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Overview
• Validation and uncertainty quantification (UQ)
• Bayesian analysis
• Techniques for forward and inverse probability calculations
• Implications for simulation codes
• Examples

► metal plasticity
► neutron cross sections and criticality
► inconsistent cross-section measurements

• Advanced Bayesian analysis
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Validation
• Validation of physics simulation code –

goal is to determine how well the code reproduces actual 
physical behavior in a specified application

• Uncertainty quantification (UQ) determines ‘how well’

• Not mentioned, but important:
► operating range of physical conditions 
► uncertainties in initial and boundary conditions of experiment
► range of applicability
► code user’s experience and credentials
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Bayesian analysis provides means for UQ
• Bayesian approach to analysis 

► focus is on uncertainties in parameters, as much as on their 
best (estimated) value

► supports scientific method 
► model-based 
► experimental evidence should play decisive role
► permits use of prior knowledge, e.g., previous experiments, 

modeling expertise, physics constraints

• Goal is to estimate 
► model parameters and their uncertainties
► predictive accuracy of models
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Uncertainties and probabilities
• Bayesian view – uncertainties in 

parameters are characterized by 
probability density functions (pdf)

• Probability interpreted as quantitative 
measure of “degree of belief”

• This interpretation is referred to as 
“subjective probability”
► different for different people with 

different knowledge
► changes with time
► in science, we to try avoid bias, seek consensus

• Rules of classical probability theory apply
► provides mathematical rigor and consistency
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Parameter estimates and uncertainty
• Estimated value of parameter is 

often taken as
► position of maximum (MAP)  or
► mean value (preferred estimator)

• Uncertainties characterized by 
rms deviation of pdf σ, called 
standard error;  variance = σ2

• In two or more dimensions, we must 
pay attention to
► correlations

• indicated by tilt in contour
► marginalization over nuisance variables

• project pdf onto variables of interest
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Rules of probability
• Continuous variable x; p(x) is a probability density function (pdf)
• Normalization: 
• Decomposition of joint distribution into conditional distribution:

where               is conditional pdf (probability of x given y)
► if                           ,  x is independent of y

• Bayes law follows: 

• Marginalization: 

is probability of x, without regard for y (nuisance parameter)

( ) 1=∫ p x dx

( , ) ( | ) ( )=p x y p x y p y

( ) ( , ) ( | ) ( )= =∫ ∫p x p x y dy p x y p y dy

( | ) ( )( | )
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Rules of probability
• Change of variables: if x transformed into z, z = f(x), the pdf in 

terms of z is

where J is the Jacobian matrix for the transformation:

1( ) ( )p p−=z J x
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Visualizing uncertainties in weather forecasting
• Metrological forecast for Oct. 30, 2003 for Casper, Wyoming
• 22 predictions of 564 line (500 mb) obtained by varying input 

conditions; indicate plausible outcomes 
• Density of lines conveys certainty/probability of winter storms

7 days 
ahead

What happened? 
20-inches of snow!

4 days 
ahead

1 day 
ahead 

564 line; predictive 
of winter storms

National Geographic, 
June 2005
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Physics simulation codes 
• Characteristics of simulation codes

► complex computer codes
► involve many submodels

• each describes particular physical phenomenon
• interactions possible 

► each simulation run is costly in time and computer resources

• May be difficult to quantify uncertainties and validate
► number of simulation runs limited by cost or time 
fl restricts accuracy and depth of uncertainty assessment

► some experiments can not be performed in a controlled and 
instrument way for intended application

• meteor impact, tsunami, Big Bang
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Schematic view of physics simulation code

Simulation
engine

Initial State
Ψ(0)

Ψ(t)

• Simulation code predicts state of time-evolving system
► Ψ(t) = time-dependent state of system

• Requires as input 
► Ψ(0) = initial state of system
► description of physics behavior of each system component; 

e.g., physics model A with parameter vector α
• Simulation engine solves the dynamical equations (PDEs)

experimentally 
observable

Model C
γ

Model B
β

Model A
α

…
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Uncertainties – forward and inverse probability 

