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Goals of tutorials

My aim is to
« present overview of Bayesian and probabilistic modeling

* cover basic Bayesian methodology relevant to nuclear physics,
especially cross section evaluation

e point way to how to do it

e convince you that

» Bayesian analysis 1s a reasonable approach to coping with
measurement uncertainty

* Many thanks to my T-16 colleagues
» Gerry Hale, Toshihiko Kawano, Patrick Talou



Outline — four tutorials

1. Bayesian approach
probability — quantifies our degree of uncertainty
Bayes law and prior probabilities
2. Bayesian modeling
Peelle’s pertinent puzzle
Monte Carlo techniques; quasi-Monte Carlo
Bayesian update of cross sections using Jezebel criticality expt.
3. Bayesian data analysis
linear fits to data with Bayesian interpretation
uncertainty in experimental measurements; systematic errors
treatment of outliers, discrepant data
4. Bayesian calculations
Markov chain Monte Carlo technique
analysis of Rossi traces; alpha curve
background estimation in spectral data



Slides and bibliography

» These slides can be obtained by going to my public web page:
http://public.lanl.gov/kmh/talks/

e link to tutorial slides

 short bibliography relevant to topics covered in tutorial
« other presentations, which contain more detail about material presented here

» Noteworthy books:

* D. Sivia, Data Analysis: A Bayesian Tutorial (1996); lucid pedagogical
development of the Bayesian approach with an experimental physics slant

* D. L. Smith, Probability, Statistics, and Data Uncertainties in Nuclear
Science and Technology (1991); lots of good advice relevant to
cross-section evaluation

* G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Review,
(World Scientific, New Jersey, 2003); Bayesian philosophy

* A. Gelman et al., Bayesian Data Analysis (1995); statisticians’ view

 W.R. Gilks et al., Markov Chain Monte Carlo in Practice (1996); basic
MCMC text 4



Tutoral 1
Bayesian approach



Uncertainty quantification

We need to know uncertainty in data:

To determine agreement among data, or between data and theory

Inference about validity of models requires knowing degree of
uncertainty
We typically assume uncertainty described by a Gaussian pdf
» often a good approximation
» width of Gaussian characterized by its standard deviation ¢
» o provides the metric for uncertainty about data

. . . . . ]
» when combining measurements, weight by inverse variance o

Nomenclature — uncertainty or error?
» error — state of believing what 1s incorrect; wrong belief; mistake
» uncertainty — lack of certainty, sureness; vagueness

» uncertainty analysis seems to convey appropriate meaning 6



History of particle-properties measurements

Plots show histories of two
“constants” of fundamental particles

Mass of W boson

» logically ordered history

» all within error bar wrt last (best?)
measurement

Neutron lifetime
» disturbing history
» periodic jumps with periods of
extreme agreement

» most earlier measurements disagree
with latest ones

» plot demonstrates possible
sociological and psychological
aspects of experimental physics
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Neutron fission cross section data for 23°Pu

Graph shows 16 measurements

of fission cross-section for
239Py at 14.7 MeV

Data exhibit fair amount of
scatter

Quoted error bars get smaller
with time

Minimum X2 = 44.6, p = 10
indicates a problem

» dispersion of data larger than
quoted error bars

» outliers?; three data contribute
24 to X2, more than half

239Pu, 14.7 Mev
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Neutron fission cross-section data

243Am fission
Cross section

Fission Cross Section (b)

Neutron Energy (MeV)
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plot from P. Talou

* Neutron cross sections measured by many experimenters

>

>

>

>

sometimes data sets differ significantly

often little information about uncertainties, esp. systematic errors

many directly measure ratios of cross sections, e.g., *Am/ >>°U

a thorough analysis must go back to original data and consider all

discrepancies

9



Bayesian analysis of experimental data

« Bayesian approach

>

focus 1s as much on uncertainties in parameters as on their best
(estimated) value

provides means for coping with Uncertainty Quantification (UQ)
quantitative support of scientific method

use of prior knowledge, e.g., previous experiments, modeling
expertise, subjective

experiments should provide decisive information
model-based analysis

model checking —
does model agree with experimental evidence?

* Goal 1s to estimate model parameters and their uncertainties

10



Bayesian approach to model-based analysis

* Models
» used to describe and analyze physical world
» parameters inferred from data

* Bayesian analysis

» uncertainties in parameters described by probability density
functions (pdf)

» prior knowledge about situation may be incorporated

» quantitatively and logically consistent methodology for making
inferences about models

» open-ended approach
 can incorporate new data
 can extend models and choose between alternatives

11



Bayesian approach to model-based analysis

« Bayesian formalism provides framework for modeling
» choice of model is up to analyst (as in any analysis)
» many ways to do it

» calling an analysis Bayesian does not distinguish it

« Because it is a Bayesian analysis does not necessarily mean 1t
1s a good analysis; 1t can also be bad or mnappropriate

12



Uncertainties and probabilities

Uncertainties 1in parameters are
characterized by probability density

functions (pdf) Probability density function

Probability interpreted as quantitative
measure of “degree of belief”

This interpretation 1s referred to as
“subjective probability”

Probability
density

» different for different people with
different knowledge

, , Parameter value
» changes with time

» 1n science, we seek consensus, avoid bias

Rules of classical probability theory apply

» provides firm foundation with mathematical

rigor and consistency 3



Subjective probability can be quantitative

Example — coin toss

Hypothesis: for a specific coin,

fraction of tosses that come up
heads = 50%

Hypothesis seems so reasonable
that you might believe 1t 1s true

On basis of this subjective
probability, you might be willing
to bet with 1:1 odds

Before any tosses, you might have
a prior as shown

After 50 tosses, you would know
better whether coin 1s fair

Relative probability

After 50 tosses

0.5
Fraction heads

14




Coherent bet quantifies subjective probability

A property of the Gaussian distribution 1s that random draws from
it will fall inside the interval from -6 to +6¢ 68% of time

Suppose, on basis of what you know, you specify the standard
error 6 of your measurement of a quantity, assuming Gaussian

If you truly believe 1n the value of 6 you have assigned, you should
be willing to accept a bet, randomly chosen between two options:

» 2:1 bet that a much more accurate measurement would differ from
your measured value by less than one o

» OR 1:2 bet that a much more accurate measurement would differ
from your measured value by more than one ¢

Your willingness to take bet either way makes this a coherent bet
As physicists, we should make honest effort to assign uncertainties
in this spirit, and communicate what we have done

15



Rules of probability

Continuous variable x; p(x) 1s a probability density function (pdf)
Normalization: j p(x)dx =1
Decomposition of joint distribution into conditional distribution:

p(x,y)=p(x|y)p(y)

where p(x|y) 1s conditional pdf (probability of x given y)
» if p(x|y)= p(x), xis independent of y
Bayes law follows:
X
x) = p(x|y)p(y)
p(x)

p(y

Marginalization:
p(x)= [ p(x.y)dy = [ p(x] ») p(»)dy

1s probability of x, without regard for y (nuisance parameter) 16



Rules of probability

* Change of variables: 1f x transformed into z, z = f(x), the pdf in
terms of z 1s

p(z)=[J] "' p(x)

where J 1s the Jacobian matrix for the transformation:

( Oz, Oz, )
J=| : .
0z, 0z,

\a_x3 @_xw




Bayesian analysis of experimental data

 Bayes rule pd|a,l)pal|l)

>

plald,l)=

pld|I)
where

d 1s the vector of measured data values
a 1s the vector of parameters for model that predicts the data

p(d | a, I) 1s called the likelihood (of the data given the true model
and 1ts parameters)

p(a | ) 1s called the prior (on the parameters a)

p(a | d, I)1s called the posterior — fully describes final uncertainty
in the parameters

I stands for whatever background information we have
about the situation, results from previous experience,
our expertise, and the model used

denominator provides normalization: P(d) = J p(d|a) p(a)da
1.e., 1s integral of numerator 18



Auxiliary information — /

All relevant information about the situation may be brought to bear:
e Details of experiment

» laboratory set up, experiment techniques, equipment used

more

subjective

» potential for experimental technique to lead to mistakes
» expertise of experimenters

» Relationship between measurements and theoretical model
« History of kind of experiment

« Appropriate statistical models for likelithood and prior

e Experience and expertise

* We usually leave [ out of our formulas, but keep 1t in mind

19



Likelithood

Form of the likelihood p(d| a, 1) depends on how we model the
uncertainties 1n the measurements d
Choose pdf that appropriately describes uncertainties in data
» Gaussian — good generic choice
» Poisson — counting experiments
» Binomial — binary measurements (coin toss ...)
Outliers exist

» likelithood should have a long tail, 1.e., there is some probability of
large fluctuation

Systematic errors
» caused by effects common to many (all) measurements

» model by introducing variable that affects many (all)
measurements; then marginalize it out

20



Priors

Noncommittal prior
» uniform pdf; p(0) = const. when 0 1s offset parameter
» uniform in log(0); p(log 0) = const. when 0 is scale parameter
» choose pdf with maximum entropy, subject to known constraints
Physical principles
» Cross sections are nonnegative = p(0) =0 when 6 <0
» 1nvariance arguments, symmetries
Previous experiments
» use posterior from previous measurements for prior
» Bayesian updating
Expertise
» elicit pdfs from experts in the field, avoiding common info sources

