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1. INTRODUCTION

A major advantage of Bayesian data analysis is that provides a characterisation of the un-
certainty in the model parameters estimated from a given set of measurements in the form of a
posterior probability distribution [1]. When the analysis involves a complicated physical
phenomenon, the posterior may not be available in analytic form, but only caculable by
means of a simulation code. In such cases, the uncertainty in inferred model parameters
requires characterisation of a calculated functional. An appealing way to explore the poste-
rior, and hence characterise the uncertainty, is to employ the Markov Chain Monte Carlo
technique. The goal of MCMC is to generate a sequence random of parameter x samples
from a target pdf (probability density function), T(x). In Bayesian analysis, this sequence
corresponds to a set of model realisations that follow the posterior distribution [2].

There are two basic MCMC techniques. In Gibbs sampling, typically one parameter is
drawn from the conditional pdf at a time, holding all others fixed. In the Metropolis algo-
rithm, al the parameters can be varied at once. The parameter vector is perturbed from the
current sequence point by adding atrial step drawn randomly from a symmetric pdf. The trial
position is either accepted or rejected on the basis of the probability at the trial position
relative to the current one. The Metropolis algorithm is often employed because of its sim-
plicity.

The aim of this work is to develop MCMC methods that are useful for large numbers of
parameters, n, say hundreds or more. In this regime the Metropolis agorithm can be unsuit-
able, because its efficiency drops as 0.3/n [3]. The efficiency is defined as the reciprocal of
the number of steps in the sequence needed to effectively provide a statistically independent
sample from Tt

2. METHODOLOGY

An aternative MCMC technique is what | will call the Hamiltonian method. It is often
referred to as the hybrid method because it alternates between Gibbs and Metropolis steps, but
that name is not distinctive. For each parameter x;, another parameter p; is introduced, which
represents the parameter’s conjugate momentum variable [4]. A Hamiltonian is constructed as
apotential term ¢ = -log(11x)), plus akinetic energy term:
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where my is afictitious mass. The goal is to draw random samples from the new pdf that is
proportional to exp(-H). Each iteration of the algorithm starts with a Gibbs sampling to pick a
new momentum vector from the uncorrelated Gaussian in the momenta corresponding to the
second term in H. Then a trgjectory in (x,p) space is followed such that H is constant using
the leapfrog technique, which consists of the following three substeps:
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The parameter T represents an increment in time. After m leapfrog steps corresponding to a
total trgjectory time of T = mt, a Metropolis acceptance/rejection decision is made to guaran-
tee that the sequenceisin statistical equilibrium with the target pdf. Clearly large stepsin the
parameter space are possible with only afew evaluations of ¢ and the gradient of ¢. Note that
the gradient of ¢ can often be done in a time comparable to the (forward) calculation of ¢ by
applying adjoint differentiation to the computer code used to calculate ¢ [5]. In practice, the
length of the Hamiltonian trajectories must be randomised to realise adequate sampling of
1(X). Once an MCMC sequence has been generated, the properties of 1(x) may be character-
ised by considering just the x samples. The momentum aspects of the extended pdf, exp(-H),
are marginalised out because they are independent of the x dependence.

3. RESULTS

Figure 1 shows typical paths followed by the Hamiltonian MCMC agorithm for a one-
dimensional target pdf, which is a Gaussian with unit standard deviation. The vertical jumps
correspond to the Gibbs sampling of momentum from the Gaussian pdf, exp(-p), for unity
mass. The circular arcs correspond to the trajectories of constant H followed in five steps of
the leapfrog method using T = 0.4, yielding atotal trgjectory length of T =5t = 2.
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Figure 2 shows the behaviour of the Hamiltonian method for an asymmetric two-
dimensiona Gaussian distribution with a standard deviation of four in one direction and unity
in the other. For this example, the maximum value for 1 is 0.4. The total length of each
Hamiltonian trajectory is randomly chosen from a distribution that is uniform from 0 to T =
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5 and 1 is adjusted for a minimum number of number of leapfrog steps. The important aspect
of this example is that the full width of the target pdf is easily reached in relatively few (15)
trajectories consisting of 91 leapfrog steps. This kind of distribution causes difficulty for the
Metropolis algorithm with an isotropic trial distribution because it essentialy follows a
random walk.
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Figure 2. Hamiltonian trajectories for a
two-dimensional asymmetric uncorre-
lated Gaussian pdf, demonstrating the
ability of the Hamiltonian trgjectories to
readily transverse the length of the target