• Forward probability – propagate parameter uncertainties 
to uncertainties in observables

• Inverse probability - infer parameter uncertainties 
from uncertainties in observables

Input –
parameter 

space

Output –
experimental 
observation 
space

Forward probability

Inverse probability 

Deterministic
simulation

region of 
uncertainty

region of 
uncertainty
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Techniques for calculating forward probability
Goal is to propagate uncertainties in parameters forward through

simulation code
• Monte Carlo

► use random samples from parameter uncertainty pdf to calculate 
corresponding outputs

• quasi-Monte Carlo
► use well-ordered samples instead of random samples

• Sensitivity or functional analysis 
► characterize functional dependence of outputs on inputs 

• estimate proxy function to use in place of full simulation
► often based on various strategies for generating sample patterns
► differentiation of simulation code (or equations)
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Forward probability using Monte Carlo

Simulation
engine

Initial State
{Ψ(0)}

Model A
{α}

{Ψ(t)}

• Generate plausible predictions for known uncertainties in 
parameters and initial conditions

• Monte Carlo method 
► run simulation code for each random draw from pdf for α,  p(α |.), 

and initial state,  p(Ψ(0) |.)
► simulation outputs represent plausible set of predictions, {Ψ(t)}

• as a pdf, this is called the predictive distribution

plausible set of 
predicted dynamic 
states of system

plausible set of 
initial states of system plausible set of 

parameter vectors α
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Strategies for sensitivity analysis
Sensitivity analysis – many techniques are used to sample the 

functional dependence of simulation outputs relative to inputs
• One parameter at a time

► finite differences – perturb each parameter (+Δa, ± Δa)
• calculate first derivative (sensitivity); sometimes second derivatives

• Several parameters at a time
► random sampling – basis of Monte Carlo calculation 
► quasi-random sampling – strive for even spacing – quasi-Monte Carlo
► stratified random sampling – spread out evenly over domain
► Latin Hypercube – even spacing in each parameter

• Differentiation of simulation code
► automatic differentiation utilities produce auxiliary code based on 

simulation code; also can be done manually
► solve differentiated physic equations
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Techniques for calculating inverse probability 
Goal is to infer parameter values and uncertainties whose simulation 

code outputs match experimental measurements –
inference in Bayesian framework

• Maximum likelihood fitting (aka min. χ2, least-squares, regression)
► usually employs sensitivity analysis 

• Markov Chain Monte Carlo (MCMC)
► generate random walk, constrained by posterior pdf
► many algorithms: Gibbs, Metropolis, hybrid, …

• Sensitivity or functional analysis
► characterize functional dependence of outputs on inputs

• estimate proxy function to use in place of full simulation 
► often based on various strategies for generating sample patterns
► may also be based on differentiation of simulation code 

(or equations)
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Bayesian inference from experimental data
• Bayes rule

► d is the vector of measured data values
a is the vector of parameters for model that predicts the data

► p(d | a, I) is called the likelihood (probability of the data given the 
true model and its parameters)

► p(a | I) is called the prior (on the parameters a)
► p(a | d, I) is called the posterior – fully describes final uncertainty 

in the parameters
► I stands for whatever background information we have

about the situation and the model used, results from previous
experiments, and our expertise

► denominator provides normalization:

( | , ) ( | )( | , )
( | )

p I p Ip I
p I

=
d a aa d

d

( ) ( | ) ( )p p p d= ∫d d a a a
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Auxiliary information – I
All relevant information about the situation may be brought to bear:
• Details of experiment

► laboratory set up, experiment techniques, equipment used
► potential for experimental technique to lead to mistakes
► expertise of experimenters

• Relationship between measurements and theoretical model
• History of kind of experiment
• Appropriate statistical models for likelihood and prior
• Experience and expertise

• We usually leave I out of our formulas, but keep it in mind

more 
subjective
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Likelihood
• Form of the likelihood p(d |a, I) depends on how we model the 

uncertainties in the measurements d
• If measurement uncertainties are independent, overall 

likelihood is product of individual likelihoods,  Πi p(di |a, I) 
• Choose pdf that appropriately describes uncertainties in data