» elicitation, an established discipline, may be useful in physical
sciences 21



Priors

e Conjugate priors

|

for many forms of likelihood, there exist companion priors that
make 1t easy to integrate over the variables

these priors facilitate analytic solutions for posterior

example: for the Poisson likelithood in n» and A, the conjugate prior
1s a Gamma distribution in A with parameters a and 3, which
determine the position and width of the prior

conjugate priors can be useful and their parameters can often be
chosen to create a prior close to what the analyst has in mind

however, 1n the context of numerical solution of complicated
overall models, they loose their appeal

22



Posterior

» Posterior p(a | d, I)
» net result of a Bayesian analysis
» summarizes our state of knowledge
» 1t provides fully quantitative description of uncertainties

» usual practice 1s to characterize posterior in terms of an
estimated value of the variables and their variance

 Visualization

» difficult to visualize directly because it 1s a density
distribution of many variables (dimensions)

» Monte Carlo allows us to visualize the posterior through 1t
effect on the model that has been used 1n the analysis

23



Visualization of uncertainties

Visualization plays an important role in developing an
understanding of a model and communicating its consequences

Monte Carlo 1s often a good choice — choose sets of
parameters from their uncertainty distribution and visualize
corresponding outputs from the model

Random sampling from posterior 1s typically done

Quasi-random sampling 1s noteworthy alternative; it provides
more uniform sets of samples

24



Probability in weather forecasting

* Metrological forecast for Oct. 30, 2003 for Casper, Wyoming

« 22 predictions of 564 line (500 mb) obtained by varying input
conditions; indicate plausible outcomes

* Density of lines conveys certainty/probability of winter storms

7 days

1 da
ahead Y

ahead

564 line; predictive Computer
projections

of winter storms of 564 line

4 days
ahead

what happened?
20-inches of snow!

National Geographic,
June 2005

25




Posterior — quantitative results

« Quantitative results are obtained by characterizing the posterior:

X= <x> = jxp(x)dx

* mean minimizes quadratic cost function

» mean (first moment):

» maximum (peak position); same as mean 1f pdf symmetric

» standard deviation (second moment): 5 — \/ J' ( x—( x>)2 p(x)dx
* standard error

» covariance matrix:  cov(x,y)=C, = j(x = <x>) (y — <y>) p(x, y)dxdy
e correlation matrix: corr(x, y) = R, = O'jy /o, o,

» credible (confidence) interval, e.g., 95% credible interval
* Means for estimating these include:

» can use calculus 1f posterior 1s in convenient analytic form

» second-order approximation around peak (numerical)

» Monte Carlo (numerical) 26



Higher-order inference

* One can make inferences about models, not just parameters

e The posterior for a model 1s
p(M |d)= | p(a,M |d)da = p(a.M | d)da

oC .p(d a, M) p(a,M)da

=pM)| p(d|a,M)p(a|M)da
» the final integral is the normalizing denominator 1n original
Bayes law for p(a|d); 1t 1s called the evidence

» while the evidence 1s not needed for parameter inference, it
is required for model inference

* May be used for model selection, e.g., deciding between two or
more models

» €.g2., how many terms to include 1n a functional analysis .



Summary

In this tutorial:

* Need for uncertainty quantification

* Bayesian fundamentals

>

>

>

subjective probability, nevertheless quantifiable
Bayesian use of probability theory

posterior sampling

visualization of uncertainties — Monte Carlo

higher-order inference

28



Tutorial 2
Bayesian modeling

29



Peelle’s Pertinent Puzzle (1987)

Overview:

Paradoxical result produced by strong correlations in
uncertainties

Probabilistic view of PPP

Specific probabilistic model for PPP elucidates how correlations
In uncertainties arise

Plausible experimental situation consistent with PPP result
Bayesian approach to coping with uncertainty in model

With probabilistic modeling, you can go beyond simple linear,
additive models

PPP underlines the need to specify how uncertainties contribute
to reported data

30



Peelle’s pertinent puzzle

Robert Peelle (ORNL) posed the PPP in 1987:
Given two measurements of same quantity x:
m;=1.5; my,=1.0,
each with independent standard error of 10% ,
and fully correlated standard error of 20% .
Weighted average using least-squares 1s x = 0.88 £ 0.22

Peelle asks “under what conditions 1s this result reasonable?”
By extension, 1f this not reasonable, what answer 1s appropriate?

PPP 1s pertinent — 1ts effect has been observed in nuclear data
evaluation for decades

Comment — PPP description of errors 1s ambiguous, which leads
to numerous plausible interpretations

31



PPP 1n cross-section evaluation

* Although the PPP problem may seem academic, it has significant
real-world consequences 1n cross-section evaluation

» historically, fits to several data sets fall below lowest measurements

Cross Section (barns)
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Standard solution to PPP

* The solution given in PPP 1s based on standard matrix equations
for least-squares result:
estimated value x=(G'C'G)'G'"C'm
covariance in estimate V =(G'C'G)™
where the sensitivity matrix1s G =[1.0 1.0]
and the measurements are the vector m =[1.5 1.0]"

- - - 1.5 (0.1 +0.2)  1.5%1.0%0.2°
with covariance matrix C:[ 57 *(0.17+0.27) 5#1.0%0.2 j

1.5%1.0%0.2> 1.0 #(0.1> +0.2%)

e Resultis x=0.88+0.22

e This result 1s smaller than both measurements, which seems
implausible

33



Probabilistic view of standard PPP solution

* Consider the probability density
function (pdf) for the variables

X =[x xz]T
p(x|m)cc exp{—% (x—m)T Cl(x—m)}

where measurements are m =[1.5 1.0]"
and their covariance matrix is

- 1.5 %(0.1°+0.2°)  1.5%1.0%0.2°
1.5%1.0%0.2°  1.0°*(0.1° +0.2°)

* For x=x, =x, (diagonal of 2D pdf{),
p(x|m) 1s normal distribution centered
at 0.88

2.5

p(xja X2 | m)
2.

(x)=0.882+0.228

Probability Density
- o

o
o

o

o
o
(4}
—_—
-
w
N
N
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Probabilistic model for additive error

Represent common uncertainty in measurements by systematic
additive offset A: x, =m, +& +A; x,=m,+¢&, +A
» where the g, represent the random fluctuations
Bayes law gives joint pdf for x and A
p(x,Alm)= p(m|x,A)p(x)p(A)
where priors p(x) 1s uniform and p(A) assumed normal (o,= 0.2)
Writing p(x,A|m)ocexp{-¢} and assuming normal distributions

20 (x1 -mlz—A)2 . (x2 -mzz—A)2 N Az
O, 0, O\

where o, =0.1%*m; o,=0.1%m,; o,=0.2
Pdf for x obtained by integration: p(x|m)= j p(x,Alm)dA

T

This model equivalent to p(x|m) oc exp {—é (x- m)T C(x- ”3’5)}




Plausible experimental scenario

e Under what conditions 1s PPP result
reasonable?

* Suppose that

» measurements made in intervals m,
shown

Rate

+20%

» from experience with apparatus, _ )f
we know background increases | =T
linearly in time

» background subtraction for m, 1s
1.5 times larger than for m,;
leads to stated covariance matrix

* For this scenario, the additive
model 1s appropriate, and the PPP
solution, 0.88, 1s the correct answer 26



Probabilistic model for normalization error

Represent common uncertainty in measurements by systematic
error in normalization factor ¢: cx=m, +&; cx=m, te,

» where the g, represent the random fluctuations

Following same development as before, where prior p(c)
assumed normal with expected value of 1 and o7.= 0.2

Writing  p(cx,c | m) oc exp {—¢}

2 2 2
2¢:(cx—12nl) +(cx—izfzz) +(C_21)
o, o, o}

c

where o, =0.1*m; o0,=0.1*m,; o, =0.2

Divide p(cx, ¢) by Jacobian J= 1/c to get p(x, ¢), which 1s a
log-normal distribution

p(x) obtained by numerical integration: p(x|m)= j p(x,c|m)dc

This approach promoted by D. Smith (1991) 37



Probabilistic view of normalization error

PPP: X _=1.074; X =1.200
max mean

* Consider the probability density 25

function (pdf) for variables x =[x, x,]" 2_p (), x5 | m)

2 2 2 yd
£ ( " s e s I /
m, o, m, p, O, 1l P S

Oc=Pe> 0.5}
where measurements are m =[1.5 1.0]" N
o . 0 0.5 1 « 1.5 2 2.5
» also, divide p(cx, ¢) by Jacobian J= ) !

 (x)=1.200+0.276

1/c to get p(x, c),

» for x =X, = X, (diagonal of 2D pdf),
p(x|m) 1s not a simple normal distribution

N
(%))

» max at: x, = 1.074

Probability Density

o
&

» posterior mean and rmsd:
x=1.200+0.276

(=)




Probabilistic model for normalization error

e Compare pdfs for two models
for correlated effect: 5

A — additive offset
B — normalization factor

LN
an

* Observe significant difference
in two results

» emphasizes need to know
which kind of effect leads to 0.5}
correlation

Probability Density

« Probabilistic modeling is
capable of handling a variety of
known effects

39



But which model should we use?

