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Overview
• Quasi-Monte Carlo (QMC) – purpose 
• Digital halftoning – purpose and constraints
• New approaches to generating sample sets with uniform spacing

► halftoning algorithm provides good point sets for QMC
► leads to Repulsive Particle Model (RPM) and Centroidal Voronoi 

Tessellation (CVT)

• Point sets for sampling distributions in high dimensions
► predictive sampling – estimate prediction mean and uncertainty

• Neutron cross-section evaluation
► combine directly measured neutron cross sections for fission of 239Pu 

with a high-accuracy criticality measurement
► Bayesian update
► objective – to characterize prediction uncertainty using 30 samples for 30 

input parameters 
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Context – big physics simulation codes
• Computer simulation codes

► many input parameters, many output variables
► very expensive to run; days to weeks on super computers

• Important to assess uncertainties in predictions -
thus need to 
► compare codes to experimental data; make inferences
► use advanced methods to estimate sensitivity of simulation outputs to inputs

• Latin square (hypercube), stratified sampling, quasi-Monte Carlo, CVT

• Examples of complex simulations
► nuclear-reactor design 
► ocean and atmosphere modeling
► aircraft design; space shuttle design
► casting of metals

calculations can take 3 months!
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Our application
• Focus on neutron cross sections
• Aim to improve our knowledge of 

the cross sections by incorporating a 
high-precision criticality 
measurement; integral constraint

• Criticality experiment simulated with 
a discrete-ordinate code, based on 30 
energy bins

• Ultimate goal is to use the improved 
cross sections to predict other similar 
physical situations

• Need to characterize prediction 
uncertainties; 30-D parameter space

Criticality experiment

Neutron fission cross section
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Monte Carlo integration techniques
• Generic purpose of Monte Carlo 

► estimate integral of a function over a specified region R in m dimensions, 
based on evaluations at n sample points

• Constraints
► integrand not available in analytic form, but calculable
► function evaluations may be expensive, so minimize number 

• Algorithmic approaches – want best accuracy with fixed number 
of function evaluations n
► simple quadrature (Riemann sum) – good for few dimensions; rms err ~ n-1

► Monte Carlo – useful for many dimensions; rms err ~ n-1/2

► quasi-Monte Carlo – reduce number of evaluations; rms err ~ n-1
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Quasi-Monte Carlo
• Purpose

► estimate integral of a function over a specified domain
in d dimensions

► obtain better rate of convergence of integral estimation than occurs in 
classic Monte Carlo 

• Constraints
► integrand function not available analytically, but calculable
► function known (or assumed) to be reasonably well behaved, e.g. smooth 

• Standard QMC approaches use low-discrepancy sequences; 
product space (Halton, Sobel, Faure, Hammersley, …)
► most studies usually involve many samples in a few dimensions

• Propose here new ways of generating sample point sets
► our focus is on a few samples in high dimensions
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Point set examples (2-D)
• Scatter plots of different kinds of point sets (400 points)
• Halton sequence reduces clustering that occurs in random seqs.
• If quasi-MC sequences have better integration properties than 

random,  . . .  is halftone pattern even better?

Random
(independent)

Quasi-Random 
(Halton sequence)

Halftone
(DBS sky)
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Digital halftoning techniques
• Purpose

► render a gray-scale image by placing black dots on white background
► make halftone rendering look like original gray-scale image
► related to characteristics of human observer
► important for laser printers 

• Constraints
► resolution – size and closeness of dots, number of dots
► speed of rendering

• Various algorithmic approaches
► error diffusion, look-up tables, blue-noise, …
► concentrate here on Direct Binary Search (Allebach et al.)
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Direct Binary Search example
• DBS produces halftone images 

with excellent visual quality
• Sky region has uniform density; 

quasi-random pattern 
• Computationally intensive

Li and Allebach, IEEE Trans. 
Image Proc. 9, 1593-1603  
(2000)
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Direct Binary Search (DBS) algorithm
• Consider digital halftone image to be composed of black or 

white pixels
• Cost function is based on perception of two images

► where d is the dot image, g is the gray-scale image to be rendered, 
* represents convolution, and h is the image of the blur function of the 
human eye, for example,