► Gaussian – good generic choice
► Poisson – counting experiments
► Binomial – binary measurements (coin toss …)

• Outliers exist
► likelihood should have a long tail; large fluctuations are possible

• Systematic errors
► caused by effects common to many (all) measurements
► model by introducing variable that affects many (all) 

measurements; then marginalize it out
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Priors
• Noncommittal prior (non-informative)

► uniform pdf; p(a) = const. when a is an offset parameter
► uniform in log(a); p(log a) = const. when a is a scale parameter
► choose pdf with maximum entropy, subject to known constraints

• Physical principles
► some physical quantities can not be negative fl p(a) = 0, when a < 0
► invariance arguments, symmetries

• Previous experiments
► use posterior from previous measurements for prior
► Bayesian updating (Kalman)

• Expertise
► elicit pdfs from experts in the field
► elicitation, an established discipline, may be useful
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Priors
• Conjugate priors

► for many forms of likelihood, there exist companion priors that 
make it easy to integrate over the variables

► these priors facilitate analytic solutions for posterior
► for example, for the Poisson likelihood in n and λ, the conjugate 

prior is a Gamma distribution in λ with parameters α and β, which 
determine the position and width of the prior

► conjugate priors can be useful and their parameters can often be
chosen to create a prior close to what the analyst believes is correct

► however, in the context of numerical solution of complicated 
overall models, they loose their appeal
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Posterior
• Posterior p(a | d, I)

► final result of a Bayesian analysis
► summarizes our state of knowledge about parameters a
► it provides complete quantitative description of uncertainties
► usually characterized in terms of an estimated value of the 

variables and their covariance
• Visualization

► difficult to visualize directly because it is a density 
distribution of many variables (many dimensions)

► Monte Carlo allows us to visualize the posterior through its 
effect on the model that has been used in the analysis
(quasi-MC useful here)
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The likelihood and chi-squared
• Assuming the uncertainty in each measurement di is Gaussian

distributed with zero mean and variance σi
2, and the uncertainties 

are statistically independent, the likelihood is

► where yi is the value predicted for parameter set a
• For a non-informative uniform prior, 

► posterior p(a | d) is proportional to the likelihood p(d | a), and
► maximum likelihood solution same as maximum likelihood; 

equivalent to minimum chi squared  (or  least squares)
• Estimated parameters a and their uncertainties are given by the 

dependence on a of posterior p(a | d) 
→ usually used to approximate posterior with a Gaussian 

2
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Parameter estimation - maximum likelihood

• Optimizer adjusts parameters α to minimize -ln p(Y |Y*(α))
• Result is maximum likelihood estimate for α (also known as 

minimum-chi-squared solution)
• Optimization process is accelerated by using gradients

► differentiation of code efficiently calculates gradients of forward calc.

Initial State
{Ψ(0)}

Simulation

Model A
{α}

Ψ(t) Measurement
System Model

Optimizer

Measurements, Y

-ln p(Y | Y*)
= 1/2 χ2

- ln p(α | Y)

Y*(α)
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Fit linear function to data – minimum χ2

• Linear model:  
• Simulate 10 data points, 

exact values:
• Determine parameters, intercept 

a and slope b, by minimizing chi-
squared (standard least-squares 
analysis)

• Result:  

• Strong correlations between 
parameters a and b

= +y a bx

ˆ 0.484=a 0.127aσ =
ˆ 0.523=b 0.044bσ =

2
min 4.04 0.775χ = =p

1 0.867
0.867 1

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

R

0.2σ =y

0.5=a 0.5=b

Best fit10 data points
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Linear fit – uncertainty visualization
• Uncertainties in parameters are 

represented by Gaussian pdf in 2-D 
parameter space
► correlations evidenced by  tilt in 

scatter plot
► points are random samples from pdf

• Should focus on implied 
uncertainties in physical domain
► model realizations drawn from 

parameter uncertainty pdf
► these appear plausible –

called model checking
► this comparison to the original data 

confirms model adequacy
► called predictive distribution

12 Monte Carlo samples

Scatter plot
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Linear fit – correlations are important
• Plots show what happens if off-

diagonal terms of covariance 
matrix are ignored

• Correlation matrix is

• Model realizations show much 
wider dispersion than consistent 
with uncertainties in data

• No tilt in scatter plot – uncorrelated 
• Correlations are important !

