
CHAPTER 113 

Noise and 
computed 
Kenneth M. Hanson 

contrast discrimination in 
tomography 

Image noise 
Random noise 

Statistical noise 
Electronic noise 
Roundoff errors 

Artifactual noise 
Structural noise 

Properties of CT noise 
Noise power spectrum 

Fourier analysis-MTF and noise power spectrum 
Visual example 
Dependence on reconstruction algorithm and NEQ 
Results for a commercial scanner 

Autocorrelation function 
Noise granularity 

Definition 
Relationship to noise power spectrum 
Results for a commercial scanner 

rms noise 
CT noise and dose 

Dose dependence 
Dose efficiency 

Dose specification 
DNEQ 
Results for a commercial scanner 

Detectability in the presence of CT noise 
Detection task 
Optimum receiver 

Detection sensitivity index, d' 
Application to CT 
Example 

Human observer 
Three-dimensional aspects 

Conclusion 

The x-ray computed tomographic (CT) scanner has 
made it possible to detect the presence of lesions of very 
low contrast (New et al., 1973). This dramatic improvement 
in detection capability over most conventional forms of 
x-ray imaging is a result of the following innovations: 
(1) the noise in the reconstructed C T  images is significantly 
reduced through the use of efficient x-ray detectors and 

electronic processing, thereby improving the utilization of 
the radiation dose. (2) T h e  images can be displayed with 
enhanced contrast, thus overcoming the minimum contrast 
threshold of the human eye. (3) The  C T  reconstruction 
technique almost completely eliminates the superposition 
of anatomic structures, leading to a reduction of "struc- 
tural" noise. 

I t  is the random noise in a C T  image that ultimately 
limits the ability of the radiologist to discriminate between 
two regions of different density. Because of its unpre- 
dictable nature, such noise cannot be completely eliminated 
from the image and will always lead to some uncertainty 
in the interpretation of the image. There  is strong evidence 
that much of the random noise in present-day C T  scanners 
is due  to the statistical inaccuracies arising from the detec- 
tion of a finite number of transmitted x-ray quanta. The 
properties of this statistical noise in C T  images will be dis- 
cussed in this chapter. The  goal will be to characterize the 
noise content in a way that is closely related to the detection 
capabilities inherent in the image. 

I t  will be shown in the discussion of' the optimum re- 
ceiver that the ability to detect a large-area object in a C T  
image is chiefly dependent on the NEQ, the total number 
of noise-equivalent quanta detected per unit length in the 
projections used to reconstruct that image. As such, it is 
not the fineness with which the x rays are detected in the 
projections (related to spatial resolution) but simply the 
effective total number of detected x rays that influences 
the large-area contrast sensitivity of the C T  reconstruction. 
For a fixed, large-area contrast sensitivity, then, an increase 
in spatial resolution does not imply the necessity for higher 
dose! NEQ, which characterizes the low-frequency proper- 
ties of noise in a C T  image, can be determined from a C T  
noise image by measuring either the noise-power spectrum 
or the noise granularity function. 

Since, for a given C T  geometry, the number of trans- 
mitted x-ray quanta is proportional to the dose, the magni- 
tude of the statistical noise depends on the dose. A figure- 
of-merit for dose utilization will be developed that can be 
used to compare the dose efficiencies of various C T  scan- 
ners. 
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Fig. 113-1. Block diagram of the steps involved in obtaining a CT image. 

Fig. 113-2. Three scans of a contrast sensitivity phantom taken on a GE CTIT 7800 scanner at 
various milliampere-second values: A, 77. B, 307. C ,  1152. The low contrast in the largest sector, 
0.25%, is achieved by the partial volume effect. For this scanner higher dose leads to lower noise 
and improved contrast sensitivity. (Courtesy F. A. DiBianca, General Electric Co.) 
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IMAGE NOISE 

There are several types of image "noise" that can inter- 
fere with the interpretation of an image. In  the discussion 
of the types and sources of noise present in C T  images it 
is helpful to consider the various steps in the production 
of a C T  image as presented in Fig. 113-1. Although noise 
may infiltrate and corrupt the data at any point in the C T  
process, the ultimate source of noise is the random, statisti- 
cal noise, arising from the detection of a finite number of 
x-ray quanta in the projection measurements. 

