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Gradient-Based Iterative Image Reconstruction
Scheme for Time-Resolved Optical Tomography

Andreas H. Hielscher,* Alexander D. Klose, and Kenneth M. Hanson

Abstract- Currently available tomographic image reconstruc-
tion schemes for optical tomography (OT) are mostly based on
the limiting assumptions of small perturbations and a priori
knowledge of the optical properties of a reference medium.
Furthermore, these algorithms usually require the inversion of
large, full, ill-conditioned Jacobian matrixes. In this work a
gradient-based iterative image reconstruction (GIIR) method is
presented that promises to overcome current limitations. The
code consists of three major parts: 1) A finite-difference, time-
resolved, diffusion forward model is used to predict detector
readings based on the spatial distribution of optical properties;
2) An objective function that describes the difference between
predicted and measured data; 3) An updating method that uses
the gradient of the objective function in a line minimization
scheme to provide subsequent guesses of the spatial distribution of
the optical properties for the forward model. The reconstruction
of these properties is completed, once a minimum of this objective
function is found. After a presentation of the mathematical
background, two- and three-dimensional reconstruction of simple
heterogeneous media as well as the clinically relevant example of
ventricular bleeding in the brain are discussed. Numerical studies
suggest that intraventricular hemorrhages can be detected using
the GIIR technique, even in the presence of a heterogeneous
background.

Index Terms- Infrared imaging, optical tomography, time-
resolved imaging, tomographic reconstruction, turbid media.

I. INTRODUCTION

IN recent years researchers have invested considerable ef-
forts toward tomographic imaging systems that use near-

infrared (NIR) light [ l]-[5]. In this novel medical imaging
technique, commonly referred to as optical tomography (OT),
one attempts to reconstruct the spatial distribution of optical
properties (absorption and transport scattering coefficients, pa
and &) within the body from measurements of transmitted
near-infrared light intensities. The source is typically a laser
whose light is delivered through optical fibers to several
locations around or inside the organ under investigation. The
technology for making such light-transmission measurements
on human subjects is nowadays readily available [6]-[lo]
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and has been applied in a variety of pilot studies concerned
with monitoring of blood oxygenation [ 1 1 ]-[ 181, hemorrhage
detection [8], [ 19]-[21], functional imaging of brain activities
[22]-[26],  Alzheimer diagnosis [ 121, [27], [28], early diagnosis
of rheumatic disease in joints [29]-[31],  and breast cancer
detection [7], [32]-[37].  However, a major challenge remains
the development of algorithms that efficiently transform these
measurements into accurate cross-section images of various
body parts.

Currently available reconstruction algorithms for OT have
several limitations that need to be overcome before they can
be routinely applied in a clinical setting. In contrast to X rays,
near-infrared photons used in OT do not cross the medium on
a straight line from the source to the detector. The photons
are strongly scattered throughout the tissue. Hence, standard
backprojection methods have only limited success [38]-[41].

A majority of available reconstruction algorithms are based
on perturbation methods [42]-[59].  These algorithms have
limited practical application because of their inherent assump-
tion that the variations in the optical properties within the
medium are small, or that the properties of a reference medium
similar to the unknown medium are available. Furthermore,
they are computationally very expensive since they require
the inversion of large full ill-conditioned Jacobian matrixes.

In this paper we report on a new approach, which we refer
to as gradient-based iterative image reconstruction (GIIR),
that overcomes problems encountered with the perturbation
method. First we will review the basic features of perturbation
schemes to contrast them to the GIIR technique. This review
will be followed by a detailed account of the particular
structure and mathematical background of a time-resolved
image reconstruction algorithm. To illustrate the performance
of that code we will present results for two-dimensional
(2-D) and three-dimensional (3-D) reconstruction of simple
heterogeneous media as well as simulated reconstructions of
a slice through an infant’s brain.