1 0
0 1

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
R

12 Monte Carlo samples 
ignoring correlations

Scatter plot



28

Inverse probability using MCMC

Initial State
{Ψ(0)}

Simulation

Model A
{α}

Ψ(t) Measurement
System Model

MCMC

Measurements, Y

-ln p(Y | Y*)
= 1/2 χ2

- ln p(α | Y)

• Markov Chain Monte Carlo (MCMC) algorithm generates a 
random sequence of parameters that sample posterior probability 
p(α | Y), yielding plausible a set of parameters {α}.  

• MCMC algorithm based on values of p(α | Y) calculated for 
random trial samples of α

• MCMC can be used for posteriors with arbitrary functional forms

Y*(α)
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MCMC - problem statement 
• Parameter space of n dimensions represented by vector x
• Given an “arbitrary” target probability density function (pdf), q(x), 

draw a set of samples {xk} from it
• Only requirement typically is that, given x, one be able to evaluate 

Cq(x), where C is an unknown constant, that is, q(x) need not be 
normalized 

• It all started with seminal paper (from LANL):
► N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, 

and E. Teller, “Equations of state calculations by fast computing 
machine,” J. Chem. Phys. 21, pp. 1087–1091 (1953)

• MANIAC: 5 KB RAM, 100 KHz, 1 KHz multiply, 50 KB disc 
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Markov Chain Monte Carlo

x2

Probability(x1, x2) = q(x)
accepted step
rejected step

x1

• Metropolis algorithm:
► draw trial step from 

symmetric pdf, i.e.,  
t(Δ x) =  t(-Δ x)

► accept or reject trial step
► simple and generally 

applicable
► relies only on calculation of  

target pdf for any x

Generates sequence of random samples from an 
arbitrary probability density function
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Uncertainty quantification for simulation codes
• Goal is to develop an uncertainty model for the simulation code by 

comparing it to experimental measurements
► determine and quantify sources of uncertainty
► uncover potential inconsistencies of submodels with experiments
► possibly introduce additional submodels, as required
► deal with model error (discrepancy with measurements)

• Recursive process
► aim is to develop submodels that are consistent with all experiments 

(within uncertainties)
► a hierarchy of experiments helps substantiate submodels over wide 

range of physical conditions and accumulate information 
► each experiment potentially advances our understanding
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Linked analyses of hierarchy of experiments

Exp. 1 A

Exp. 2 A B  

Exp. 3 C Exp. 6
A B 
C D

Exp. 4 D

Partially 
integrated

Fully 
integrated

Basic

Exp. 5 C D  

• Information flow in analyses of series of experiments
• Bayesian calibration –

► analysis of each experiment updates model parameters (A, B, C, 
etc.) and their uncertainties, consistent with previous analyses

► information about models accumulates
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Hierarchy of experiments – metal plasticity 
Suppose application is high-speed projectile impacting plate
• Basic characterization experiments –

measure stress-strain relationship at 
specific stain and strain rate 
► quasi-static tests – low strain rates
► Hopkinson bar – medium strain rates

• Partially integrated experiment
► Taylor test – cylinder impact into wall
► flyer plate expt. – plate impacted

• Fully integrated experiments 
► mimic application as closely as possible
► may involve extrapolation of operating range, introducing additional 

uncertainty
► integrated experiments can help reduce model uncertainties in their 

operating range; may expose model deficiencies
lo
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Strain

Taylor; 
flyer plate

Hopkinson
quasi-static

application

T fixed
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Fit PTW model to stress-strain measurements

• Preston-Tonks-Wallace (PTW) 
model describes stress-strain 
relations in dynamic plastic 
deformation of metal

