value of parameter is often taken as
 - ▶ position of maximum (MAP) or
 - mean value (preferred estimator)
- Uncertainties characterized by rms deviation of pdf σ , called standard error; variance = σ^2
- In two or more dimensions, we must pay attention to
 - ► correlations
 - indicated by tilt in contour
 - marginalization over nuisance variables
 - project pdf onto variables of interest

Rules of probability

- Continuous variable x; p(x) is a probability density function (**pdf**)
- **Normalization**: $\int p(x)dx = 1$
- Decomposition of **joint distribution** into conditional distribution:

 $p(x, y) = p(x \mid y) p(y)$

where p(x | y) is **conditional** pdf (probability of x given y)

- if p(x | y) = p(x), x is independent of y
- **Bayes law** follows:

$$p(y \mid x) = \frac{p(x \mid y) p(y)}{p(x)}$$

• Marginalization:

$$p(x) = \int p(x, y) \, dy = \int p(x \mid y) \, p(y) \, dy$$

is probability of x, without regard for y (nuisance parameter) 7

Rules of probability

Change of variables: if x transformed into z, z = f(x), the pdf in terms of z is

$$p(\mathbf{z}) = |\mathbf{J}|^{-1} p(\mathbf{x})$$

where \mathbf{J} is the Jacobian matrix for the transformation:

$$\mathbf{J} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_3}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial z_1}{\partial x_3} & \cdots & \frac{\partial z_3}{\partial x_3} \end{pmatrix}$$

Visualizing uncertainties in weather forecasting

- Metrological forecast for Oct. 30, 2003 for Casper, Wyoming
- 22 predictions of 564 line (500 mb) obtained by varying input ulletconditions; indicate plausible outcomes
- Density of lines conveys certainty/probability of winter storms ullet

What happened? 20-inches of snow!

> National Geographic, June 2005

Physics simulation codes

- Characteristics of simulation codes
 - complex computer codes
 - involve many submodels
 - each describes particular physical phenomenon
 - interactions possible
 - each simulation run is costly in time and computer resources
- May be difficult to quantify uncertainties and validate
 - number of simulation runs limited by cost or time
 ⇒ restricts accuracy and depth of uncertainty assessment
 - some experiments can not be performed in a controlled and instrument way for intended application
 - meteor impact, tsunami, Big Bang

Schematic view of physics simulation code

- Simulation code predicts state of time-evolving system
 - $\Psi(t)$ = time-dependent state of system
- Requires as input
 - $\Psi(0) = \text{initial state of system}$
 - description of physics behavior of each system component;
 e.g., physics model A with parameter vector α
- Simulation engine solves the dynamical equations (PDEs)

Uncertainties – forward and inverse probability

- Forward probability propagate parameter uncertainties to uncertainties in observables
- Inverse probability infer parameter uncertainties from uncertainties in observables

Techniques for calculating forward probability

Goal is to propagate uncertainties in parameters forward through simulation code

- Monte Carlo
 - use random samples from parameter uncertainty pdf to calculate corresponding outputs
- quasi-Monte Carlo
 - use well-ordered samples instead of random samples
- Sensitivity or functional analysis
 - characterize functional dependence of outputs on inputs
 - estimate proxy function to use in place of full simulation
 - often based on various strategies for generating sample patterns
 - differentiation of simulation code (or equations)

Forward probability using Monte Carlo

- Generate plausible predictions for known uncertainties in parameters and initial conditions
- Monte Carlo method
 - run simulation code for each random draw from pdf for α , $p(\alpha | .)$, and initial state, $p(\Psi(0) | .)$
 - simulation outputs represent plausible set of predictions, $\{\Psi(t)\}$
 - as a pdf, this is called the predictive distribution

Strategies for sensitivity analysis

Sensitivity analysis – many techniques are used to sample the functional dependence of simulation outputs relative to inputs

- One parameter at a time
 - finite differences perturb each parameter $(+\Delta a, \pm \Delta a)$
 - calculate first derivative (sensitivity); sometimes second derivatives
- Several parameters at a time
 - random sampling basis of Monte Carlo calculation
 - ► quasi-random sampling strive for even spacing quasi-Monte Carlo
 - stratified random sampling spread out evenly over domain
 - ► Latin Hypercube even spacing in each parameter
- Differentiation of simulation code
 - automatic differentiation utilities produce auxiliary code based on simulation code; also can be done manually
 - solve differentiated physic equations