II. BACKGROUND

A. Perturbation iMethods with Full Matrix Inversion

As pointed out in a recent review by At-ridge and Hebden
[60] the majority of the current research in OT is based
on a perturbation approach involving the inversion of large
Jacobian matrixes. (Arridge and Schweiger [42]-[45],  Barbour
et aZ. [46]-[49], Paulsen and Jiang [50]-[54],  Schottland et
aZ. [55], O’Leary et aZ. [56], Pai thankar  et a2. [57], and
Klibanov and Lucas [58], [59]). All these methods have
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in common the assumption that the unknown distribution
of optical properties, < = [pa(r), pt (7=)] is a small pertur-
bation to an estimated distribution &. From the assumed
distribution of optical properties, it is possible to predict
measurements values Mp given a forward model or theory
F, Mp = F[&.]. Th e forward model is typically a diffusion
equation derived as an approximation to the equation of
radiative transfer. Experimental measurement values M are
commonly considered to be taken on the boundary 8fi of the
system under investigation. A variety of parameters have been
considered for M, e.g., fluence rates, either obtained by time-
or frequency-dependent measurements, maximum of fluence
in time-resolved measurements, phase shifts of photon density
waves, etc.

Assuming that the estimated spatial distribution <e is close
to the actual distribution [, one can perform a Taylor expansion
as follows:

where F’ and F” are the first- and second-order derivatives of
the forward model with respect to the optical properties <. The
derivatives F’ and F” can be represented as matrixes and are
commonly referred to as the Jacobian or the weightfunction
(F’ + J) and the Hessian (F” + If) of the problem. If
we define the difference between experimentally obtained and
predicted measurement values as AM = M - Mp and the
difference between actual and estimated distribution of optical
properties as A< = I - &, (1) becomes

LWW = &]Q + &%[&]LC + * * * . 69

By neglecting second-order terms on the right-hand side, (2)
becomes linear. The reconstruction problem is then reduced to
solving a set of linear equations for A<

A< = J-l[<&M. (3)

Knowing A[ and the reference medium & allows to calculate
the distribution C = Ac + &, which is the desired image.
This approach may be generalized to iterative reconstruction
schemes, which successively update & so that 1 = <e + A<l+
L& + “.. In Fig. 1 these successive updates are described
as outer iteration.

The major computational effort of this approach lies in the
inversion of the large full ill-conditioned Jacobian matrix. Usu-
ally this inversion is not attempted directly, but is considered
as an optimization problem in which the functional

IlJbM - AMll = wo (4)

is minimized. Commonly applied techniques are conjugated
gradient descent (CGD), singular value decomposition (SVG),
projection onto convex sets (POCS), algebraic or simultaneous

, algebraic reconstruction techniques (ART or SART) [48], or
the recently developed elliptic system method (ESM) [58]. In
Fig. 1, this step is called inner iteration,

Since the problem of solving (3) is ill posed, regularization
techniques are often employed, which put additional con-
straints on the solution vector Q. Regularization of these
problems is obtained by making the highly ill-conditioned

comparison of predicted and measured dat
Taylor expansion around estimate <I=, ;;F;;;;;;;;;):... 1

II I by calculating AC = [A/.L~, A/L\]

Fig. 1. Basic flow chart for reconstruction algorithms based on perturbation
methods that employ full Jacobian matrix inversion.

Jacobian matrix more diagonally dominant [5 11. For more
details on the perturbation techniques and other reconstruction
methods currently applied in OT, see the review by Arridge
and Hebden [60].

B. GIIR Schemes

GIIR schemes [61]-[63] differ fundamentally from the
perturbation approach employed by the majority of researchers
in the field of optical tomography. This statement is true
even though many common features exist. As in all other
methods, the goal of the GIIR scheme is to reconstruct the
distribution of the optical properties inside a medium from a
given set M of measurements on the circumference, 80 of
the medium. Analogous to the perturbation approach depicted
in Fig. 1, we can divide the GIIR scheme in three different
major components (see Fig. 2).

Forward ModeZ: As in the perturbation approach, this
model is a theory or algorithm that predicts a set of
measured signals Mp based on the position of the light
source and the spatial distribution of optical properties

Analysis  Scheme: Here, an objective function 4 is de-
fined, which describes the difference between the mea-
sured, M and predicted data, Mp. A simple example is
the least square error norm $([) h (M - Mp(<))2.
Since the problem is highly ill posed, a penalty or
regularization term R is usually added to the objective
function. Note that by defining the objective function in
this way, E linearization of the problem is performed.
Updating Scheme: Once the objective function is de-
fined, the task becomes to minimize 4. This is accom-
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Fig. 2. Flow diagram of GIIR scheme used in this work.