• Measurement standard errors 
carefully assessed

• Systematic uncertainty (3%) in 
offset for each data set;
accounts for specimen variability

• Fit 7 PTW + 6 offset parameters
• Result of fitting process is

► parameter values and 
their standard errors

► correlation matrix †data supplied by S-R Chen, MST-8

PTW curves include adiabatic heating 
effect for high strain rates

fit7d

Quasi-static and Hopkinson bar measurements for Tantalum

χ2/DOF  = 214/142 data

define 
Gaussian 
posterior
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PTW parameters and their uncertainties
Parameters +/- rms error:

θ = 0.0080 ± 0.0004
k = 0.68 ± 0.06

-ln(γ)  = 11.5 ± 0.8    
y0 = 0.0092 ± 0.0005
y¶ = 0.00147 ± 0.00011
s0 = 0.0176 ± 0.0032
s¶ = 0.00358 ± 0.00018

θ k -ln(γ) y0 y¶ s0 s¶
θ 1     -0.180  -0.108  -0.113  -0.283   -0.817   0.211 
k -0.180     1        0.716   0.596   0.644    0.292   0.580

-ln(γ) -0.108   0.716     1        0.046   0.111    0.105   0.171
y0 -0.113   0.596   0.046      1       0.502    0.282   0.477 
y¶ -0.283   0.644   0.111   0.502      1        0.350   0.640
s0 -0.817   0.292   0.105   0.282   0.350       1      -0.278  
s¶ 0.211   0.580   0.171   0.477   0.640   -0.278      1 

Correlation coefficients

Minimum chi-squared fit yields 
estimated PTW parms. and rms errors, 
as well as correlation coefficients, 
which are crucially important!

Fixed parms:

p = 4
y1 = 0.012

y2 = 0.4
b = 0.23
ap = 0.48

G0 = 722 MPa
Tmelt = 3290 ºK
r = 16.6 g/cm2
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Visualization of uncertainties in model
• Uncertainties visualized by displaying (quasi) Monte Carlo 

draws from uncertainty distribution
► done correctly with full covariance matrix (left)
► done incorrectly by neglecting off-diagonal terms in covariance 

matrix (right) 

MC with correlations MC without correlations
wrong!
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Taylor test simulations
• Simulate Taylor impact test –

steel cylinder impacting rigid wall
• For impact velocity = 350 m/s, 

effective total strain reaches 250%
• Submodels required:

► dynamical equations
► equation of state (EOS):  T(p, ρ)
► material plasticity behavior 
► at very high impact speeds

• material fracture, break up 
• melting
• liquid behavior 

17 μs 33 μs 50 μs

Total strain profiles

Simulation by Abaqus (FEM code)
High-strength steel cylinder 
5 mm dia, 38 mm long
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Flyer-plate experiment
• Flyer plate impacts specimen – measure 

velocity on back surface
► aim is to make specimen spall

• Simulation code uses PTW model to 
predict velocity 

• Plot compares flyer-plate measurements 
with generous range of predictions 

• Challenge: PTW model consistent with 
flyer-plate and calibration experiments

• Submodels required:
► dynamical equations
► equation of state (EOS):  T(p, ρ)
► material plasticity behavior (PTW)
► material fracture

Experimental set up

6. Specimen

HE

HE

4. Impactor

Lens

Measure
Velocity

†plot from B. Williams et al.
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Time (μs) 
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JEZEBEL – criticality experiment
• JEZEBEL experiment (1950-60)

► fissile material 239Pu
► measure neutron multiplication

as function of separation of two 
hemispheres of fissile material

► summarize criticality with 
neutron multiplication factor, 
keff = 0.9980 ± 0.0019
for a specific geometry

► very accurate measurement
• Our goal – use highly accurate JEZEBEL 

measurement to improve our knowledge of 
239Pu cross sections

JEZEBEL set up
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Neutron cross sections for 239Pu
• Plot shows 

► measured fission cross sections for 
neutrons on 239Pu (red data points)

► inferred cross sections (blue line)
► weighted average in 30 energy 

bins (groups) for PARTISN 
calculation (green histogram)