Ambiguity in specifying source of
correlation leads to uncertainty
about which model to use

Bayesian approach can handle
model uncertainty

p(x|m)= [ p(x,M |m)dM
= [ pCx|m,M) p(M)dM

1 1
=;p(x|m,M1)+;p(x|m,M2)

» for two equally likely models
M, and M,

Answer 1s average both pdfs!!
x=1.04+0.30

EN
o

Probability Density

0.5}

~ B (x)=1.04£0.30

solid black line is
average of A and B

40




An alternative approach

 Devinder Sivia offers an variation

on this approach — | |
. . x)=0.96+0.27
» Use data to help decide which < !
model to use 5
px|m) = p(x,M, | m) 3 °
=> p(x|m,M)p(M,|m) i} o
i 0.5 1 15 2
= Wlp(x | m,Ml) + sz(x | m,Mz) Quantity of interest w
» where w; 1s proportional to the solid black line is
evidence integral for weighted average of
. & p (Mi | m) other two distributions
e Answeris: x=0.96+0.27
« Comment: relative weights depend from D. Sivia, Proc. AMCTM Cont.,
heavily on resp. priors; perhaps not (World Scientific, 2005)

a good situation 41



Conclusions

PPP result 1s consistent with plausible experimental scenario

» 1n which correlated (systematic) error contributes additively to result

Ambiguous statement of the PPP leads to other interpretations

» some of which yield more plausible answers

Analysts need better information to analyze data without guessing

Probabilistic modeling can cope with various known uncertainty
effects

42



Conclusions

 Experimenters — please provide measurement details

 Some of the details needed:

» specify standard errors as precisely as possible, indicating where
uncertainties in their assessment lie

» specify components in uncertainties and whether they are
 independent, or correlated, e.g., systematic errors
 given relative to measured quantities or inferred values

« additive (background subtraction) or multiplicative
(normalization)

* Correlation matrix by itself is not enough

* Another 1ssue in PPP is inconsistency between two measurements:
one can cope with this discrepancy by introducing notion that the
true errors may differ from quoted errors, 1.€., treatment of outliers

43



Monte Carlo techniques

Monte Carlo — represent pdf by a set of point samples

« Typically use MC to draw samples from posterior for parameters,
which are fed into model to get prediction; predictive distribution

* Visualization of pdf, uncertainty
* Numerical calculations
» estimation of mean, standard deviation, correlations
» Integration, marginalization
* Quasi-Monte Carlo — select points with more uniform distribution
» provide more accurate estimates for fixed number of samples
» often deterministic point sets
e Markov chain Monte Carlo
» draw random samples for numerically-defined pdf

» facilitates inference through numerical calculations
44



Voronoi analysis

* Voronoi diagram
» partitions domain into polygons

» points 1n ith Voronoi1 region are closest
to ith generating point, x;

» boundaries often obtained by geometrical
construction

* Monte Carlo technique for Voronoi analysis

» randomly throw large number of points z,
Into region

» compute distance of each z, to all generating
points {x;}

» 7, belongs to Voronot region of closest x;

» can compute volume, first moment, radial
moments, identify neighbors, ...

« Readily extensible to high dimensions
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Centroidal Voronoi1 Tessellation

Plot shows 13 random points (-) and the
centroids of their Voronoi regions (x)

A point set 1s called a Centroidal Voronoi1
Tessellation (CVT) when the generating

points z/ coincide with the centroids their
Voronoi regions; a CVT minimizes

: 2
Z ”Z] —x‘ dx
J v,
Algorithm (McQueen)
» start with arbitrary set of generating points

» perform Voronoi analysis using Monte Carlo

» move each generating point to 1ts Voronoi
centroid

» 1terate lasts two steps until convergence

Final CVT points are uniformly distributed

0.6 °*

0.4r

1

0.8f

0.61

0.4;

0.2t .

0

o8l ”

‘X
0.2

0

Start with random points
1 : —

0 02 04 06 08 1

Final CVT point set

0 02 04 06 08 1
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CVT for multi-variate normal distribution

CVT algorithm works for an arbitrary
density function, e.g., a normal distribution

In above MC algorithm for Voronoi
analysis, simply draw random numbers
from desired distribution

Plots show starting random point set and
final CVT set

Radii of points are rescaled to achieve
desired average variance along axes

CVT points appear uniformly distributed
within constraint of adhering to unit-
variance normal distribution

This kind of distribution may have benefits
for MC calculations and visualizations

Index 2

Index 2

Random, 100
ot
. N
¥
> 1 0 1 2
Index 1
CVT, 100
D 0 D

Index 1
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Sampling from correlated normal distribution

 Want to draw samples from multi-variate normal distribution with
known covariance C,

» Important to include correlations among uncertainties, 1.e., off-
diagonal elements
* Algorithm:
» perform eigenanalysis of covariance matrix of d dimensions

C.=UAU'

where U 1s orthogonal matrix of eigenvectors and
A 1s the diagonal matrix of eigenvalues

» draw d samples from uncorrelated unit-variance normal distr., &
» scale this vector by A.”
» transform vector into parameter space using the eigenvector matrix

» to summarize, fluctuations are given by: AX = UA1/2§
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Sampling from correlated normal distribution

Proof of algorithm:

 Want to draw samples from multi-variate normal distribution
with specified covariance C,

* Algorithm:

» fluctuations given by: Ax = UA"*¢
where &, randomly drawn from uncorrelated normal pdf and
U and A come from an eigenanalysis of C : C, =UAU'
where U 1s orthogonal matrix of eigenvectors and
A 1s the diagonal matrix of eigenvalues

 Proof:
» Covariance of an ensemble of x vectors 18
C=(AxAx")=(UA"EE"A"U")
— UA1/2 <§§T>A1/2 UT — UAUT — CX

» thus, the fluctuations Ax have the desired covariance 10



Neutron cross sections

 Plot shows

» measured fission cross sections

for neutrons on %3°Pu; red data
points

» 1nferred cross sections; blue line

» weighted average in 30 energy

bins (groups); green histogram

e PARITSN code simulates neutron
transport based on multigroup,
discrete-ordinates method

>

>

uses 30 energy bins (groups)

calculates criticality for specified
configuration of fissile-material

establish dependence of criticality
experiment to cross sections

Fission Cross Section [b]

239Pu cross sections

T-16 Evaluation
30-group data

25 F

1.5 F

" L aa a3l i N T | L L s a
0.01 0.1 1 10
Incident Neutron Energy [MeV]

cross section evaluation, P. Young et al.
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Neutron cross sections - uncertainties

Analysis of measured cross standard error in cross sections
sections yields a set of
evaluated cross sections

™rT

Differential Data Only

Uncertainties in evaluated cross

SN by
sections are ~ 1.4-2.4 % :

i A s sl L M E e | L a3 3l i R |
0.001 0.01 0.1 1 10
Neutron Energy [MeV]

Uncertainties in the Fission Cross-Section [%]
N

Covariance matrix important _ _
correlation matrix

Strong positive correlations —

caused by normalization | Il
uncertainties in each experiment : -

MNeutron Energy [MeV]



JEZEBEL — criticality experiment

« JEZEBEL experiment (1950-60)

» fissile material 23°Pu

» measure neutron multiplication
as function of separation of two
hemispheres of material

» summarize criticality with

neutron multiplication factor,
K =0.9980+ 0.0019

» Very accurate measurement

e Our goal — use highly accurate
JEZEBEL measurement to
improve our knowledge of 23°Pu
Cross sections

JEZEBEL set up
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JEZEBEL — sensitivity analysis

* PARITSN code calculates k.. on

: - K. sensitivity to
basis of neutron cross sections eff y

cross sections

* Sensitivity of k. to cross sections e p—
found by perturbing cross section ors | =
in each energy bin by 1% and |
observing increase in kg

Relative Sensitivity

0.05 |

 (Observe that 1% increase 1n all | -
cross sections results in 1% v AT

0.01 0.1 1

increase in keff , as expected Neutron Energy [MeV]

10
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Bayesian update

* For data linearly related to the parameters, the Bayesian
(aka Kalman) update for Gaussian distributions 1s

Crx, =Cx, +8,C,'S, (y-¥,)
C/'=C, +S,C.S,

» X, and X, are parameter vectors before and after update
» C,and C, are their covariance matrices

» y and C, are the measured data vector and its covariance
» Y, 1s the value of y for x,,

> S, 1s the matrix of the sensitivity of'y to x; Jy/0x

* For the JEZEBEL case, y 1s a scalar (K.),
C, 1s a scalar (variance), and S 18 a vector
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Updated cross sections

Plot shows uncertainties 1n cross
sections before and after using
JEZEBEL measurement

Modest reduction in uncertainties;
follows energy dependence of
sensitivity

Correlation matrix 1is significantly
altered

Strong negative correlations

introduced by integral constraint of
matching JEZEBEL’s k

» reduction in uncertainties in future
prediction depends on how closely
its sensitivity matches JEZEBEL’s

standard error in cross sections

Uncertainties in the Fission Cross-Section [%]