I FORWARD MODEL, F

I (depends on estimated system parameter:
absorption coefficient FJr),

I transport scattering coefficient f&(r))
Diffusion Theorv

I Measured Data, M w Exper. 1

ANALYSIS SCHEME
comparison of predicted and measured data

=> define objective function q(c)

- R

calculate gradient

2k _ a@ ak4

36 -2&*
adjoint differentiation

V
1 D Line minimization of o(c)

along direction of conjugated gradient

plished in two substeps.

First, the gradient of the objective function c@( <) /c![
is calculated by means of so-called adjoint differen-
tiation. Note that this gradient is not identical to the
weight function or Jacobian used in the perturbation
approach. The effective calculation of this gradient
poses a major challenge in itself and is described in
detail later.
Second, given the gradient an iterative line min-
imization in the direction of the gradient is per-
formed. This step is labeled inner iteration in Fig. 2
and consists of several forward calculations in which
the optical parameters [ are varied. Once the min-
imum along the line is found, a new gradient is
calculated at this minimum (outer iteration) and
another line minimization is performed, now along
a different direction in the C space. These steps are
repeated until a distribution [ is found for which
$(<) is smallest.

The inner iteration in the perturbation approach (Fig. 1) con-
sists in solving (4) which contains the large full ill-conditioned
Jacobian matrix and is usually very time consuming. During
the inner iteration of the perturbation approach the parameters
< are fixed, unlike in the line-minimization scheme (Fig. 2).
While the outcome of the inner iteration in Fig. 1 is one update
< + A<, the inner iteration in Fig. 2 provides several updates
< + A<1 + A& + .a. before a new gradient needs to be
calculated. The superiority of this method was most recently
acknowledged by Arridge and Schweiger [64], who currently

work on similar reconstruction schemes as presented in this
paper.

In summary, the major difference between the perturbation
approaches described in Section II-A and the proposed GIIR
scheme is that the inverse problem is to be solved as an
optimization problem, rather than a perturbation problem.
While in both methods Jacobian matrixes are calculated, they
are used in different ways in the reconstruction process. In
the perturbation approach, the Jacobian matrix needs to be
inverted to obtain one update A< of the optical properties in
the medium. This inversion, in itself, is an extremely time-
consuming iterative process, which sometimes also is referred
to as optimization. In the GIIR scheme, the Jacobian is part
of the gradient calculation of the objective function. Once this
gradient is found, a line minimization of the objective function
along the direction of the gradient is performed to find the
update for the optical properties. This line minimization does
not require the computationally expensive inversion of the
Jacobian matrix.

In the remainder of this paper we will discuss in detail the
mathematical background and actual implementation of the
time-resolved image reconstruction scheme, which is based
on a finite-difference forward model of the diffusion equation.
To illustrate the performance of that code, we will show
simulated reconstruction examples of well-defined objects in
a homogeneous background and a more clinically relevant
reconstruction of brain tissue.

III. T H E O R Y

A. Forward A4odel

As a forward model that describes the photon propagation
in the turbid medium and predicts the measurements at the
detector position rd we use the 2- or 3-D time-dependent dif-
fusion equation with zero-boundary condition. For notational
simplicity we will first develop all concepts in two dimensions.
The extensions to three dimensions is straightforward and
will be outlined whenever appropriate. The time-dependent
diffusion equation is given as

g=~(D~)+~(Dg)-cpau+s. (5)

Here, U = U( X, y, i) is the fluence rate [Wcmm2] and S =
S(X, y, i) is the source strength at position (x, y) and time L
The position-dependent absorption and diffusion coefficients
are denoted by pa = P~(x, y) and D = D(x, g), respectively.
The speed of light in the medium is represented by c. The
diffusion coefficient is defined as D = c - [3~~ + 3( 1 - g)ps] -’
where g is the scattering anisotropy value equal to the average
value of the cosine of the angle through which photons are
scattered. The coefficient & = (1 - g)ps is called the reduced
or transport scattering coefficient.

Equation (5) is solved by replacing the temporal and spa-
tial derivatives by their finite-difference approximations as
follows:

ai7 un - un-l
-Z
at At (61
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where

The distances between spatial and temporal mesh points are
given by Ax, Ay, and At, respectively. The approximations
are obtained by simply differencing the partial derivatives as it
stands and centering everything appropriately. The interpolated
value of D halfway between the grid points is gotten by linear
interpolation Di+lpj = (Di,j + Di+i,j)/2.