• To minimize φ
► start with a collection of dots with average local density ~ g
► iterate sequentially through all image pixels;
► for each pixel, swap value with neighborhood pixels, or toggle its value to 

reduce φ

• Edge effects must be dealt with
► in above, dot image surrounded by field of uniform density

2( )ϕ = ∗ −h d g

3/ 2( )−2 2w  + r
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Minimum Visual Discrepancy (MVD) algorithm
Inspired by Direct Binary Search halftoning algorithm:

• Start with an initial set of points
• Goal is to create uniformly distributed set of points
• Cost function is variance in blurred point image

► where d is the point (dot) image, h is the blur function of the human eye, 
and * represents convolution

• Minimize ψ by
► starting with some point set (random, stratified, Halton,…)
► visiting each point in random order;
► moving each point in 8 directions, and accept move that lowers ψ the 

most

var( )ψ = ∗h d
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Minimum Visual Discrepancy (MVD) algorithm
• MVD result; start with 95 points from Halton sequence
• MVD objective is to minimize variance in blurred image
• Effect is to force points to be evenly distributed, or as far apart 

from each other as possible
• Might expect global minimum is a regular pattern

MVD, 95 Blurred image
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MVD results
• In each optimization, final pattern depends on initial point set

► algorithm seeks local minimum, not global (as does DBS)

• Patterns somewhat resemble regular hexagonal array
► similar to lattice structure in crystals or glass
► however, lack long-range (coarse scale) order
► best to start with point set with good long-range uniformity

MVD, 1000MVD, 400MVD, 95
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Point set examples
• Compare various kinds of point sets (400 points)

► varying degrees of randomness and uniformity

• As the points become more uniformly distributed, the more 
accurate are the values of estimated integrals

• Example: 

MVD, 0.14%Halton, 0.5%Random, 2.5% Grid, 0.09%

More Uniform, Higher Accuracy

RMS relative accuracies of integral of ( )0 0func2= exp 2 ; 0 1i i i
i

x x x− − < <∏
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Integration test problem

• RMS error for integral of 
► integrate over xi

0 by using MC, drawing xi
0 from uniform distribution

► from worst to best: random, Halton,  MVD, square grid
► lines show N -1/2 (expected for MC) and N -1 (expected for QMC) 

( )0 0func2= exp 2 ; 0 1i i i
i

x x x− − < <∏

N-1/2

N-1
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Marginals for MVD points
• Sometimes desirable for 

projections of high dimensional 
point sets to sample each 
parameter uniformly 

• Latin hypercube sampling 
designed to achieve this property 
(for specified number of points)

• Plot shows histogram of 95 
MVD samples along x-axis, i.e., 
marginalized over y direction

• MVD points have relatively 
uniform marginal distributions 

MVD, 95 points

marginal
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Another use of MVD: visualization of flow field
• Fluid flow often visualized as field of vectors
• Location of vector bases may be chosen as

► square grid (typical) - regular pattern produces visual artifacts
► random points - fewer artifacts, but nonuniform placement
► quasi-random - fewest artifacts and uniform placement

Random pointsSquare grid
Quasi-random (MVD) 

point set
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Repulsive particle model
• Model points as set of interacting (repulsive) particles
• Cost function is the potential

► where V is a particle-particle interaction potential and
U is a particle-boundary potential 

► particles are repelled by each other and from boundary

• Minimize ψ by moving particles by small steps 
• This model is analytically equivalent to Minimum Visual 

Discrepancy (V and U directly related to blur function h)
► related to connection between a field and direct interactions between 

particles

• Suitable for generating point sets in high dimensions

, 1

( , ) ( )i j i
i j i i

x x xψ
≥ +

= +∑ ∑V U
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Repulsive particle model
• Equivalent to Minimum Visual Discrepancy algorithm
• Example of repulsive-particle results

► resulting point pattern is visually indistinguishable from MVD pattern 

MVDRepulsive Particle Model

1000 points



July 2006 CEA - Bruyères-le-Châtel 21

Voronoi analysis of point set
• Voronoi diagram

► partitions domain into polygons
► points in ith polygon are closest 

to ith generating point, xi

► boundaries shown are obtained by 
geometrical construction

• Monte Carlo technique
► randomly throw large number of 

points zk into region
► compute distance of each zk to all 

generating points {xi}
► zk belongs to Voronoi region of closest xj

► can compute Ai , radial moments, identify 
neighbors, … 

• Readily extensible to high dimensions

Voronoi analysis: 
10 random points

Geometric construction

Monte Carlo
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Voronoi analysis can improve classic MC
• Standard MC formula

• Instead, use weighted average

► where Vi is the volume of Voronoi 
region for ith point; Riemann integr.