Techniques for calculating inverse probability

- Goal is to infer parameter values and uncertainties whose simulation code outputs match experimental measurements – inference in Bayesian framework
- Maximum likelihood fitting (aka min. χ^2 , least-squares, regression)
 - usually employs sensitivity analysis
- Markov Chain Monte Carlo (MCMC)
 - generate random walk, constrained by posterior pdf
 - ► many algorithms: Gibbs, Metropolis, hybrid, ...
- Sensitivity or functional analysis
 - characterize functional dependence of outputs on inputs
 - estimate proxy function to use in place of full simulation
 - often based on various strategies for generating sample patterns
 - may also be based on differentiation of simulation code (or equations)

Bayesian inference from experimental data

• Bayes rule

$$p(\boldsymbol{a} \mid \boldsymbol{d}, I) = \frac{p(\boldsymbol{d} \mid \boldsymbol{a}, I) p(\boldsymbol{a} \mid I)}{p(\boldsymbol{d} \mid I)}$$

- *d* is the vector of measured data values
 a is the vector of parameters for model that predicts the data
- p(d | a, I) is called the likelihood (probability of the data given the true model and its parameters)
- p(a | I) is called the **prior** (on the parameters a)
- ▶ p(a | d, I) is called the posterior fully describes final uncertainty in the parameters
- *I* stands for whatever background information we have about the situation and the model used, results from previous experiments, and our expertise
- denominator provides normalization: $p(d) = \int p(d | a) p(a) da$

Auxiliary information -I

All relevant information about the situation may be brought to bear:

- Details of experiment
 - laboratory set up, experiment techniques, equipment used
 - potential for experimental technique to lead to mistakes
 - expertise of experimenters

more subjective

- Relationship between measurements and theoretical model
- History of kind of experiment
- Appropriate statistical models for likelihood and prior
- Experience and expertise
- We usually leave *I* out of our formulas, but keep it in mind

Likelihood

- Form of the likelihood p(d | a, I) depends on how we model the uncertainties in the measurements *d*
- If measurement uncertainties are independent, overall likelihood is product of individual likelihoods, $\Pi_i p(d_i | a, I)$
- Choose pdf that appropriately describes uncertainties in data
 - ► Gaussian good generic choice
 - Poisson counting experiments
 - ► Binomial binary measurements (coin toss ...)
- Outliers exist
 - likelihood should have a long tail; large fluctuations are possible
- Systematic errors
 - ► caused by effects common to many (all) measurements
 - model by introducing variable that affects many (all) measurements; then marginalize it out

Priors

- Noncommittal prior (non-informative)
 - uniform pdf; p(a) = const. when *a* is an offset parameter
 - uniform in log(a); p(log a) = const. when a is a scale parameter
 - choose pdf with maximum entropy, subject to known constraints
- Physical principles
 - ▶ some physical quantities can not be negative $\Rightarrow p(a) = 0$, when a < 0
 - ► invariance arguments, symmetries
- Previous experiments
 - use posterior from previous measurements for prior
 - Bayesian updating (Kalman)
- Expertise
 - elicit pdfs from experts in the field
 - elicitation, an established discipline, may be useful

Priors

- Conjugate priors
 - for many forms of likelihood, there exist companion priors that make it easy to integrate over the variables
 - these priors facilitate analytic solutions for posterior
 - for example, for the Poisson likelihood in *n* and λ, the conjugate prior is a Gamma distribution in λ with parameters α and β, which determine the position and width of the prior
 - conjugate priors can be useful and their parameters can often be chosen to create a prior close to what the analyst believes is correct
 - however, in the context of numerical solution of complicated overall models, they loose their appeal

Posterior

- Posterior $p(a \mid d, I)$
 - final result of a Bayesian analysis
 - ► summarizes our state of knowledge about parameters *a*
 - it provides complete quantitative description of uncertainties
 - usually characterized in terms of an estimated value of the variables and their covariance
- Visualization
 - difficult to visualize directly because it is a density distribution of many variables (many dimensions)
 - Monte Carlo allows us to visualize the posterior through its effect on the model that has been used in the analysis (quasi-MC useful here)

The likelihood and chi-squared

• Assuming the uncertainty in each measurement d_i is Gaussian distributed with zero mean and variance σ_i^2 , and the uncertainties are statistically independent, the likelihood is

$$p(\boldsymbol{d} \mid \boldsymbol{a}) \propto \exp\left\{-\frac{1}{2}\sum_{i}\left[\frac{\left[d_{i}-y_{i}(\boldsymbol{a})\right]^{2}}{\sigma_{i}^{2}}\right]\right\} \propto \exp(-\frac{1}{2}\chi^{2})$$