By substituting the finite-difference approximations (7) and
(8) in the diffusion equation (5), we obtain a difference
equation that needs to be solved forward in time. The finite-
difference approximations to the spatial derivatives (7) can
be evaluated at time index n + 1 or n when we are solving
the difference equation for ZF+‘. Methods that evaluate the
spatial derivatives at the past time instance (n) are called
explicit, while methods that evaluate the spatial derivatives at
the present time instance (n + 1) are called implicit. Explicit
methods lead to simple and fast solution of the finite-difference
equation, however, they are only conditionally stable. Implicit
methods prove to be unconditionally stable, but lead to more
complex solution schemes.

To combine the simplicity of explicit methods with the
stability of fully implicit methods, we use in this work
a technique known as alternating-directions implicit (ADI)
method [65]. In this method, the computation of Un+’ from
Un is broken up into two time steps. In the first half-
time step, the spatial derivative in only one direction is
evaluated at the present time instance (implicit) and the other
spatial derivatives are evaluated at the previous time instance
(explicit). In the next half-time step, the implicit and explicit
directions are switched, etc. The difference equations for the
two half-time steps are given as

We call the vector U row ordered if the elements
of the vector U are ordered such that we first
enumerate the x values before increasing the y value
([&,yl, vx2,?Jl, * - *, Km,yl, Kzl,y2,77z2,y2, * - -119 a-d cA_mlrl
ordered if we first enumerate the y values before increasing

the x values @&+,i, Q+y2, - * - , Uz,yn, 77x2,y1, Ux2,y2, * - *I)
If we perform row ordering in the first half step [(9a)],

column-ordering in the second half step [(9b)], and letting
n take on fractional values, we can compactly represent
(9a) and (9b) as

or

Aun+llz = Bun + sn+l/d (loa)

Un+r/z = A-lBUn + A-lSn+l.? (lob)

The structures of the matrixes A and B remain the same
in both half-time steps, but the absolute values of the matrix
elements differ. The advantage of the AD1 method is that by
correct ordering the matrix, A can always be made tridiagonal,
e.g., for the first half step

Aii = 1 + wa$ + (Di+l,2,j + Di4& (lla)

The matrix A needs to be inverted to compute Un+‘i2 from
Un (lob). Since A is always tridiagonal, the inversion can
easily be done in O(N) computations [66]. Furthermore, the
AD1 method is unconditionally stable for any value of At and
is acccurate to O[(&)2]+O[(Ax)2] [65]. From now on we do
not distinguish between the two half-time steps for notational
simplicity. For further information on explicit, implicit, and
AD1 methods see [63], [65], [67], and [68].

The generalization of the AD1 method to three dimensions
is straightforward. Equations (9a) and (9b) have to be replaced
by three equations containing, respectively, only Un and
Un+i/s Un+l/s and Un+z/s and Un+z/s and ,rJn+i. These

three equations are identical, except for a cyclic shifting of
the implicit term among the x, y, and z derivatives. The major
difference between the 2- and 3-D AD1 method is that, in three
dimensions, the unconditional stability is lost and is replaced
by the stability condition At < [1.5 a Ax/Di,j]. Furthermore,
the accuracy drops to O[(At)] + O[(AX)~] [65].

B. Analysis Scheme

The forward model is used to calculate detector responses at
a set of detector position M. Let Y denote the measurements
of the diffuse intensity U for all s l M. We assume, for sim-
plicity, that the measurements are corrupted by uncorrelated
Gaussian noise. However, note that the method we propose is
not limited to this choice and could just as well have chosen a
more complex model such as Poisson noise. In this work the
objective function is defined as

The first sum over s indicates a summation over all source-
detector pairs, while the second sum over n represents the
summation over all time steps. The parameter g( s, n) is
the time and spatially varying noise variance. The function
R(c) describes any additional penalty or regularization term,
which generally depends on the spatial distribution of optical
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properties C = [cam (r) , D(T)] . An example would be a
Markov random field regularizer [69], defined as

The parameter x is a weighting factor for the regularization
term, often also referred to as hyperparameter [70]. The
regularization term compares < at position r with C at all
neighboring positions m. Large variations between neighbor-
ing C are more or less penalized, depending on the choice
of p and the scaling parameter 0~. In this work we used
A = 1, p = 1.1 and 06 = 1. This regularization term imposes a
certain smoothness on the solution. A more detailed discussion
on Markov random fields, as well as the interpretaion of (12)
and (13) in a Bayesian framework, can be found elsewhere
[63], [69]. The goal of the reconstruction algorithm is now to
minimize this objective function with respect to the system
parameters D(r) and C,X~ (r) .