• Accuracy of integral estimate 
dramatically improved in 2D:
► factor of 6.3 for N = 100 (func2)
► factor of > 20 for N = 1000 (func2) 

• Suitable for adaptive sampling
• Less useful in high dimensions (?)

Random, 100
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Centroidal Voronoi Tessellation
• Plot shows 13 random points (·) and the 

centroids of their Voronoi regions (×)
• A point set is called a Centroidal Voronoi 

Tessellation (CVT) when the generating 
points z j coincide with the centroids their 
Voronoi regions; a CVT minimizes

• Algorithm (McQueen)
► start with arbitrary set of generating points
► perform Voronoi analysis using MC algorithm 
► move each generating point to its Voronoi centroid
► iterate lasts two steps until convergence 

• Final CVT points uniformly distributed

Final CVT point set
∑ ∫ −

j

j

j

xxz d
2

V

Start with random points



July 2006 CEA - Bruyères-le-Châtel 24

Visual comparison of methods
• Preceding three algorithms provide uniformly-spaced points, 

have essentially equivalent patterns, and are useful for QMC
► Minimum Visual Discrepancy (MVD) - halftoning
► Repulsive Particle Model (RPM) – physics model
► Centroidal Voronoi Tessellation (CVT) - math

• For high dimensions: both CVT and RPM may be useful, RPM 
likely most efficient

MVD, 95 RPM, 100 CVT, 100
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CVT for multi-variate normal distribution
• CVT algorithm works for an arbitrary 

density function, e.g., a normal 
distribution

• In above MC algorithm for Voronoi 
analysis, simply draw random 
numbers from desired distribution

• Plots show starting random point set 
and final CVT set

• Radii of points are rescaled to achieve 
desired average variance along axes  

Random, 100

CVT, 100
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Recall context
• Our interest is in characterizing the uncertainty in a 

simulation output, based on uncertainties in the inputs

• But, the high cost of running the simulation limits how 
many samples can be drawn from a parameter 
distribution to obtain a predictive distribution

• We are often in a situation where the number of points is 
comparable to number of parameters  (n ≈ d ) 

• Our goal is to draw a modest number of points from a 
high-dimensional normal distribution

• Let’s explore some of the characteristics of the problem 
by starting with the example of 2 sample points in 2D

Simulationx y
Inputs Outputs
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CVT: 2 points in 2 dimensions
• Bi-variate normal distribution is 

rotationally symmetric
• Symmetry of situation means that the 

CVT points must be symmetric about 
origin; at the same radius

• This pattern is unique, 
up to a random rotation

• Both x1 and x2 values sampled (with 
near certainty), but there is a 
subspace, orthogonal to x1-x2 line, 
whose dependence is not sampled

• Generalizing, the d-D space is under-
sampled when n < d + 1

CVT, 2
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CVT: 30 points in 30 dimensions
• 30 dimensional normal distribution
• Projected onto 2D plane, CVT result 

doesn’t look much different than 
random sample set

• However, CVT points are uniformly 
separated in d-D, while random 
points are not

CVT, 30Point separation histogram 

Random, 30

All points are 
nearest neighbors!

random

CVT
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CVT radial distribution: 30 points in 30D
• As with 2 points in 2D, all 30 

CVT points in 30D are at the 
same radius
► lie on the surface of a hypersphere

• As seen in last slide, the inter-
point distances for CVT are 
essentially identical
► regular point pattern (unique?)