MNeutron Energy [MeV]

4

' Differential Data Only
Integral Data Included
Sensitivity —— |

paaaal i aal " MR
0.01 0.1 1
Neutron Energy [MeV]

correlation matrix

10

10 |

01

001 |

0.001

— T Tt " [ T T T T T 7T

IS S S T T S S T S TR S

0.001

0.01 0.1 1
Neutron Energy [MeV]

1

<4 0.75

41 05

< 0.25

1000
800
600
400
200

-200
-400

Relative Sensitivity



Linear-response model — output uncertainty

Assume outputs of a model are linearly
related to perturbations in the inputs, Inputs Model

5y =S8,0x X y

» where S, 1s sensitivity matrix 0y/0x

Outputs

The covariance 1n the output y 1s
T
C,=5,CS,
» when output y 1s a scalar,

the covariance C, 1s a scalar (variance),
and S, 1s a vector

If linear model 1s sufficient and one knows S then
predictive distribution 1s easily characterized

For complex simulations, S, 1s not usually known
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Uncertainty 1n subsequent stmulations

Our goal 1s to use updated cross sections 1n new calculations

» expect that integral constraint will reduce uncertainties

Demonstrate usefulness of quasi-MC in form of CVT point sets by
“predicting” k. measured in JEZEBEL

» for this demo, assume linear model with known sensitivity
vector

» under this assumption, we can calculate exact answer and
compare to MC-style sampling to obtain predictive distribution

For a new physical scenario, we would not have sensitivity vector
and would have to do full simulation calculation

» thus, only a modest number of function evaluations can be done

o7



Accuracy of predicted k_and its uncertainty

« Prediction based on liner model with know sensitivities
» only 30 sample sets allowed for neutronics calc. because of time

» check accuracy of predicted mean and standard deviation
* Conclude — CVT is more accurate than random sampling
Performance summary from 1000 runs, each with set

of 30 sample vectors; ‘rot’ indicates single sample set
randomly rotated to achieve each new one

est. mean k¢, est. std. dev. k¢
avg. rms dev. avg. rms dev.
random 0.99788 0.00037 0.00191 0.00028
random-rot | 0.99824 0.00010 0.00218 0.00010
CVT-rot 0.99796 0.00001 0.00197 0.00002
exact-linear | 0.99796 - 0.00195 -
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Summary

In this tutorial:

* Peelles’ pertinent puzzle
» 1mpact on cross-section evaluation

» probabilistic modeling; additive and multiplicative systematic
effects

» experimenters need to provide more than correlation matrices
* Monte Carlo
» generation of samples with specified covariance matrix
» quasi-Monte Carlo — more uniformly spaced points than random
» Centroidal Voronoi Tessellation (CVT) algorithm
* Bayesian updating of cross sections to include integral data
» JEZEBEL criticality experiment
» Integral constraint results in negative correlations

» CVT point set improves prediction accuracy 59



Tutonal 3
Bayesian data analysis
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Types of measurement uncertainties

* Generally two major types of uncertainties

» random uncertainty — different for each measurement of same quantity
* 1n repeated measurements, get a different answer each time
 often assumed to be statistically independent, but aren’t always
» systematic uncertainty — same for each measurement within a group
« component of measurements that remains unchanged
 for example, caused by error in calibration or zeroing

e this kind of uncertainty needs more attention
 Nomenclature varies
» physics — random uncertainty and systematic uncertainty

» statistics — random and bias

* metrology standards (NIST, ASME, ISO) —
random and systematic uncertainties (now)

» trend toward quoting standard error
61



Measurement uncertainties 1n cross sections

In cross-section experiments, sources of uncertainties include:
« Random uncertainties
» counting statistics for primary process and monitoring process
» background
« Systematic uncertainties
» Integrated beam intensity
» target thickness, target impurities
» detector efficiency
» count rate corrections
» geometry

» corrections for contamination from other processes
* Try to reduce systematic uncertainties through calibration, design

 Random uncertainties usually easy to assess;

systematic uncertainties require judgment 02



Characterization of measurement uncertainties

The best analysis 1s based on a thorough understanding of
probabilistic nature of the fluctuations in the data

In nuclear physics we are fortunate to have control over
measurements; we can calibrate and study apparatus

Look closely at measurements to characterize random fluctuations

|

>

>

shape of pdf

standard deviation (variance) of fluctuations,

presence of outliers

covariance, correlation: cov(d)=C, = <(d —d )d — d )T>

usually need to assume stationarity, same characteristics everywhere

autocorrelation function useful for estimating correlations
R
p(l) = ;Zy(l)y(l —1)
i=1
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Neutron fission cross section data for 23°Pu

Graph shows 16 measurements

of fission cross-section for
239Py at 14.7 MeV

Data exhibit fair amount of
scatter

Quoted error bars get smaller
with time

Minimum X2=44.6 (p = 104)
indicates a problem

» dispersion of data larger than
quoted error bars by factor /3

» outliers?; three data contribute
24 to X2, more than half

239Pu, 14.7 Mev

T
16 WWahl 19354

13 Litley 1936 _——

14 Smith 1957

13 Adams 1961
12 White 1967 A
11 Barton 1967
10 Iyver 13969

9 Wari 1975 —_—

G Cance 1978 ————0

FLi19a2 —

5 Matidawi 1952 _—

5 Garles 1954 —_—
4 Meadowes 1995 ——

3 herla 1991 ——

2 Garles 1992

1 Sheherbakoy 2000 ——

2 22 24 26 28
Fission Cross Section (b)

Chi-squared distribution for 15 DOF

o
o
o

FProbability Density
o o
o o
S

©
=
N

(=]
o

10 20 30 40 50
Chi-squared
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Neutron fission cross-section data

" Kanda, 1987 - i
. . Fomushkin, 1984 i
243Am fission Fomushkin, 1967 (a)  x
. 25 - Fomushkin, 1967 (b) ©
cross section Adamov, 1963
Butler, 1961 .
2r Fursov, 1985 - :
= Seeger, 1970  + i 488
- Ya, 1999 ~ 25
S Behrens, 1981 LA T B
@ Laptev, 2004 -+ Y o T e
2 Younes, 2004 (surrogate) 2
S ENDF/B-VI —— :
= Tr JENDL-3.3 : T
2 R
L : .
0
-0.5 e e e
0.01 0.1 1 10

Neutron Energy (MeV) plot from P. Talou

* Neutron cross sections measured by many experimenters
» sometimes data sets differ significantly
» often little information about uncertainties, esp. systematic errors
» many directly measure ratios of cross sections, e.g., ?**Am/ 23U

» thorough analysis must take into account all discrepancies 65



Inference using Bayes rule

 We wish to infer the parameters a of a model M, based on data d

« Use Bayes rule, which gives the posterior:
plald,MI)cp(d|aMI)pla|MI)

» where [ represents general information we have about the situation

» p(d|a, M, I) is the likelihood, the probability of the observed data,
given the parameters, model, and general info

» pla | M, ) 1s the prior, which represents what we know about the
parameters exclusive of the data

« Note that inference requires specification of the prior
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Likelithood

Form of the likelithood p(d| a, I) based on how we model the
uncertainties in the measurements d

Choose pdf that appropriately describes uncertainties in data
» Gaussian — good generic choice
» Poisson — counting experiments
» Binomial — binary measurements (coin toss ...)

Outliers exist

» likelithood should have a long tail, 1.e., there is some probability of
large fluctuation

Systematic errors
» caused by effects common to many (all) measurements

» model by introducing variable that affects many (all)
measurements; marginalize out
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The model and parameter inference

We write the model as

y=y(x,a)

» where y 1s a vector of physical quantities, which 1s modeled
as a function of the independent variables vector x and
a represents the parameter vector for the model

In inference, the aim 1s to determine:

» the parameters a from a set of n» measurements d; of y under
specified conditions x;,

» and the uncertainties in the parameter values

This process 1s called parameter inference, model fitting (or
regression); however, uncertainty analysis
1s often not done, only parameters estimated
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The likelihood and chi-squared

The form of the likelihood p(d | a, I) depends on how we model
the uncertainties in the measurements d

Assuming the error in each measurement d; 1s normally
(Gaussian) distributed with zero mean and variance ¢, and that
the errors are statistically independent,

p(d | a) OCHeXp|:—[di_yi(a)] :|

207

1

where y.1s the value predicted for parameter set a
The above exponent 1s one-half chi squared

Zz :—210g[p(d | a)] :Z|:[dz _;_/lz(a)] :|

l I

For this error model, likelihood is p(d | a) o exp(—% %)
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Likelihood analysis

* For a non-informative uniform prior,
the posterior 1s proportional to the likelihood

» Given the relationship between chi-squared and the likelihood,
the posterior 1s

pla|d) o« p(d|a) cexp(—7 1)

« Parameter estimation based on maximum likelihood 1s
equivalent to that based on minimum chi squared (or least
squares)
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Likelihood analysis — chi squared

When the errors in each measurement are Gaussian distributed and
independent, likelihood 1s related to chi squared:

2 d — v (a)
p(d|a)0C€Xp(—%Z ):exp{_% . |:[ ) y;(“)] :|}

O.