C. Gradient Calculation

The effective solution to optimization problems involving
many variables (here the spatial distribution of optical proper-
ties) relies on knowing the gradient of the objective function
with respect to the variables dq5/d<. In this work, we employ
the method of adjoint differentiation [71]-[73],  sometimes also
called reverse differentiation [74]. To outline this method we
assume, for simplicity, that no regularization term is used, i.e.,
R(c) = 0. Furthermore, we choose the following notation:
p, q, r, d E 0 are grid points; d6’ E f2 c Cl are detector
positions on the boundary afl; and iU denote measurements
on the boundary afl. The derivative of the objective function
(8) with respect to the optical properties 1 is given by

(14)

Here, we simply applied the chain rule and the first term in
the sum is the outer derivative, while the second term is the
inner derivative of (12). The second term is easily obtained
by differentiating (lOa) at time [n] with respect to the optical
parameters, which yields

(Here we consider (lOa) at times [n - 1/2] and [n] rather than
[n] and [n + 1/2]). Equation (15b) can be easily calculated by
means of the known intensity U and the matrixes A and 6
of the forward model.

More involved is the calculation of the derivative of the
objective function Q with respect to the intensities Un, which
is the first term in (14). We obtain this term recursively by
applying the chain rule and stepping backward (reverse) in
time from n + 1/2 to n

with

d@ a@-=-
dU; 87;

for N = max(n G T) . WW

Here, &J~/U: denotes the change in q5 when only UF is
varied, keeping all other variables constant, while dqb/dUF
denotes the total change in 4 when UF is varied, as well as
all variables that depend on Ug . Partially differentiating (12)
with respect to Ug, we obtain

p=de!&
otherwise.

(17)

The term dUp’1’2/dUF can again be calculated from the
forward finite difference (6b) and we obtain

&J;+1/2

’ { 1 cl=P
dU;

= Am1 BIp w i t h  Ip =
0 !l#P

(181

where Ip is a column vector that is zero everywhere except at
the spatial point p, where it is unity.

To further enhance the efficient calculation of the gradi-
ent (14) we make use if the following matrix-multiplication
properties. Consider the multiplication (AJi . Ad2 - V) where
AJr and &!2 are N x N matrixes and V is a vector of
length N. This multiplication can be done in two ways.
Either a matrix-matrix multiplication is performed before a
matrix-vector multiplication (AJi - Adz) . V or two matrix-
vector multiplications are performed first, AJr . (A42 . V).
The first approach, (Ml + Adz) a V, requires N3 + N2 scalar
multiplications, while the second approach requires 2N2 scalar
multiplications. Therefore, the second approach is (N/2 + 1)
times faster than the first approach.

How this method can be applied in our gradient calculation
can be seen by inserting (16a) into (14)

pulling the last term into the bracket

and reordering the sums yields

+x y&g?.
nET C 09@

pE!2 rE0 p r J
The double sum in the first bracket of (19~) is just a mul-

tiplication of two matrixes ([dUF+l/dUr] and [dUF; d<r]),
with a vector (d$/dUF+l).  The order of the summation can
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be done in two ways. If the sum over p is done before the sum
over q, we effectively perform a matrix-matrix multiplication
before the matrix-vector multiplication. Summing first over
q and then over p corresponds to the case of two matrix-
vector multiplication and, thus, can be performed (N + 1)/2
faster than the first approach. This amounts to the adjoint
differentiation scheme applied in this work.

The method of adjoint differentiation provides an efficient
means to calculate the needed gradients for a complex se-
quence of calculations, such as the forward simulation of
the migration of photons described above. Its power lies in
its ability to calculate the derivatives with respect to all the
variables in a CPU time that is comparable to one forward
calculation.

D. Line Minimization

Once the gradient Q/& for a point <u is obtained, a one-
dimensional (l-D) line minimization along the given gradient
direction is performed. In this method one moves along a
direction given by the gradient until a minimum @( &) is
found. Various techniques can be applied to perform such
l-D minimization [75]. In this work we apply an iterative
strategy by starting with a small step [o + A< = (1 in the
direction of the gradient, calculating the function values @(cl),
taking a bigger step <r + a A< = &, with cx > 1, in the
gradient direction, calculating the function value @(<z), etc.
until a(&) < @(&_I) and @(&) < @(&+I). At this point, a
parabola is fitted to the three points and the minimum of the
parabola is assumed to be a minimum along the direction of
the gradient.