Figure 3. Traectories in a 2D subspace
from a 16-dimensional correlated Gaus-
sian pdf. The contour shown is at the
two-standard-deviation level for the
marginalised distribution.

paf.

The motivation here is to handle pdfs of high dimensionality. Figure 3 shows how the
Hamiltonian method copes with a 16D Gaussian distribution with a fair degree of correlation
among the variables. The covariance matrix of the target pdf is a circulant matrix with rows
whose elements are 0.2, 0.0, 0.4, 1.2, 2.5, 4.0, 5.0, 4.0, 25, 1.2, 0.4, 0.0, -0.2, with the
maximum value on the diagonal [6]. The figure shows that the Hamiltonian method does a
good job of sampling this pdf with only 15 trajectories, or 61 function and gradient evalua-
tions. The maximum Hamiltonian length is 3 for this example.

The efficiency of Hamiltonian method is found to be optimised for T = 0.4 and T = 8.
The MCMC agorithm is tested by running the algorithm 1000 times with 50 Hamiltonian
trajectories in each run. The efficiency of the algorithm is calculated as the ratio of the mean
square deviation from the mean of the parameter variance expected for ideal independent
sampling method to that observed for the 1000 runs. The efficiency of the Hamiltonian
method under these conditions is 45% per Hamiltonian trajectory or 2.1% per function
evaluation. The latter number assumes that the computation time for gradient computation of
¢ is the same as for ¢ itself, which is often possible when the gradient is calculated using a
code that represents the adjoint differentiation of the ssimulation code [5]. In the examples
shown in Figs. 1 and 2, the Hamiltonian trgectories maintain constant H so that the Metropo-



In Proc. Third Int. Symp. on Sensitivity Analysis of Model Output (2001)

lis rejection rate is nearly zero. However, in this example, about 8% of the trajectories are
rejected.

4. DISCUSSION

The previous problem involving a target distribution with modest correlations was treated
in [6]. Using an isotropic trial distribution in the Metropolis algorithm, the efficiency was
determined to be 0.11%. When the trial distribution is adaptively modified to have a covari-
ance structure similar to that of the target pdf, the efficiency improved to 1.6%. This latter
efficiency is close to the upper limit on efficiency of the ssmple Metropolis algorithm for a
16D isotropic pdf, 1.9%.

Comparison of these results with those for the Hamiltonian method indicates that the
Hamiltonian method has the advantage of providing good efficiency without the need to
supply an estimate of the covariance method. Furthermore, as the number of dimensions
increases, the efficiency of the smple Metropolis algorithm will drop as 0.3/n. On the other
hand, for pdfsin 64 dimensions with the same pdf, the efficiency of the Hamiltonian method
is 1.9% per function evaluation and for 128 dimensions, it is 1.7%. Thus, the Hamiltonian
MCM C method appears to be well suited for sampling pdfs of high dimension.

Almost the entire drop in efficiency comes from the Metropolis rejection of the Hamilto-
nian trajectories, which is the deterministic part of the algorithm. The implication is that
improvements in the Hamiltonian method can be achieved through improvement in calculat-
ing the deterministic Hamiltonian trajectories. As with it any MCMC method, it is also
possible to improve the performance of the Hamiltonian method for correlated and asymmet-
ric pdfs through the usual means of adapting the algorithm to include estimates of the covari-
ance structure of the target pdf [2].
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