l

near minimum, X2 is approximately quadratic in the parameters a
2 A T A 2/ A
v (a)= %(a—a) K(a—a)+;( (a)

» where d 1s the parameter vector at minimum x? and
K is the x? curvature matrix (aka the Hessian)

The covariance matrix for the uncertainties in the estimated
parameters 1S

cov(a) = <(a —d)(a— &)T> = C=2K"
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Characterization of chi squared

Expand vector y around yY, and approximate:

oy,

yi:yi(xiﬂa):yio_l_z
7 o0a;| g
a

The derivative matrix 1s called the Jacobian, J

0
(@a,—a;)+--

Estimated parameters @ minimize X2 (MAP estimate)

As a function of a, X? 1s approximately quadratic in @ — d

T
2 . 1 A A 2 /A
r(@=73(a-a) K(a—a)+ y(a)
» where K 1s the x? curvature matrix (aka the Hessian);
52}(2
* - da Joa |,
Jacobian useful for finding min. x2 , i.e., optimization

K]

. K=2JAJ"; A=diag(c?, 0%, 0,7, ..)
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Multiple data sets and Gaussian prior

* Analysis of multiple data sets

» to combine the data from multiple, independent data sets into a
single analysis, the combined chi squared 1s

2 2
Xall = ZZ k
k
» where p(d, | a, I) 1s the likelithood from kth data set
* Include Gaussian priors through Bayes theorem

plald,I)oc p(d|a,l) pla|l)
» for a Gaussian prior on a parameter g, 2
_ _ 1,2 (af_af)
“logplald,l)=pla)=74"+———
O

» where &'j 1s the default value for a, and sz 1s assumed variance
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Chi-squared distribution

Plot shows %2 distribution for

number of degrees of freedom,
v =100

Generally,

Chi-squared distribution for 100 DOF

<
O
s

<
=
N

» Mcan —=v
» Tms dev = +2/v

Cumulative distribution gives p . .
value, probability of X> 2 observed ’ “Chi-squared s
value

<
O
—

Probability Density

p often used a measure of
goodness of fit

Checks self-consistency of models
used to explain data (weakly)
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Goodness of fit

Check of minimum chi-squared value only weakly confirms
validity of models used
Chi-squared value depends on numerous factors:

» assumption that errors follow Gaussian distribution and are
statistically independent

» proper assignment of standard deviation of errors
» correctness of model used to calculate measured quantity

» measurements correspond to calculated quantity (proper
measurement model)

Thus, a reasonable chi-squared p value does not necessarily
mean everything 1s OK, because there may be compensating
effects
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Fit linear function to data — minimum %?

Linear model: y=a-+bx s

Fit: O yata = 0.20; ey =

| 10 data points

Best fit |

Simulate 10 data points, o, =0.2 8
exact values: a=0.5 b»=0.5 o
Determine parameters, intercept > 2
a and slope b, by minimizing chi- N
squared (standard least-squares 05
analysis) 0%
Result: z2. =4.04 p=0.775

4=0484 o, =0.127 >

h=0.523 o, =0.044 06|

R 1 —0.867 Q

{—0.867 1 } >

Strong correlations between 0.2}

parameters a and b




Sampling from correlated normal distribution

* Want to draw samples x from multi-variate normal distribution
with known covariance C,

» Important to include correlations among uncertainties, 1.e., off-
diagonal elements
* Algorithm:

» perform eigenanalysis of covariance matrix of d dimensions

C,=UAU"'

where U 1s orthogonal matrix of eigenvectors and
A 1s the diagonal matrix of eigenvalues

» draw d samples from unit variance normal distribution, &
» scale this vector by A.”
» transform vector into parameter space using the eigenvector matrix

. 1/2
» to summarize: X = UA"*§
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Linear fit — uncertainty visualization

Fit. o, ., =0.20; Ogys = 0.00

* Uncertainties in parameters are . | . |
represented by Gaussian pdf in 2-D 351 12 MC samples |
parameter space

» correlations evidenced by tilt in
scatter plot

» points are samples from pdf

e Should focus on implied o : 2 . y :
uncertainties in physical domain _ _
. . Scatter plot
» model realizations drawn from 0.8} P
parameter uncertainty pdf
» these appear plausible — 5 e TP
called model checking 0.4l ’

» this comparison to the original data
confirms model adequacy 0.2

» called predictive distribution 02 04 06 08 78




Linear fit — correlations are important

Plots show what happens 1f off-
diagonal terms of covariance
matrix are ignored

Correlation matrix 1s

i

Model realizations show much
wider dispersion than consistent
with uncertainties in data

No tilt 1n scatter plot — uncorrelated

Correlations are important !

Fit. o, ., =0.20; Ogys = 0.00

12 MC samples |

o 0.5}

0.4f

0.3f
0.2r

Scatter plot |

0.1

02 04 06 08 79




Probabilistic model for additive error

Represent systematic additive uncertainty in measurements by
common additive offset A: y.=a+bx, +& +A= f(x;a,b)+¢& +A

» where the ¢, represent the random fluctuations

Bayes law gives joint pdf for all the parameters

p(a,b,Aly,x)=p(yla,b,A,x)p(a) p(b) p(A)
where priors p(a), p(b) are uniform and p(A) assumed normal

Writing p(a,b,A| y,x) « exp{—¢} and assuming normal
distributions

20 = Z(yi ACE czz,b)—A)z S

o o

l

Pdf for x obtained by integration: p(a,b|y,x)= '[ p(a,b,A|y,x)dA

This model equivalent to standard least-squares approach by

including A 1n fit, and using just results for a and b %



Linear fit — systematic uncertainty

Introduce systematic offset A . i i e
with uncertainty o, = 0.3 a5t Best ﬁt} -
Linear model: y=a+bx+A 2_2: |
Determine parameters, a, b, and ~ 2

offset A by minimizing chi- 1

Systematic
error bar

squared (standard least-squares 05
analysis) % a 5 ; s
Result: A=0
G=0.484 o, =0326

0.523 o0, =0.044

1 —0.338
R =
{—0.338 1 }

Same parameters, but o, much
larger 81



Linear fit — systematic uncertainty

 Show uncertainties in inferred ) Fit 0,,,, = 020; 0, , =030
models |

» colored lines are model 3
realizations drawn from parameter 22
uncertainty pdf | e |

. Systematic

» these appear plausible, (= = error bar

considering additional systematic S

uncertainty, o, =0.3 0 1 A 4 5
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Role of simulated data

« Simulated data are crucially important for testing algorithms
» treat simulated data as is actual measurements
» can compare algorithmic results with known true values

» can test how well algorithm copes with specific data
deficiencies

» aid 1in debugging computer code, underlying ideas
* Important to mimic real data

» characteristics of measurement fluctuations (noise)

» limited resolution (blur) of signal

» systematic effects
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Linear fit to many data

Linear model: y=a+bx

Simulate 1000 data points, o, =0.2
exact values: a=05 b5=0.5

Determine parameters by
minimizing chi-squared

Result: x... =972.0 p=0.717
4=0.496 o, =0.0126
bh=0.499 o, =0.0044

1 —0.866
R =
—0.866 1

Standard errors are reduced by
factor of 10 through data averaging

Is this reasonable?

Fit: o, =0.20;6__=0.00
ata sys

| 1000 data points

Best fit |
i
l ] it II'

il l“'. I-: ;Z il '1[ I
ok -!j,I,: l_..!! || i ]| ‘

12 MC samples ¥
| ] |"i.i-!5

LA
' il A 111
f AR . ||_ ] ]| ‘




Linear fit to many data - systematic uncertainty

* Introduce systematic offset A
with uncertainty o, =0.3

* Linear model: y=a+bx+A

« Determine parameters, a, b,
and offset A by minimizing
chi-squared (standard least-
squares analysis)

 Result: A=0

4=0.496 o, =0.300
0.499 o, =0.0044

1 —0.036
R =
{—0.036 1 }

« Same fit, but o, dominated by o,
* Uncertainty in slope still small 85



Outliers

Measurements that differ from
true value by more than expected

Often caused by mistakes

» every experimenter knows
mistakes happen!

Can accommodate in likelthood
function by including long tail

Simple model: likelihood i1s
mixture of two Gaussians
(1-4) exp{— (x—nzfz)z }Jrﬂexp{— (x—mz)z}
20 2yo
Long tail includes possibility of
large deviation from true value

Outlier-tolerant analysis generally
called “robust estimation”

—

Probability Density

0

o
o0

o
(o))

o
i

O
N

Mixture two Gaussians: , y=0.010 10

5 4 3 2 1 0 1
XIG1

> 3 4 5
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[Linear fit — outliers

Outliers pose significant problem
for min X? algorithm

Create outlier by artificially

perturbing third point

Min-X2 results in large shift of fitted

line: y’. =856 p=10"
G=0987 o,=0.180

N

b=0.402 &, =0.062
Two-Gaussian likelihood handles
outlier very well

» fit 1s nearly the same as before
a=0494 o,=0.140

b=0.520 o, =0.043

Fit: S 020, =0.0
ata 5Y5

Gaussian - best fit

2 Gaussians - best fit




239Pu cross sections — Gaussian likelihood

With Gaussian likelihood
(min X2) yields

. X2=144.7,p=0.009% for 15 DOF
2.441 +0.013

» 1mplausibly small uncertainty
given three smallest uncerts.