Random noise 

Image mottling, o r  fluctuations in the image density that 
change from one image to the next in an  unpredictable 
and random manner, may be termed random noise. The 
radiologist is familiar with random noise in the form of 
radiographic mottle found in standard radiographs taken 
with fast screen-film combinations (Ter-Pogossian, 1967, 
p. 249). 

Statistical noise 

The energy in x-radiation is transmitted in the form 
of individual chunks of energy called quanta. Hence the 
response of an x-ray detector is actually the result of de- 
tecting a finite number of x-ray quanta. The  number of 
detected quanta will vary from one measurement to the 
next, not because of inadequacies in the detection appara- 
tus, but because of statistical fluctuations that naturally 
arise in the "counting" process. As more quanta are de- 
tected in each measurement, the relative accuracy of each 
measurement improves. Statistical noise in x-ray images 
arises from the fluctuations inherent in the detection of a 
finite number of x-ray quanta. Statistical noise may also 
be called quantum noise and is often referred to as quan- 
tum mottle in film radiography. 

Statistical noise clearly represents a fundamental limita- 
tion in x-ray radiographic processes. T h e  only way to re- 
duce the effects of statistical noise is to increase the number 
of detected x-ray quanta. Normally this is achieved by in- 
creasing the number of transmitted x rays through an in- 
crease in dose. Fig. 113-2 shows a series of scans taken on a 
GE CT /T 7800 scanner* using a phantom designed to test 
contrast sensitivity. The  reduction in the noise caused by 
increasing the x-ray exposure (milliampere-seconds) is 
graphically demonstrated. 

Electronic noise 

In processing electric signals, electronic circuits inevitably 
add some noise to the signals. Analog circuits, those which 
process continuously varying signals, are most susceptible 
to additional noise. Thus  the stage most likely to inject 
additional electronic noise in Fig. 113-1 is that of analog 
signal processing. The  difficulty of noise suppression is 
compounded by the fact that for some types of x-ray detec- 
tors, the electronic signals are very small. There is evidence 
(Cohen, 1979) that many commercially available C T  scan- 
ners are sufficiently well engineered to reduce the con- 
- 

*General Electric Medical Systems Division, Milwaukee, Wis. 

tribution of electronic noise under normal operating condi- 
tions to a fraction of the statistical noise contribution. The 
signals are converted to digital or  discrete form in the 
signal-processing step and then sent to a computer for 
reconstruction. 

Digital circuits, those which process discrete signals as in 
digital computers, are relatively impervious to electronic 
noise problems. 

Roundoff errors 

Although digital computers are not subject to electronic 
noise, they d o  introduce noise in the reconstruction process 
through roundoff errors. T h e  errors arise from the lim- 
ited number of bits used to represent numbers in the com- 
puter. For example, the product of two numbers must be 
rounded off to the least significant bit used in the com- 
puter's representation of the number. Roundoff errors 
can normally be kept at a n  insignificant level either through 
choice of a computer with enough bits per word o r  through 
proper programming. It should be pointed out that in some 
C T  scanners the final reconstruction is stored with the least 
significant bit equal to one C T  number (0.1 % of the linear 
attenuation coefficient of water). This should not influence 
the accuracy significantly so long as the rms noise is greater 
than one C T  number. 

Roundoff errors can and d o  occur in the display stage 
(Fig. 113-I), since C T  display units can display only a fixed 
number of discrete brightness levels. As an example, a unit 
that has only 32 brightness levels will result in an increment 
size of about 0.05 optical density units (OD) on exposed 
radiography film. A difference of 0.05 OD produces a 
luminance contrast of 12%. Since under optimum condi- 
tions the human observer can discern objects at contrasts 
of less than 0.004 OD (Chapter 115; Burgess et al., 1979), 
such a unit can limit the observer's ability to interpret the 
film, particularly for wide display windows (100 or more 
C T  units). This limitation may be circumvented by the use 
of a narrow window. 

Artifactual noise 

T h e  wide variety of artifacts that can be produced by C T  
scanners is presented in Chapter 114. Artifacts might be 
viewed as a form of noise in that they interfere with the 
interpretation of the C T  image. Their presence is often 
indicated by a readily identifiable pattern,  for example,  in 
the case of streak artifacts. These identifiable artifacts d o  
not produce random noise, since they should be unchanged 
in repeated scans of the same object. However, there are 
instances in which regions of a reconstruction may experi- 
ence an  increase in variance due to nonapparent artifacts 
(Sheridan et al., 1980). Artifactual noise will not be con- 
sidered further here. 