- where y_i is the value predicted for parameter set a
- For a non-informative **uniform prior**,
 - posterior $p(a \mid d)$ is proportional to the likelihood $p(d \mid a)$, and
 - maximum likelihood solution same as maximum likelihood;
 equivalent to minimum chi squared (or least squares)
- Estimated parameters *a* and their uncertainties are given by the dependence on *a* of posterior *p*(*a* | *d*)
 → usually used to approximate posterior with a Gaussian

Parameter estimation - maximum likelihood

- Optimizer adjusts parameters α to minimize $-\ln p(\mathbf{Y} | \mathbf{Y}^*(\alpha))$
- Result is maximum likelihood estimate for α (also known as minimum-chi-squared solution)
- Optimization process is accelerated by using gradients
 - differentiation of code efficiently calculates gradients of forward calc.

Fit linear function to data – minimum χ^2

- Linear model: y = a + bx
- Simulate 10 data points, $\sigma_y = 0.2$ exact values: a = 0.5 b = 0.5
- Determine parameters, intercept *a* and slope *b*, by minimizing chisquared (standard least-squares analysis)
- Result: $\chi^2_{\min} = 4.04$ p = 0.775

 $\hat{a} = 0.484 \quad \sigma_{a} = 0.127$ $\hat{b} = 0.523 \quad \sigma_{b} = 0.044$ $\mathbf{R} = \begin{bmatrix} 1 & -0.867 \\ -0.867 & 1 \end{bmatrix}$

• Strong correlations between parameters *a* and *b*

Linear fit – uncertainty visualization

- Uncertainties in parameters are represented by Gaussian pdf in 2-D parameter space
 - correlations evidenced by tilt in scatter plot
 - points are random samples from pdf
- Should focus on implied uncertainties in physical domain
 - model realizations drawn from parameter uncertainty pdf
 - these appear plausible called model checking
 - this comparison to the original data confirms model adequacy
 - called predictive distribution

Linear fit – correlations are important

- Plots show what happens if offdiagonal terms of covariance matrix are ignored
- Correlation matrix is

 $\mathbf{R} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

- Model realizations show much wider dispersion than consistent with uncertainties in data
- No tilt in scatter plot uncorrelated
- Correlations are important !

Inverse probability using MCMC

- Markov Chain Monte Carlo (MCMC) algorithm generates a random sequence of parameters that sample posterior probability *p*(**α** | **Y**), yielding plausible a set of parameters {**α**}.
- MCMC algorithm based on values of *p*(α | Y) calculated for random trial samples of α
- MCMC can be used for posteriors with arbitrary functional forms

MCMC - problem statement

- Parameter space of *n* dimensions represented by vector **x**
- Given an "arbitrary" target probability density function (pdf), q(x), draw a set of samples {x_k} from it
- Only requirement typically is that, given \mathbf{x} , one be able to evaluate $Cq(\mathbf{x})$, where C is an unknown constant, that is, $q(\mathbf{x})$ need not be normalized

- It all started with seminal paper (from LANL):
 - N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equations of state calculations by fast computing machine," *J. Chem. Phys.* 21, pp. 1087–1091 (1953)
 - MANIAC: 5 KB RAM, 100 KHz, 1 KHz multiply, 50 KB disc

Generates sequence of random samples from an arbitrary probability density function

- Metropolis algorithm:
 - draw trial step from symmetric pdf, i.e.,
 t(Δ x) = t(-Δ x)
 - ► accept or reject trial step
 - simple and generally applicable
 - relies only on calculation of target pdf for any x

Uncertainty quantification for simulation codes

- Goal is to develop an uncertainty model for the simulation code by comparing it to experimental measurements
 - determine and quantify sources of uncertainty
 - uncover potential inconsistencies of submodels with experiments
 - possibly introduce additional submodels, as required
 - deal with model error (discrepancy with measurements)
- Recursive process
 - aim is to develop submodels that are consistent with all experiments (within uncertainties)
 - a hierarchy of experiments helps substantiate submodels over wide range of physical conditions and accumulate information
 - each experiment potentially advances our understanding

Linked analyses of hierarchy of experiments

- Information flow in analyses of series of experiments
- Bayesian calibration
 - analysis of each experiment updates model parameters (A, B, C, etc.) and their uncertainties, consistent with previous analyses
 - information about models accumulates