=~ (0.027

Each datum reduces the standard
error of result, even 1f 1t does not
agree with 1t!

» consequence of Gaussian likelthood

n
-2 -2
o= E o,
i=1

» 1ndependent of where data lie!
which doesn’t make sense

Probability, Data Set

N N W W
o (=

239Pu, 14.7 Mev

o

=
=
—
w
(i3]
=

ot on
TomE
=

(e T E Sy [ur]
0 i oo
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o
-

=

[ula]
=
=]

b R T O et
W I s
G mma D

o
S S
=
]

Fission Cross Section (b)

2.6

2.8 3

Gaussian: 2.441 + 0.013
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239Pu cross sections — outlier-tolerant likelihood

« Use just latest five measurements

e Compare results from alternative
likelthoods:

» Gaussian: 2.430 +0.015
X2=13.88, p = 0.8% for 4 DOF

» two Gaussians: 2.427 +0.018
 For two-Gaussian likelihood:

» result not pulled as hard by outlier

» © 1S not as small, seemingly taking
into account discrepant nature of
data

239Pu, 14.7 Mev

—- —_ ) )
o o (o) O

Probability, Data Set

n

=

F

I R—
) —

—

! Gaussian:

2.430 + 0.015

|

3]

272

24 26 28

Fission Cross Section (b)

3

- — [y .
o n o n

Probability, Data Set

n

=

| —

A P—
I —

I Two Gaussians:
2427 £ 0.018

o

g

2.2

24 26 28

Fission Cross Section (b)
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239Pu cross sections — outlier-tolerant likelihood

. 239Pu, 14.7/ M
« Use just latest five measurements 35 o
. 30l Gaussian: |
» To exaggerate outlier problem, set 3 2.489 £0.012
25} 1
all standard errors = 0.027 8 ol 2 |
« Compare results from alternative £ 15 Vv :
. . ® |
likelihoods: s 10
5.
» Gaussian: 2.489 +0.012 . . .\M .
9) _14 2 2.2 2.4 2.6 2.8 3
Xe= 699, P = 2x10'* for 4 DOF Fission Cross Section (b)
» two Gaussians: 2.430 £ 0.022 3 Twe Gauseians.
30t
LAl - 2.430 + 0.022
» For two-Gaussian likelihood: 8 5ol :
Q]
» result 1s close to cluster of three 820t 210 L
points; outliers have little effect 517 5
: : , S 10t
» uncertainty 1is plausible | \ /\
0

22 24 26 28 3
Fission Cross Section (b)
90
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239Pu cross sections — outlier-tolerant likelihood

» To exaggerate outlier problem, set
all standard errors = 0.027, using
just latest five measurements

* Plot shows pdfs on log scale, which
shows what 1s going on with two-
Gaussian likelihood

» long tail of likelihood function for
outlier does not influence peak
shape near cluster of three
measurements; for single Gaussian,
it would make it narrower

» long tails of likelithood functions
from cluster allows outlier to
produce a small secondary peak;
has little effect on posterior mean

Two Gaussians

O8]
o O

—_—

/\ -
26 28

3

N N

it

-
n

Frobability, Data Set
=

&)

\

2 22 24 2 |
Fission Cross Section (b)

Probability, Data Set

2 22 24 26 28 3
Fission Cross Section (b)
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Hierarchical model — scale uncertainties

When data disagree a lot, we may question
whether quoted standard errors are correct

Scale all o by factors: o =s0,
Then marginalize over s
pald)= p(a,s|d)ds
plald)= [ p(d|a,s)p(a, s)ds

pla|d)o [ p(d|a,s) p(a) p(s)ds
For prior p(s), either use
noninformative (flat in log(s)) or
one like shown 1n plot

Let the data decide!

This 1s called hierarchical model
because properties of one pdf, the
likelihood, are specified by another pdf

Probability Density
o o
o o
G

O
O
N

o
o

1 > 3 4 5
Scale factor s
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239Pu cross sections — scale uncertainties

Accommodate large dispersion in
data by scaling all ¢ by factor s:
o =s0,; 0, =quoted stand. err.

For likelihood, use Gaussian with

scaled o |
p(d | x,5)o —exp[ % ]
S 25’

For prior p(s), use non-informative
prior for scaling parameter p(s)oc1/s
Bottom plot shows joint posterior pdf

Marginalize over s:
p(x|d) e | p(d | x,5) p(x) p(s)ds
to get posterior for x (top plot)

Result 1s: 2.441 + 0.024;
very plausible uncertainty

Scale factor

Probability, Data Set
N
=

S
o

239Pu, 14.7 Mev

)
o

—
O

]

2

O

7 24 26 20
Fission Cross Section (b)

joint distribution: p(x, s)

24 245 25
Fission Cross Section (b)
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239Pu cross sections — scale uncertainties

To obtain the posterior for the scaling 15
parameter s, marginalize joint posterior
OVer Xx: i
p(sld)oc [ p(d]x,5) p(x) pls)dx 3
Plot (top) shows result A
» maximum at about 1.7, ~ |-Z£ :
for original fit DOF 0 chle factor. s T
» however, this result is different from 3

joint distribution: p(x, s)

just scaling ¢ to make X2 per DOF unity 2|

» 1t allows for a distribution in s, taking
into account that s 1s uncertain

Scale factor

This model can be extended to allow
each o, to be scaled separately

: P35 24 245 25
» prior on s; could reflect our confidence Fission Cross Section (b)

in quoted o, for each experiment 2



Summary

In this tutorial:

* Types of uncertainties in measurements — random and systematic

o Uniform prior = likelihood analysis = X? analysis
« Used straight line fit to illustrate various Bayesian concepts and
models
» posterior sampling; predictive distribution and model checking
» systematic uncertainties
» averaging over many measurements

» outliers

e Studied Pu cross-section data at 14.7 MeV
» outlier-tolerant likelithood

» scaling of quoted standard errors using a distribution of scales,

which is determined by input data
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Tutorial 4
Bayesian calculations
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Forward and inverse probability

Forward probability — MC

Experimental
observation
space

Parameter
space

Inverse probability - MCMC

« Forward probability - determine uncertainties in observables
resulting from model parameter uncertainties; use Monte Carlo

* Inverse probability - infer model parameter uncertainties from
uncertainties in observables; use Markov chain Monte Carlo
97



MCMC - problem statement

Parameter space of n dimensions represented by vector x

Given an “arbitrary’ target probability density function (pdf), g(x),
draw a set of samples {x, } from it

Only requirement typically 1s that, given x, one be able to evaluate
Cq(x), where C 1s an unknown constant, that 1s, g(x) need not be
normalized

Although focus here 1s on continuous variables, MCMC applies to
discrete variables as well

It all started with seminal paper:

» N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, “Equations of state calculations by fast computing
machine,” J. Chem. Phys. 21, pp. 1087-1091 (1953)

« MANIAC: 5 KB RAM, 100 KHz, 1 KHz multiply, 50 KB disc 08



Uses of MCMC

Permits evaluation of the expectation values of functions of x, e.g.,
(fx) =] Ax) q(x) dx = (1/K) Z, fix,)
» typical use is to calculate mean (x) and variance {(x - (x))?)
Useful for evaluating integrals, such as the partition function for
properly normalizing the pdf
Dynamic display of sequences provides visualization of
uncertainties in model and range of model variations

Automatic marginalization; when considering any subset of
parameters of an MCMC sequence, the remaining parameters are
marginalized over (integrated out)
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Markov Chain Monte Carlo

Generates sequence of random samples from an
arbitrary probability density function

* Metropolis algorithm:

>

draw trial step from
symmetric pdf, 1.e.,

HA X) = t(-A x)

accept or reject trial step

simple and generally
applicable

relies only on calculation of
target pdf for any x

Probability(x,, X,) = q(x)
accepted step
* rejected step
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Metropolis algorithm

* Target pdfis g(x)
 Select initial parameter vector X,

* [terate as follows: at iteration number k
(1) create new trial position x* = x, + Ax,
where Ax 1s randomly chosen from # Ax)
(2) calculate ratio » = g(x*)/q(x,)
(3) accept trial position, 1.e. set X, ; = X*
if » > 1 or with probability 7, if » < 1
otherwise stay put, x,., =X,

* Requires only computation of cg(x), where c 1s a constant
* Trail distribution must be symmetric: #A x) = #(-A Xx)
* Maintains detailed balance: p(x,— X,.;) = p(X 11— Xi)

» “Markov chain” since x,,, depends probabilistically
only on x;
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Choice of trial distribution

* Algorithm places loose requirements on trial distribution #()
» stationary; independent of position

* Often used functions include
» n-D Gaussian, 1sotropic and uncorrelated

» n-D Cauchy, i1sotropic and uncorrelated
* Choose width to “optimize” MCMC efficiency

» rule of thumb: aim for acceptance fraction of about 25%
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Choice of trial distribution — experiments

e Target distribution g(x) is # dimensional Gaussian
» uncorrelated, univariate (isotropic with unit variance)