• Rotation is only degree of 
freedom between different 
realizations of CVT

• One can generate new CVT 
patterns by randomly rotating an 
existing one

n = 30; d = 30

random

CVT
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Covariance analysis of point set
• Let xj be vector for jth point; 

point set is represented by matrix 

• Covariance of point set along the axes 
is XXT

• Eigenanalysis of  XXT yields the 
covariance spectrum
► the ith eigenvalue is the variance of the 

points projected onto the ith eigenvector

• Conclude that spectrum for CVT 
point set is much more uniform than 
for random set, which is quite 
variable (the Wishart distribution)

• Last eigenvalue is zero; rank = 29

n = 30; d = 30
1 2 3 n T( ; ; ; )=X x x x x

CVT

random
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Linear response model 
• Assume outputs of a simulation are 

linearly related to perturbations in the 
inputs,
where Sy is sensitivity matrix ∂y/∂x

• The covariance in the output y is

► when output y is a scalar, 
the covariance Cy is a scalar (variance), 
and Sy is a vector

• If linear model is sufficient and one knows 
the sensitivity matrix, then predictive 
distribution is easily characterized

• However, for large simulations, the 
sensitivity matrix is often unknown

yxyy SCSC T=

Tyδ δ= yS x Simulationx y
Inputs Outputs
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Test single point set using random sensitivities 
• Assume linear model, 

where Sy is sensitivity matrix ∂y/∂x
• Test predictive response of a single 

sample set for an ensemble of random 
sensitivity vectors Sy :
► Sy= Nd(0,1); mean(Sy) = 0 , var(Sy) = 1
► assume input x distribution is 

uncorrelated, unit-variance d–dimen.
normal distribution,  Nd(0,1); Cx = 1

► then expect:  mean(y) = 0 , var(y) = 1

• Plots show CVT (blue) predicts mean 
and standard deviation of predictive 
distribution more accurately than 
random Monte Carlo (red)

Tyδ δ= yS x n = 30; d = 30

CVT

random

CVT

random
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Neutron cross sections
• Plot shows 

► measured fission cross sections for 
neutrons on 239Pu; red data points

► inferred cross sections; blue line
► weighted average in 30 energy 

bins (groups); green histogram

• PARITSN code simulates 
neutron transport based on 
multigroup, discrete-ordinates 
method
► uses 30 energy bins
► calculates criticality for specified 

configuration of fissile-material
► establish dependence of criticality 

experiment to cross sections

239Pu cross sections
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Neutron cross sections - uncertainties
• Analysis of measured cross 

sections yields a set of 
evaluated 239Pu cross sections

• Uncertainties in evaluated cross 
sections are ~ 1.4-2.4 %

• Covariance matrix important
• Strong positive correlations 

caused by normalization 
uncertainties in each experiment

standard error in cross sections

correlation matrix
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JEZEBEL – criticality experiment
• JEZEBEL experiment (1950-60)

► fissile material 239Pu
► measure neutron multiplication as 

function of separation of two 
hemispheres of material

► summarize criticality with neutron 
multiplication factor, 
keff = 0.9980 ± 0.0019
for a specific geometry

► very accurate measurement

• Our goal – use highly accurate 
JEZEBEL measurement to 
improve our knowledge of 239Pu 
cross sections

JEZEBEL set up
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JEZEBEL – sensitivity analysis
• PARTISN code relates keff to 

neutron cross sections
• Sensitivity of keff to cross sections 

found by perturbing cross section 
in each energy bin by 1% and 
observing increase in keff

• Observe that 1% increase in all 
cross sections results in 1% 
increase in keff , as expected

• In real applications, one often 
does not have this sensitivity 
vector, so Monte Carlo used to 
propagate uncertainties

keff sensitivity to 
cross sections
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Bayesian update
• For data linearly related to the parameters, the Bayesian 

(aka Kalman) update is

► x0 and x1 are parameter vectors before and after update
► C0 and C1 are their covariance matrices
► y and Cy are the measured data vector and its covariance
► y0 is the value of y for x0 

► Sy is the matrix of the sensitivity of y to x; ∂y/∂x

• For the JEZEBEL case, y is a scalar (keff), 
Cy is a scalar (variance), and Sy is a vector

yyy SCSCC 1T1
0

1
1

−−− +=

)( 0
1T

0
1

01
1

1 yySCSxCxC yyy −+= −−−
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Updated cross sections
• Plot shows uncertainties in cross 

sections before and after using 
JEZEBEL measurement

• Modest reduction in uncertainties; 
follows energy dependence of 
sensitivity

• Correlation matrix is significantly 
altered

• Strong negative correlations 
introduced by integral constraint 
of matching JEZEBEL’s keff

• Reduced uncertainty may hold 
only for PARTISN calculations

standard error in cross sections

correlation matrix
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Uncertainty in subsequent simulations 
• Intend to use updated cross sections in new calculations, 

with expectation that integral constraint will reduce uncertainties
• Use Monte Carlo sampling to estimate the uncertainty in new 

predictions; 
question is “use random MC or qMC?”