Hierarchy of experiments – metal plasticity

Suppose application is high-speed projectile impacting plate

- Basic characterization experiments measure stress-strain relationship at specific stain and strain rate
 - ► quasi-static tests low strain rates
 - ► Hopkinson bar medium strain rates
- Partially integrated experiment
 - ► Taylor test cylinder impact into wall
 - ► flyer plate expt. plate impacted
- Fully integrated experiments
 - mimic application as closely as possible
 - may involve extrapolation of operating range, introducing additional uncertainty
 - integrated experiments can help reduce model uncertainties in their operating range; may expose model deficiencies

Strain

Fit PTW model to stress-strain measurements

Quasi-static and Hopkinson bar measurements for Tantalum

- Preston-Tonks-Wallace (PTW) model describes stress-strain relations in dynamic plastic deformation of metal
- Measurement standard errors carefully assessed
- Systematic uncertainty (3%) in offset for each data set; accounts for specimen variability
- Fit 7 PTW + 6 offset parameters
- Result of fitting process is
 - parameter values and their standard errors
 - correlation matrix
- define ≻ Gaussian posterior

PTW parameters and their uncertainties

Parameters +/- rms error:

$$\theta = 0.0080 \pm 0.0004$$

$$\kappa = 0.68 \pm 0.06$$

$$-\ln(\gamma) = 11.5 \pm 0.8$$

$$y_0 = 0.0092 \pm 0.0005$$

$$y_{\infty} = 0.00147 \pm 0.00011$$

$$s_0 = 0.0176 \pm 0.0032$$

$$s_{\infty} = 0.00358 \pm 0.00018$$

Minimum chi-squared fit yields estimated PTW parms. and rms errors, as well as correlation coefficients, which are crucially important!

Correlation coefficients

	θ	К	$-\ln(\gamma)$	y_0	y_{∞}	s_0	\mathbf{S}_{∞}
θ	1	-0.180	-0.108	-0.113	-0.283	-0.817	0.211
К	-0.180	1	0.716	0.596	0.644	0.292	0.580
-ln(γ) -0.108	0.716	1	0.046	0.111	0.105	0.171
y_0	-0.113	0.596	0.046	1	0.502	0.282	0.477
y_{∞}	-0.283	0.644	0.111	0.502	1	0.350	0.640
s ₀	-0.817	0.292	0.105	0.282	0.350	1	-0.278
\mathbf{S}_{∞}	0.211	0.580	0.171	0.477	0.640	-0.278	1

Fixed parms:

$$p = 4$$

 $y_1 = 0.012$
 $y_2 = 0.4$
 $\beta = 0.23$
 $\alpha_p = 0.48$
 $G_0 = 722$ MPa
 $T_{melt} = 3290$ °K
 $\rho = 16.6$ g/cm²

Visualization of uncertainties in model

- Uncertainties visualized by displaying (quasi) Monte Carlo draws from uncertainty distribution
 - ► done **correctly** with full covariance matrix (left)
 - done incorrectly by neglecting off-diagonal terms in covariance matrix (right)

Taylor test simulations

- Simulate Taylor impact test steel cylinder impacting rigid wall
- For impact velocity = 350 m/s, effective total strain reaches 250%
- Submodels required:
 - dynamical equations
 - equation of state (EOS): $T(p, \rho)$
 - material plasticity behavior
 - ► at very high impact speeds
 - material fracture, break up
 - melting
 - liquid behavior

Simulation by Abaqus (FEM code) High-strength steel cylinder 5 mm dia, 38 mm long

Flyer-plate experiment

- Flyer plate impacts specimen measure velocity on back surface
 - ▶ aim is to make specimen spall
- Simulation code uses PTW model to predict velocity
- Plot compares flyer-plate measurements with generous range of predictions
- Challenge: PTW model consistent with flyer-plate and calibration experiments
- Submodels required:
 - dynamical equations
 - equation of state (EOS): $T(p, \rho)$
 - material plasticity behavior (PTW)
 - material fracture

[†]plot from B. Williams et al.