» most generic case

* Tnal distribution #(Ax) 1s n dimensional Gaussian

» uncorrelated, equivariate; various widths

—_——-~

Ve N\
target , N
/7 \
V4 \
/
/
P /
/7 1
/ I
/ I
I I
| 1
\ \
\\ \
/
trial " ~-_--- \ y
\ /
\ /7
S _ 7103

-~y -
e o -



MCMC sequences for 2D Gaussian

Results of running Metropolis g Z M . 025
with ratios of width of trial pdf : Oﬁ AN \u “h,.xl Ww M ! qwr
to target pdf of 0.25, 1, and 4 . ol '.l} o
When trial pdf iS muCh Smaller j14[3;.][} 1200 14I00 16I00 18IUU 2600
than target pdf, movement . eauence fumber |
across target pdf 1s slow 37 2:— ' M “\ o L
When trial width same as target, l”Wr,, U,‘ WH w J} mulyﬁ \INMM \WW MWL!H
samples seem to better sample " -

target pdf 1000 1200 1400 16I00 1 8I00 2[;00

Sequence Number

When trial width much larger g 4 |
than target, trials stay put for | I J H N
long periods, but jumps are g ZM a WL ﬁhﬂhu;i NNH / rle
large T |

1000 1200 1400 1600 1800 2000
Sequence Number
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MCMC sequences for 2D Gaussian

Results of running Metropolis with
ratios of width of trial pdf to target pdf
of 0.25, 1, and 4

Display accumulated 2D distribution
for 1000 trials

Viewed this way, it 1s difficult to see
difference between top two 1mages

| 0.25

\fariable 2

LLI\JQI\JL

-2 0 2 4
Variable 1

Variable 2

L-Lro;vruh

When trial pdf much larger than target,
fewer splats, but further apart

-2 0 2 4
Variable 1

Variable 2

L-Lm;am-h

-2 0 2 4
Variable 1
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MCMC - autocorrelation and efficiency

In MCMC sequence, subsequent parameter values are usually
correlated

Degree of correlation quantified by autocorrelation function:

Lo
p(l) = QZy(l)y(l —1)
i=1
» where y(x) 1s the sequence and / 1s lag

For Markov chain, expect exponential

o) =exp[ 4]
Sampling efficiency i1s
- 1

n= [1+2ZZ:1:,0(Z)]_ Ry

In other words, 7 iterates required to achieve one statistically

independent sample
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Autocorrelation for 2D Gaussian

* Plot confirms that the 10T
autocorrelation drops P os :I';-L;;_ o
slowly when the trial o8\ Tl g0s
width 1s much smaller AN el :
than the target width; L\, T
MCMC efficiency is poor AN ]
* Sampling efficiency is °0 -
77 _ 1 -D-EII; lllll 1IEI IIIIIII 20 | Lag ISII] IIIIIII 0 50
I+24 Normalized autocovariance for
* Best efﬁciency occurs various widths of trial pdf
when tl‘la(lfabglg)same S1Z¢€ relative to target: 0.25, 1, and 4
as target (1or
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Efficiency as function of width of trial pdf

for univariate, uncorrelated
Gaussians, with 1 to 64
dimensions

efficiency as function of
width of trial distributions

boxes are predictions of
optimal efficiency from

diffusion theory

[A. Gelman, et al., 1996]

efficiency drops
reciprocally with number
of dimensions

Efficiency (%)

100.0¢ T T T

10.0- )
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Efficiency as function of acceptance fraction

For univariate Gaussians, 100.0'
with 1 to 64 dimensions | I
| A
Efficiency as fur.lctmn of < 100 ffﬁ; A
acceptance fraction > : TN “a;u#'
: : : c Pt T
Best efficiency 1s achieved E #;H,:‘f;ﬁ-_________ﬁ N\
when about 25% of trials are m 10 oo ;4 ~
e 0w N
accepted for moderate number " o %{
of dimensions IR |
. _y . 1 10 100
Optimal statistical efficiency: Acceptance fraction (%)
N~ 0.3/n
» for uncorrelated, equivariate Gaussian
» generally decreases correlation and
variable variance
» consistent with diffusion theory 09

derivation [A. Gelman, et al., 1996]



Further considerations

* When target distribution g(x) not

1sotropic q(x)
» difficult to accommodate with < TN >
isotropic #(Ax) L X
» each parameter can have different T H(AX)

efficiency

- desirable to vary width of different (-~ D

#(x) to approximately match g(x)

\55 —’
—————__—

» recovers efficiency of univariate case

* When ¢g(x) has correlations
» #(x) should match shape of g(x)
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MCMC - Issues

Identification of convergence to target pdf
» 1s sequence in thermodynamic equilibrium with target pdf?
» validity of estimated properties of parameters (covariance)
Burn in

» at beginning of sequence, may need to run MCMC for awhile to
achieve convergence to target pdf

Use of multiple sequences

» different starting values can help confirm convergence

» natural choice when using computers with multiple CPUs
Accuracy of estimated properties of parameters

» related to efficiency, described above
Optimization of efficiency of MCMC
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MCMC - convergence and burn 1n

« Example: sequence obtained for 2 i
D unit-variance Gaussian pdf X

» Metropolis algorithm > ;:

» starting point is (4, 4) £ 4|

» trial pdfis Gaussian, ¢ = 0.2 A

» 1000 steps g

543210123465
» avg acceptance = (.87 Index 1

 (Observe:

» large number of steps required
before sequence has converged to
core region (burn 1n)

» hard to tell whether sequence has
converged, either from 2D plot or . . . .
by looking at individual coordinate 0 Sepnumber O
(convergence)

Index 2
EONDSO=~NWB®O

1
n
O
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Annealing

 Introduction of fictitious temperature

» define functional ¢(x) as minus-logarithm of target probability
p(x) = - log(g(x))
» scale ¢ by an inverse “temperature” to form new pdf

q'(x, T) = exp[- o(x)/ T}
» q'(x, T) 1s flatter than g(x) for 7> 1 (called annealing)

» Uses of annealing (also called tempering)
» allows MCMC to move between multiple peaks 1n g(x)

» simulated-annealing optimization algorithm (takes lim 7"— 0)
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Annealing helps handle multiple peaks

Scale minus-log-prob: ¢g'(x, T) = exp[- ¢(x)/T], T = temperature
Example: target distribution 1s three narrow, well separated peaks

For original distribution (7= 1), an MCMC run of 10000 steps rarely
moves between peaks

At temperature 7= 100 (right), MCMC moves easily between peaks and
through surrounding regions

10

=10

from M-D Wu and W. J. Fitzgerald, Maximum Entropy and Bayesian Methods (1996)



Other MCMC algorithms

Gibbs

» vary only one component of x at a time

» draw new value of x; from conditional g(x]|x;x,...x; ;x; ;... )
Metropolis-Hastings

» allows use of nonsymmetric trial functions, #(Ax; x, )

» uses acceptance criterion » = [#(AX; X, ) q(x* )] / [t(-Ax; x*) q(X, )]
Langevin technique

» variation of Metropolis-Hastings approach

» uses gradient™ of minus-log-prob to shift trial function towards
regions of higher probability

Hamiltonian hybrid algorithm
» based on particle dynamics; requires gradient® of minus-log-prob

» provides potentially higher efficiency for large number of variables

Many others 115
* adjoint differentiation affords efficient gradient calculation



Gibbs algorithm

Vary only one component of x

at a time

Draw new value of x; from
conditional pdf
qOxi| X7 X500 Xy X g )
» algorithm typically used only

when draws from g are
relatively easy to do

Cycle through all components

Probability(x;, x,)
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Hamiltonian hybrid algorithm

e Hamiltonian hybrid algorithm

|

|

|

called hybrid because it alternates Gibbs & Metropolis steps
associate with each parameter x; a momentum p,
define a Hamiltonian
H=o(x)+Xp2l2m) ; where ¢ =-log (g (x))
new pdf:
q'(x, p) = exp(- H(x, p)) = q(x) exp(-Z p;/(2 m;))

can easily move long distances in (x, p) space at constant A using
Hamiltonian dynamics, so Metropolis step 1s very efficient

uses gradient™ of ¢ (minus-log-prob)
Gi1bbs step 1n constant p 1s easy
efficiency may be better than Metropolis for large dimensions

* adjoint differentiation affords efficient gradient calculation
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Hamiltonian algorithm

* (Gibbs step: randomly sample momentum distribution

« Follow trajectory of constant /7 using leapfrog algorithm:

T T 0
Pi(f+5) =p;(t —Ef
i 1X(?)
T T
x(t+r)=x(+0)+—p(t+2)
m, 2
T. TOQ@
p:(t+7) =Pi(f+5)—58
Yilx(t+7)

where 7 1s leapfrog time step.
* Repeat leapfrog a predetermined number of times

* Metropolis step: accept or reject on basis of A at beginning and
end of H trajectory
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Hamiltonian hybrid algorithm

Pi

—

k.