• PARITSN code simulates neutron 
transport based on multigroup, 
discrete-ordinates method

• We use PARTISN  and JEZEBEL to 
► update cross sections to improve 

their accuracy (inference)
► predict uncertainties after update (forward prop.)

measured 
239Pu fission cross sections
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Neutron cross sections - uncertainties
• Analysis of measured cross 

sections yields a set of 
evaluated 239Pu cross sections

• Uncertainties in evaluated cross 
sections are ~ 1.4-2.4 %

• Covariance matrix important
• Strong positive correlations 

caused by normalization 
uncertainties in each experiment

standard error in cross sections

correlation matrix



42

JEZEBEL – sensitivity analysis
• PARTISN code relates keff to 

neutron cross sections
• Sensitivity of keff to cross sections 

found by perturbing cross section 
in each energy bin by 1% and 
observing increase in keff

• Observe that 1% increase in all 
cross sections results in 1% 
increase in keff , as expected

• In real applications, one often 
does not have this sensitivity 
vector, so Monte Carlo used to 
propagate uncertainties

keff sensitivity to 
cross sections
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Cross sections updated using JEZEBEL
• Plot shows uncertainties in cross 

sections before and after incorporating 
JEZEBEL measurement

• Individual uncertainties modestly 
reduced
► follows energy dependence of 

sensitivity
• Correlation matrix is significantly 

altered
• Strong negative correlations are 

introduced by integral constraint of 
matching JEZEBEL’s keff

• What are uncertainties in new 
PARTISN simulation?

standard errors in cross sections

correlation matrix
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Uncertainty in subsequent simulations 
• Intent is to use updated cross sections in new calculations, 

expecting a reduction in uncertainties in calculated keff
• Need to estimate the uncertainty in keff calculated for new 

scenarios
• For this demonstration, we do calculation for JEZEBEL

• Forward propagation of uncertainties
► standard approach is to use random Monte Carlo
► we try using quasi-Monte Carlo to “predict” keff

• qMC point sets obtained using Centroidal Voronoi Tessellation
• result: mean and rms deviation of keff are better determined than with 

random MC
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CVT for 2D Gaussian distribution
• Centroidal Voronoi Tessellation (CVT)

► when generating points of Voronoi cells 
match the cells’ centroids

► easy to produce CVT point sets in high 
dimensions using Monte Carlo

• Plots show starting random point set and 
final CVT set for 2D unit-variance 
Gaussian

• CVT points more evenly distributed; 
regular pattern
► better integration accuracy than random

• Propose using CVT for forward 
propagation of uncertainties for better 
accuracy

Random, 100

CVT, 100
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CVT: 30 points in 30 dimensions
• 30D unit-variance Gaussian distribution
• Projected onto 2D plane, CVT result 

doesn’t look much different than random 
sample set

• However, CVT points are uniformly 
distributed in 30D, while random points are 
not

CVT, 30Point separation histogram 

Random, 30

All points are 
nearest neighbors!

random

CVT
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CVT radial distribution: 30 points in 30D
• All 30 CVT points in 30D are at the 

same radius
► lie on the surface of a hypersphere

• As seen in last slide, the inter-point 
distances for CVT are essentially 
identical
► regular point pattern (unique?)

• Rotation is only degree of freedom 
between different realizations of 
CVT

• One can generate new CVT patterns 
by randomly rotating an existing one

n = 30; d = 30

random

CVT
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Covariance analysis of 30 CVT points in 30D
• CVT applied to 30 points in 30 dimensions 

yields an evenly distributed set of points
► all at same radius
► all equally spaced 

• Eigenanalysis of covariance matrix 
of point set yields the covariance 
spectrum

• Conclude 
► CVT spectrum is much more 

uniform than for random set
► variance of projection of points

is same in almost all directions
• Last eigenvalue is zero; rank = 29

► 31 points needed to fully sample 30D behavior

n = 30; d = 30

CVT

random
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Accuracy of predicted keff and its uncertainty