We typically chose A< in a way that ensures that in each
component A,!& < 1 and &X~ < 0.01. Therefore, the changes
of optical properties in each pixel are initially smaller than
approximately 10% of typical values for biomedical tissues.
The parameter cx is set to 1.618, which is the ratio of the
golden sections. Furthermore, we impose positivity constrains
that limited the search to values I > 0. For more detailed
discussion of line-minimization schemes see, for example [75].

Once the minimum along the direction of the gradient is
found, a new gradient calculation is performed and a new
direction is chosen in a conjugate-gradient framework. That
is, the new direction is determined by a weighted sum of the
previous gradients. In this study we employ a Polak-Riberie
conjugated-gradient scheme [75], [76].

IV. RESULTS

A. Problem Setup

The GIIR algorithm is tested by simulating time-resolved
measurements of infrared light passing through a hetero-
geneous medium and using these simulated measurements
as input to the reconstruction code. The measurements are
simulated with the finite-difference, time-resolved diffusion
code. To mimic real-world measurements, Gaussian noise is
added to each measurement at a signal-to-noise (SNR) level
of 30 db. This value is typical for time-resolved single-
photon counting measurements [77], [78]. When single-photon

counting is used, relatively noise free data can be obtained over
2-3 orders of magnitude. Signals that are approximately 1000
times smaller than the maximum are increasingly affected by
statistical noise.

Once the detector readings are simulated, they are used as
the actual measurement data Y in the reconstruction code.
To start the reconstruction program an initial guess of the
optical properties is necessary. If not stated otherwise, a
medium with constant absorption and diffusion coefficients
is used as a first guess. Based on this guess, the forward
code calculates the detector responses U and compares these
predicted measurements with the measurement data Y by
calculating the objective function 4 (12). The derivatives of 4
with respect to C at all grid points are calculated and a new
spatial distribution of D and cam is put in place for the next
forward calculation. The speed of light in the medium is set
to c = 22 cm ns-’ in all cases. All calculations are done on
an HP 9000/770 workstation.

B. Simple Systems

First we consider a simple heterogeneous system [Fig. 3(a)]
which consists of a background medium with (D = 0.9 cm2
ns-‘, cpa = 2.2 ns-I) and two objects with (D = 0.5 cm2
ns-‘, cam = 9.0 ns-I) and (D = 1.46 cm2 ns-‘, cpa = 0.44
ns-I), respectively. A 40 x 40 x - y grid with a spatial
resolution of 0.2 cm is used to simulate the 8 x g-cm
medium. The medium is surrounded by 16 source detector
positions. Moving the source around the medium results in
16 x 15 = 240 detector readings, Each detector reading
consists of 50 time points, which are equally spaced by
& = 0.1 ns. In the reconstruction code, the derivatives of
the objective function (12) with respect to cam and D at each
grid point are calculated, which results in 2 x 40 x 40 =
3200 derivative calculations in each iteration step. Fig. 3(b)
shows the reconstructed D image, which was obtained after
15 iterations (20 min). The initial guess is a homogeneous
medium with D = 1.0 cm2 ns-’ and cam = 2.0 ns-‘. The
locations of the two objects and absolute values of D are
reconstructed with high accuracy.

However the absolute values of c,!.J~ are not as accurate. For
example, the small object with cam = 9.0 ns-’ appears as a
larger object with c,!L~ = 3.2 ns- ‘. Similar results have been
observed by other researchers using different diffusion-based
image algorithms [64], [79], [80]. Further studies are necessary
to fully explore the reasons for this behavior.

The extension of the code to three dimensions is
straight forward. An example of a 3-D reconstruction of
a 8 x 8 x 8 cm heterogeneous medium is shown in Fig. 4.
Sources and detectors were arranged in ten layers. Layers two
and seven are shown in Fig. 4(b). Each layer has four sources,
one centered on each side of the cube, and 20 detectors, four
on each side and one on each corner. A medium with constant
absorption ( ,x~ = 0.12 cm-‘) and diffusion coefficients
(D = 1.0 cm-‘) was used as a first guess.