• Quasi-MC in form of CVT point sets demonstrated by “predicting”
keff measured in JEZEBEL
► for this demo, assume linear model with known sensitivity vector
► under these assumptions, we can calculate exact answer and compare to MC-

style sampling to obtain predictive distribution
• For new physical scenario

► would not have sensitivity vector
► full simulation calculation for each MC sample
► only a modest number of function evaluations can be done
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Rotation matrix in high dimensions
• Given unit vectors a and b, want rotation matrix that map a into b
• Algorithm (thanks to Mike Fitzpatrick)

► for matrix 
► Singular Value Decomposition (SVD) of:

► the bases of the subspace orthogonal to a and b 
are given by singular vectors in U, except for first two

► then, do SVD on outer product matrix
;

► rotation matrix is 
where D is identity matrix, except

• Random rotations – randomly choose directions of a and b
► simple algorithm: randomly draw vector from n-dimensional normal 

distribution and normalize it to unit length

T
1 VUM Σ=

T
1 ) ;( baM =

T
2 BAM =

Td43 );; ;( uuuaA = Td43 );; ;( uuubB =

)det(][ T
22 VUD =dd

T
22 VDUR =

n = 20; d = 6
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Examples of rotations in high dimensions
• Continuous rotations in various dimensions
• Randomly choose directions of rotation
• All points have unit radius (on surface of unit hypersphere)

n = 20; d = 4n = 13; d = 3 n = 30; d = 30
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Sampling from correlated normal distribution 
• Want to draw samples from multi-variate normal distribution with 

known covariance Cx

• Important to include correlations among uncertainties, i.e., off-
diagonal elements

• Algorithm: 
► perform eigenanalysis of covariance matrix of d dimensions

where U is orthognal matrix of eigenvectors and
Λ is the diagonal matrix of eigenvalues

► draw d samples from unit-variance normal distribution, ξi , to form vector ξ
► scale each component of this vector by λi

½

► transform vector into parameter space using the eigenvector matrix
► to summarize, correlated parameters are

TUΛUCx =

ξΛUx 1/2=
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Accuracy of predicted keff and its uncertainty
• Check accuracy of predicted mean and standard deviation based 

on 30 samples; CVT vs. random sample sets
► exact value from known sensitivity and linear model

• Conclude – CVT is more accurate here than random sampling

0.000020.001970.000010.99796CVT-rot
-0.00195-0.99796exact-linear

0.000100.002180.000100.99824random-rot
0.000280.001910.000370.99788random
rms dev.avg.rms dev.avg.

est. std. dev. keffest. mean keff

Results from 1000 sample sets; ‘rot’ indicates single 
sample set randomly rotated to achieve each new one
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Summary
• CVT sampling is useful in predictive sampling for obtaining 

higher accuracy for a limited number of simulations

• CVT and repulsive particle model may be used to generate QMC 
point sets
► particularly useful for modest number of points
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Future work
• Need a way to estimate accuracy of results, a problem common to 

all QMC approaches
• Important to learn to cope with under-sampling (n < d + 1)

► a parameter subspace dependence is not sampled so some aspects of 
uncertainty in input parameters may be missed

► satisfactory solution requires careful thought, taking into account what is 
known about the influence of input parameters on the simulation output

• Sequential generation of point sets
► add additional points, keeping previous points fixed

• Adaptive sampling – improve estimate by importance sampling, 
i.e., increasing density of points in selected regions

• Employ advanced analysis of outputs produced by input samples
► weighted Monte Carlo
► characterize output response as function of inputs
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Covariance analysis of smaller point set
• Eigenanalysis of  XXT yields the 

covariance spectrum
► the ith eigenvalue is the variance of the 

points projected onto the ith eigenvector

• Conclude that spectrum for CVT 
point set is much flatter than for 
random set (Wishart distribution)

• Rank = 9 for both; implies that 21 
components of sensitivity vector are 
not sampled (have zero contribution 
to result)

n = 10; d = 30

CVT

random
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