0.000020.001970.000010.99796CVT-rot

-0.00195-0.99796exact-linear

0.000100.002180.000100.99824random-rot

0.000280.001910.000370.99788random

rms dev.avg.rms dev.avg.

est. std. dev. keffest. mean keff

Results from 1000 sample sets; ‘rot’ indicates single 
sample set randomly rotated to obtain each new one

• Check accuracy of predicted mean and standard deviation of 
keff for JEZEBEL, based on 30 samples, random and CVT
► exact value known from sensitivity and linear model used

• Conclude – CVT is very accurate, for both mean and rms dev. 
► random samples yield 15% accuracy for keff std. dev
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Further advantages of Bayesian analysis
• Bayesian method helps us cope with the difficulties commonly 

encountered in data analysis
► systematic uncertainties
► inconsistent data
► outliers
► uncertainties in stated uncertainties
► model checking –

does model agree with experimental evidence? 
► model selection – which model is best?

• between two models, which is best supported by data?
• how many spline knots should be used to fit data?
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239Pu cross sections – coping with outliers
• Gaussian likelihood (min χ2) fit 

yields
► χ2 = 44.7, p = 0.009% for 15 DOF

2.441 ± 0.013 b
► implausibly small uncertainty, 

given that three smallest 
uncertainties ≈ 0.027 b 

• Each datum reduces the standard 
error of result, even if it does not 
agree with it!
► consequence of Gaussian likelihood

► independent of where data lie!

2 2

1

n

i
i

σ σ− −

=

= ∑ Gaussian: 2.441 ± 0.013 b

Summary of measurements of 
239Pu cross section at 14.7 MeV

posterior
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239Pu cross sections – outlier-tolerant likelihood
• Long-tailed likelihood for each datum 

used in Bayesian analysis to account 
for outliers

• Two-Gaussian likelihood has right 
properties

► where β = 0.01 and γ = 10
• With 2-Gaussian likelihood 

2.442 ± 0.024 b 
whereas Gaussian yields

2.441 ± 0.013 b
► 2G gives almost same mean value 

but more conservative standard error

G: 2.441 ± 0.013 b

2 2

2 2 2

( ) ( )(1 ) exp exp
2 2

x m x mββ γσ γ σ
⎧ ⎫ ⎧ ⎫− −

− − + −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

2G: 2.442 ± 0.024 b
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Model selection – higher order inference 
• Bayes rule for posterior for parameters

► d represents measurements
► a represents parameters for model M
► p(d | a, M) is the likelihood
► p(a | M) is the prior
► p(a | d, M) is called the posterior
► denominator provides normalization:

► inference about parameters does not require knowing this integral

( | ,M) ( | M)( | ,M)
( | M)

p pp
p

=
d a aa d

d

( | M) ( | ,M) ( ,M)p p p d= ∫d d a a a
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Bayesian model selection
• Bayes rule for probability of model M

• Odds ratio between two models

► integrals over volume of data likelihood times prior
• may be difficult to evaluate
• doable under Gaussian assumption with estimate of covariance matrix 

► choice of prior odds important
• May be used to select best model to represent data, including

► polynomial order, number of spline knots

(M | ) ( | M) (M)p p p∝d d
(M) ( | ,M) ( , M)= p p p d∫ d a a a

1 11 1

2 22 2

( | , M ) ( , M )(M | ) (M )
(M | ) (M )( | , M ) ( ,M )

p p dp p
p pp p d

= ×∫
∫

d a a ad
d d a a a

Posterior odds   =               Bayes factor                  x Prior odds
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Background estimation in spectral data
• Problem: estimate background for PIXE spectrum
• Approach is based on assuming background is smooth and 

treating resonances as outlying data  
• Fully Bayesian calculation using MCMC to estimate spline 

parameters, their knot positions, and number of knots

from Fischer et al., Phys. Rev. E 61, 1152 (2000)
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Summary
• Uncertainty quantification is fundamental to validation
• Bayesian analysis provides valuable tools for UQ
• Variety of techniques are available (or being developed) 

for validating simulation codes simulation codes
• Hierarchical approach to conducting UQ is suggested for 

physics simulation codes