Typical trajectories:
red path - Gibbs sample from momentum distribution
green path - trajectory with constant A, follow by Metropolis

k+1 ¢
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Hamiltonian algorithm

Gi1bbs step - easy because draws are from uncorrelated Gaussian

H trajectories followed by several leapfrog steps permit long
jumps 1n (X, p) space, with little change in H

» specify total time = T ; number of leapfrog steps = 7/t

» randomize T to avoid coherent oscillations

» reverse momenta at end of H trajectory to guarantee that it is
symmetric process (condition for Metropolis step)

Metropolis step - no rejections if H 1s unchanged

Adjoint differentiation efficiently provides gradient
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2D correlated Gaussian distribution

2 e e o :
N g} c
E E 3
£ Of !
e | :
Y =
ot
-2 -1 0 1 2 -2 -1 0 1 2

Parameter 1 Parameter

« 2D Gaussian pdf with high correlation (r =0.95)

* Length of H trajectories randomized
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n-D 1sotropic Gaussian distributions

* Assume that gradient of ¢ are

calculated as quickly as ¢ itself 071 [T e
(e'g°9 uSing adjOint \\

differentiation) Hamiltonian

« MCMC efficiency versus
number dimensions

» Hamiltonian method: drops
little

» Metropolis method: goes as
0.3/n

Efficiency/Function Evaluation

Metropolis

10_5 Lol v el Lol

. . 1 10 100 1000 10004
 Hamiltonian method much log(Dimensian)

more efficient at high
dimensions
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16D correlated Gaussian distribution

4

21

Parameter 2
O

Parameter 1

e 16D Gaussian pdf related to smoothness prior based on
integral of L2 norm of second derivative

» Efficiency/(function evaluation) =
2.2% (Hamiltonian algorithm)
0.11% or 1.6% (Metropolis; without and with covariance
adaptation) 123



Conclusions — Hamiltonian MCMC

« MCMC provides good tool for exploring the Bayesian posterior
and hence for drawing inferences about models and parameters

« Hamiltonian method

>

>

based on Hamiltonian dynamics

efficiency for isotropic Gaussians 1s about 7% per function
evaluation, independent of number of dimensions

caveat — must be able to calculate gradient of minus-log-posterior in
time comparable to the posterior itself (e.g., through adjoint
differentiation)

much better efficiency than Metropolis for large dimensions
more robust to correlations among parameters than Metropolis
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Conclusions — MCMC

MCMC provides good tool for exploring the posterior and hence
for drawing inferences about models and parameters

For valid results, care must be taken to
» verify convergence of the sequence
» exclude early part of sequence, before convergence reached
» be wary of multiple peaks that need to be sampled
For good efficiency with Metropolis alg., care must be taken to

» adjust the size and shape of the trial distribution; rule of thumb is to
aim for 25% trial acceptance for 5 <n <100

A lot of MCMC research 1s going on

Software libraries for MCMC are available for most computer

languages, or as stand-alone applications, €.g., OpenBUGS
(formerly WinBUGS) 125



Ross1 analysis — example of MCMC

Goal: measure flux as function of time, ®(¥), to obtain alpha, a
measure of criticality, versus time

(1) = 1 dO _ d(In®)
O dt dt
Experimental 1ssues

» measurements made using Rossi technique
» signal displayed on oscilloscope, photographed, read
» recorded signal 1s band limited

Analysis complicated by intricate error model for measurements
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The Ross1 technique

* Rossi1 technique -

photograph oscilloscope screen

» horizontal sweep 1s driven
sinusoidally in time

-
F, §
| X
i5 %
f ;
¥ 3

» signal amplitude vertical

* Records rapidly increasing
signal while keeping trace in
middle of CRT, which = |
minimizes oscilloscope g e
nonlinearities s

Amplitude
vV

i Ep N e e e Pt e
g s e K b e Rl P o N A e El
RN St BN S T T R i v g e e

-

ey R e
L e

<

X=Xx,co8(2z f,t+¢,)
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Bayesian analysis of an experiment

* The pdf describing uncertainties in model parameter vector a,
called posterior:

> p(ald) ~ p(d|d*) p(a) (Bayes law)
where d 1s vector of measurements, and
d*(a) 1s measurement vector predicted by model

» p(d|d*) 1s likelihood, probability of measurements d given the
values d* predicted by simulation of experiment

» p(a) 1s prior; summarizes previous knowledge of a

» “best” parameters estimated by
« maximizing posterior (called MAP solution)

* mean of posterior

» uncertainties in a are fully characterized by p(a|d)
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Cubic spline expansion of alpha curve

» Expand «a(¢) in terms of basis

functions:

where

* a,1s the expansion coefficient,

a(t) = Zak

t—tk]

¢ 1s a spline basis function,
t, 1s the position of the kth knot

At 1s the knot spacing

» Use 15 evenly-space knots

» two are outside data interval to handle

» Parameters g, are to be determined

spacing chosen on basis of

limited bandwidth of signal y

end conditions

o
<
a
<

Alpha(tlme)
.o T
0.8 ]
0.6 - f##___.--""f -
Qi
Q0.2
OO0 '

0 1 2 3
Time
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Modeling the Ross1 data

>

a(t) represented as cubic spline

» measurement model predicts data

» can include systematic effects of measurement system

1.0f

Alpha(time)
0 1 2 3
Time

Measurement

x-y data (used in calc.)

Model 3

@

Amplitude, Y
]

—
TrrJ]rTr T

w—

s S

Xg, X amplitude®

y0$ Ot
—-1.5 —

$systematic

1.0-05 0.0 0.5

effects



Reading a Rossi trace

* Technician reads points by centering cross hairs of a reticule on
trace; computer records positions, {x,, y;}

* Points are read with intent to:
» place point at peaks

» achieve otherwise arbitrary placement along curve with even
spacing along trace
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[Likelihood model - uncertainties in Rossi1 data

(X, model’ y,mode\)‘

@y
C e D

exp yexp

» minus-log-likelihood, p(d|a), for measured point (X, Vex,):

Z ? (xexp o xr’nodel )2 (y exp y r’nodel )2
AT—= . + :
2 20 20

x y
where (x .,V ..) is the model point closest to (x

exp’ Y exp)
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Smoothness constraint

Cubic splines tend to oscillate in some applications
Smoothness of a(¢) can be controlled by minimizing

dal
% dt

S(a)=T" j

where T is the time interval; 73 factor removes 7 dependence

Smoothness can be incorporated in Bayesian context by setting
prior on spline coefficients to

- log p(a) = A 5(a(a))

Hyperparameter A can be determined 1n Bayesian approach by
maximizing p(A|d)
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MCMC - alpha uncertainty

« MCMC samples from
posterior

» plot shows several ()
curves consistent with data

» uncertainties in model
visualized as variability
among curves

* Smoothness parameter,
A=04

1.0}

O
oo
L |

o
-

Alpha = d(InY)/dt
(.
n

O
N

O
o

Time
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MCMC — estimation of A

Strength of smoothness prior given

by A

Determine A using Bayes law
p(Ald)=|p(a,2|d)da

« [ p(d|a,2) p(a, A)da
= p(A)| p(d|a, 2) p(a)da

Last integral, called evidence, 1s
estimated as value of integrand at its
peak times its volume

Volume given by determinant of
covariance matrix of a, estimated
using MCMC sequence

At maximum A = 0.4

log(Evidence)

0.10 1.00
Lambda
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MCMC - Alpha

For MCMC sequence with
10° samples, image shows accumulated
MCMC curves 1n alpha domain

Effectively shows PDF for uncertainty
distribution in
alpha, estimated from data

However, does not show correlations
between uncertainties at two different
times, as do individual MCMC samples

Alpha

Time
A =0.4 (best value)
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MCMC - Alpha

Interpreting accumulated alpha curve
as a PDF, one can estimate o(f) in
terms of

» posterior mean

» posterior max. (MAP estimate)
Or characterize uncertainties

» standard deviations

» covariance matrix (correlations)

» credible intervals (envelope)
Plot on right shows

» posterior mean

» posterior mean +/- standard dev.
(one standard dev. envelope)

1.0

Time

A =0.4 (best value)
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Background estimation in spectral data

* Problem: estimate background for PIXE spectrum

« Approach is based on assuming background is smooth and
treating resonances as outlying data

* Fully Bayesian calculation using MCMC to estimate spline
parameters, their knot positions, and number of knots

. or
10° _ “ background
: H data ]
[ | | ¢ knot positions ] -100
10° | e
a | ~200 In(P(EID))
= I N Likelihood
3 .- -~~~ In(volume(c) * P(c))
© 10 b — —- In(volume(&) * P(%))
i -300 ]
[ 1 ; ; ; ! ; ; ; ; ! ; ; ; ;
10" E [
E a I
i 05 -
I & i
10° o . [
0 0.1 0.2 0.3 0.4 0.5 05 10 15 20
Energy [arb. units] Number of Spline Knots E

138
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Summary

In this tutorial:

« MCMC provides random draws from calculational pdf
e Metropolis algorithm

» choosing the trial function

» diagnositics
e Hamiltonian (hybrid) algorithm

» potentially more efficient than Metropolis,
provided Vo can be calculated as quickly as ¢

« Examples:

» analysis of Rossi traces; complex likelihood function

 possibility of elaborating on model to include systematic effects

» background estimation using splines and treating signal as outliers

139