JEZEBEL – criticality experiment

- JEZEBEL experiment (1950-60)
 - ► fissile material ²³⁹Pu
 - measure neutron multiplication as function of separation of two hemispheres of fissile material
 - ► summarize criticality with neutron multiplication factor, $k_{eff} = 0.9980 \pm 0.0019$ for a specific geometry
 - ► very accurate measurement
- Our goal use highly accurate JEZEBEL measurement to improve our knowledge of ²³⁹Pu cross sections

JEZEBEL set up

- Plot shows
 - measured fission cross sections for neutrons on ²³⁹Pu (red data points)
 - inferred cross sections (blue line)
 - weighted average in 30 energy bins (groups) for PARTISN calculation (green histogram)
- PARITSN code simulates neutron transport based on multigroup, discrete-ordinates method
- We use PARTISN and JEZEBEL to
 - update cross sections to improve their accuracy (inference)
 - predict uncertainties after update (forward prop.)

measured

Neutron cross sections - uncertainties

- Analysis of measured cross sections yields a set of evaluated ²³⁹Pu cross sections
- Uncertainties in evaluated cross sections are ~ 1.4-2.4 %
- Covariance matrix important
- Strong positive correlations caused by normalization uncertainties in each experiment

Differential Data Only Uncertainties in the Fission Cross-Section [%] 3 2 0.001 0.01 0.1 10 1 Neutron Energy [MeV] correlation matrix 10 1000 800 600 Neutron Energy [MeV] 400 200 0 0.1 -200 -400 0.01

0.001

0.01

0.1

Neutron Energy [MeV]

1

standard error in cross sections

10

JEZEBEL – sensitivity analysis

- PARTISN code relates k_{eff} to neutron cross sections
- Sensitivity of k_{eff} to cross sections found by perturbing cross section in each energy bin by 1% and observing increase in k_{eff}
- Observe that 1% increase in all cross sections results in 1% increase in k_{eff}, as expected
- In real applications, one often does not have this sensitivity vector, so Monte Carlo used to propagate uncertainties

k_{eff} sensitivity to cross sections

Cross sections updated using JEZEBEL

- Plot shows uncertainties in cross sections before and after incorporating JEZEBEL measurement
- Individual uncertainties modestly reduced
 - follows energy dependence of sensitivity
- Correlation matrix is significantly altered
- Strong negative correlations are introduced by integral constraint of matching JEZEBEL's k_{eff}
- What are uncertainties in new PARTISN simulation?

Uncertainty in subsequent simulations

- Intent is to use updated cross sections in new calculations, expecting a reduction in uncertainties in calculated k_{eff}
- Need to estimate the uncertainty in k_{eff} calculated for new scenarios
- For this demonstration, we do calculation for JEZEBEL
- Forward propagation of uncertainties
 - standard approach is to use random Monte Carlo
 - we try using quasi-Monte Carlo to "predict" k_{eff}
 - qMC point sets obtained using Centroidal Voronoi Tessellation
 - result: mean and rms deviation of k_{eff} are better determined than with random MC

CVT for 2D Gaussian distribution

- Centroidal Voronoi Tessellation (CVT)
 - when generating points of Voronoi cells match the cells' centroids
 - easy to produce CVT point sets in high dimensions using Monte Carlo
- Plots show starting random point set and final CVT set for 2D unit-variance Gaussian
- CVT points more evenly distributed; regular pattern
 - better integration accuracy than random
- Propose using CVT for forward propagation of uncertainties for better accuracy

CVT: 30 points in 30 dimensions

- 30D unit-variance Gaussian distribution
- Projected onto 2D plane, CVT result doesn't look much different than random sample set
- However, CVT points are uniformly distributed in 30D, while random points are not

Random, 30

0

Index 1

Index 2

-2

-3

-2

examp15i

2

40

CVT radial distribution: 30 points in 30D

- All 30 CVT points in 30D are at the same radius
 - ► lie on the surface of a hypersphere
- As seen in last slide, the inter-point distances for CVT are essentially identical
 - regular point pattern (unique?)
- Rotation is only degree of freedom between different realizations of CVT
- One can generate new CVT patterns by randomly rotating an existing one

n = 30; d = 30

Covariance analysis of 30 CVT points in 30D

- CVT applied to 30 points in 30 dimensions yields an evenly distributed set of points
 - ► all at same radius
 - ► all equally spaced
- Eigenanalysis of covariance matrix of point set yields the covariance spectrum
- Conclude
 - CVT spectrum is much more uniform than for random set
 - variance of projection of points is same in almost all directions
- Last eigenvalue is zero; rank = 29
 - ► 31 points needed to fully sample 30D behavior

Accuracy of predicted k_{eff} and its uncertainty

- Check accuracy of predicted mean and standard deviation of k_{eff} for JEZEBEL, based on 30 samples, random and CVT
 - exact value known from sensitivity and linear model used
- Conclude CVT is very accurate, for both mean and rms dev.
 - ▶ random samples yield 15% accuracy for k_{eff} std. dev