We find that the time it takes for the GIIR code to complete
a reconstruction on a given problem is proportional to the
number of grid points Ngrid and number of sources Nsource.
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Fig. 3. (a) and (c) The original medium that contains two inhomogeneities,
which differ in the diffusion and absorption coefficient. For the reconstruction
the system is discretized into 40 x 40 = 1600 voxels. (b) and (d) Here the
reconstructed medium after 15 iterations (20 min) is shown for both optical
parameters, The arrows indicate the 16 source/detector positions surrounding
the medium.

Doubling Ngrid or NSoUrce leads to a doubling of the recon-
struction time. Doubling the number of detectors increases the
computation time only by a factor of 1.1. Furthermore, we
observe that keeping NsoUrc-, Ngrid, and Ndet, constant, but
increasing the dimension of the problem from 2-D + 3-D,
leads to an increase of the computation time by a factor of
1.5, which can be explained by the additional overhead in the
implementation of the 3-D code.

C. Brain Imaging

To test the algorithms in a situation closer to a clinical
problem, MRI density maps are used to generate optical
property maps of a brain. MRI imaging techniques allow one
to distinguish between skull, white matter, gray matter and
cerebrospinal-fluid-filled spaces in the head. These different
tissues appear in MRI scans with different densities. From Fig. 4. (a) and (b) Original and reconstruction of six 1.6 x 1.6 x 1.6 cm’

c u b e s  (D = 0.45 cm2 ns-ll in 8 x 8 x 8 cm3 backzround m e d i u m
this an optical property map (cam , D(T)) is obtained by

\ ,
(D = 0.9 cm2 nsP1). The absorption is constant pa = 0.1 cm-l. The

assigning different optical properties to different density values system is discretized into 20 x 20 x 20 = 8OOCl voxels. The six heterogeneities

[81]. Fig. 5(a) shows such a segmented scan for a slice
are 4 x 4 x 4 voxels in size. For two sides of the cube the source detector
locations are shown for two out of ten measurement lavers. Each laver has four

through the head. Clearly identifiable features include the
4

sources (open squares) and 20 detectors (full circles): Displayed are volumes

cerebrospinal-fluid-filled ventricle in the center of the brain for which D < 0.76 cm2 ns-I.

and a hematoma near the forehead. Furthermore, the brain is
surrounded by cerebrospinal fluid, as can be seen in the light about 70 min. While fine structures are not resolved, clearly
areas in Fig. .5(a). Fig. 5(b) shows the reconstruction, based on visible in the reconstruction are the ventricles and other areas
simulated time-resolved measurements, for 12 source/detector filled with cerebrospinal fluid. In addition, the hematoma at
positions. In this case, 60 iterations are performed, which take the forehead can be seen.
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-1lcrnB
(bl Reconstruction. *

3) An updating scheme, which allows to subsequent guess
the optical properties of the medium based on the gradi-
ent of the objective function. The gradient is calculated
with an adjoint differentiation technique.

The code was successfully used to reconstruct simple 2-D and
3-D heterogeneous media, which contain well-defined objects
in a homogeneous background. The code was also tested on
MRI-generated optical property maps of the brain.

Further studies will be necessary to fully explore all pos-
sibilities and problems connected with GIIR-type algorithm
for optical tomography. Open questions are, for example,
what type of regularization terms and hyperparameters are
optimal, how can cross talk between absorption and diffusion
reconstruction be addressed, how sensitive is the algorithm to
the choice of the initial guess, and how can global maxima be
found most efficiently.

Furthermore, experimental validation of the findings will be
necessary. Since only numerical simulations were performed,
the reconstructions shown do not provide an estimate of the
model error. In other words, the results obtained in this study
are based on the assumption that the diffusion model correctly
describes the light propagation in the media. However, our
group and others have shown that the diffusion model fails to
accurately describe the propagation of light in highly absorbing
regions, such as hematoma and void-like low scattering and
low absorbing regions, such as the ventricles in the brain
[81], [84]. How model errors effect the reconstruction results

Fig. 5. (a)-(c) Reconstruction of 2-D slice through the brain based on is currently under investigation and first results have been
simulated time-resolved measurements (75 time steps with At = 0.1 ns). reported elsewhere [ 851.
The
cm’

reconstruction was started with a
ns-’ 1. The numbers indicate the

homogenous -initial guess (D = 1.0
reconstructed diffusion coefficient D

[cm’ ns-r] at various positions. The spatial resolution is 0.2 cm. The circles
in the bottom image indicate source and detector positions.
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