Results from 1000 sample sets; 'rot' indicates single sample set randomly rotated to obtain each new one

	est. me	ean $k_{\rm eff}$	est. std. dev. $k_{\rm eff}$		
	avg.	rms dev.	avg.	rms dev.	
random	0.99788	0.00037	0.00191	0.00028	
random-rot	0.99824	0.00010	0.00218	0.00010	
CVT-rot	0.99796	0.00001	0.00197	0.00002	
exact-linear	0.99796	_	0.00195	-	

Further advantages of Bayesian analysis

- Bayesian method helps us cope with the difficulties commonly encountered in data analysis
 - systematic uncertainties
 - inconsistent data
 - ▶ outliers
 - uncertainties in stated uncertainties
 - model checking does model agree with experimental evidence?
 - ► model selection which model is best?
 - between two models, which is best supported by data?
 - how many spline knots should be used to fit data?

²³⁹Pu cross sections – coping with outliers

- Gaussian likelihood (min χ²) fit yields
 - X² = 44.7, p = 0.009% for 15 DOF 2.441 ± 0.013 b
 - ▶ implausibly small uncertainty, given that three smallest uncertainties ≈ 0.027 b
- Each datum reduces the standard error of result, even if it does not agree with it!
 - ► consequence of Gaussian likelihood

$$\sigma^{-2} = \sum_{i=1}^n \sigma_i^{-2}$$

independent of where data lie!

Summary of measurements of ²³⁹Pu cross section at 14.7 MeV

Gaussian: 2.441 ± 0.013 b

²³⁹Pu cross sections – outlier-tolerant likelihood

- Long-tailed likelihood for each datum used in Bayesian analysis to account for outliers
- Two-Gaussian likelihood has right properties

$$(1-\beta)\exp\left\{-\frac{(x-m)^2}{2\sigma^2}\right\} + \frac{\beta}{\gamma}\exp\left\{-\frac{(x-m)^2}{2\gamma^2\sigma^2}\right\}$$

- where $\beta = 0.01$ and $\gamma = 10$
- With 2-Gaussian likelihood 2.442 ± 0.024 b whereas Gaussian yields
 - $2.441 \pm 0.013 \ b$
 - 2G gives almost same mean value but more conservative standard error

Model selection – higher order inference

• Bayes rule for posterior for parameters

$$p(\boldsymbol{a} \mid \boldsymbol{d}, \mathbf{M}) = \frac{p(\boldsymbol{d} \mid \boldsymbol{a}, \mathbf{M}) p(\boldsymbol{a} \mid \mathbf{M})}{p(\boldsymbol{d} \mid \mathbf{M})}$$

- ► *d* represents measurements
- ► *a* represents parameters for model M
- $p(d \mid a, M)$ is the **likelihood**
- $p(a \mid M)$ is the **prior**
- $p(a \mid d, M)$ is called the **posterior**
- denominator provides normalization:

$$p(\boldsymbol{d} \mid \mathbf{M}) = \int p(\boldsymbol{d} \mid \boldsymbol{a}, \mathbf{M}) p(\boldsymbol{a}, \mathbf{M}) d\boldsymbol{a}$$

inference about parameters does not require knowing this integral

Bayesian model selection

- Bayes rule for probability of model M $p(M | d) \propto p(d | M) p(M)$ $= p(M) \int p(d | a, M) p(a, M) da$
- Odds ratio between two models

$$\frac{p(M_1 | d)}{p(M_2 | d)} = \frac{\int p(d | a, M_1) p(a, M_1) da}{\int p(d | a, M_2) p(a, M_2) da} \times \frac{p(M_1)}{p(M_2)}$$

Posterior odds = Bayes factor x Prior odds

- integrals over volume of data likelihood times prior
 - may be difficult to evaluate
 - doable under Gaussian assumption with estimate of covariance matrix
- choice of prior odds important
- May be used to select best model to represent data, including
 - polynomial order, number of spline knots

Background estimation in spectral data

- Problem: estimate background for PIXE spectrum
- Approach is based on assuming background is smooth and treating resonances as outlying data
- Fully Bayesian calculation using MCMC to estimate spline parameters, their knot positions, and **number of knots**

from Fischer et al., Phys. Rev. E 61, 1152 (2000)

Summary

- Uncertainty quantification is fundamental to validation
- Bayesian analysis provides valuable tools for UQ
- Variety of techniques are available (or being developed) for validating simulation codes simulation codes
- Hierarchical approach to conducting UQ is suggested for physics simulation codes