Structural "noise" 

Density variations in the object being imaged that inter- 
fere with the diagnosis are sometimes referred to as struc- 
tural "noise" or structural clutter. In  standard radiography 
a large amount of structural clutter is produced by the 
superposition of various anatomic structures, for example, 
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the image of rib bones overlaps that of the lung in a stan- 
dard chest radiograph. The  C T  technique eliminates most 
of this superposition, but the radiologist should be aware 
that partial contributions may be introduced by structures 
that principally appear in adjacent C T  slices. 

Some organs, such as the liver, may have density varia- 
tions within them that have the appearance of' random 
noise. Although the texture pattern of the organ may not 
be reproducible from one C T  scan to the next because 
of patient motion, this type of structural variation is, of 
course, not random. Indeed, the classification of' this den- 
sity variation as a type of noise is ill-advised, since the varia- 
tion is intrinsic to the object itself. The  study of the tissue 
texture may be interesting for its potential diagnostic value 
(Pullan et al., 1978). 

PROPERTIES OF CT NOISE 

The  consequences of statistical noise in C T  reconstruc- 
tions have been discussed by numerous authors (Shepp and 
Logan, 1974; Cho et al., 1975; Huesman, 1975; Tanaka 
and Iinuma, 1975, 1976; Barrett et al., 1976; Brooks and 
DiChiro, 1976; Chesler et al., 1977; Hanson, 1977; Hues- 
man, 1977; Joseph, 1977, 1978; Hanson and Boyd, 1978; 
Riederer et al., 1978; Hanson, 1979a; Wagner et al., 1979). 
Several of these authors have pointed out that the process 
of reconstruction leads to some peculiar characteristics of 
the noise in C T  images. The  properties of statistical (quan- 
tum) noise in C T  reconstructions will be explored in this 
discussion. Although the precise random noise pattern of 
any image cannot be predicted a priori, it is possible to 
characterize the average behavior of the noise by a variety 
of methods. Some of these methods give a complete de- 
scription of the noise characteristics, such as the noise 
power spectrum or the noise autocorrelation function, 
whereas others give only a partial description, such as rms 
noise. It will develop that the noise fluctuation in one pixel 
of a C T  reconstruction is not independent of the noise 
fluctuations in other pixels. Rather, the fluctuations in two 
separate pixels are, on the average, correlated. 

Noise power spectrum 

The noise power spectrum is a frequency representation 
of the correlations present in the noise. The  ramplike na- 
ture of the noise power spectrum expected for C T  recon- 
structions will be derived for the filtered back projection 
algorithm. It will be shown that noise power spectra of 
EM1 CT5005 reconstructions possess this ramplike be- 
havior at low frequencies. 

Fourier analysis - MTF and noise power spectrum 

Any signal may be thought of as a sum of sine waves of 
appropriate frequency, amplitude, and position (phase). 
This decomposition of a signal into its frequency compo- 
nents is called Fourier analysis (see Chapter 110). It is often 
helpful to apply Fourier analysis to imaging systems (cam- 
eras, television, x-ray radiographs, etc.) because of the ease 
with which the imaging properties of various stages of the 
systems combine in their frequency representations. T o  be 
sure, Fourier analysis is only useful for linear systems, but 

most imaging techniques are approximately linear for small 
changes in signal amplitudes. A good introduction to the 
application of Fourier analysis to radiography may be 
found in Johns and Cunningham (1969). 

The  modulation transfer function (MTF) is the frequen- 
cy decomposition of a system's line spread response func- 
tion.* The  latter is the output of the imaging system when 
an extremely narrow line is used as input; for example, 
the radiograph produced of a very fine metal wire. Since in 
the frequency representation of an infinitely narrow line 
all frequencies are present with equal contribution, the 
MTF actually measures the frequency response of the sys- 
tem. Most MTFs are fairly close to unity at low frequen- 
cies, meaning that these frequencies are transferred 
through the imaging system with almost no degradation. 
T h e  MTFs of all physical systems will eventually fall to zero 
at high frequencies. This means that the high frequencies 
are not preserved by the imaging system and simply are not 
present in the final image. Since perfectly sharp edges re- 
quire infinitely high frequencies to represent them, the loss 
of the high frequencies results in blurred edges. Thus the 
MTF is the frequency representation of the sharpness of 
the system. 

The  noise power spectrum is related to the frequency 
decomposition of the image noise. The  method of obtain- 
ing the noise power spectrum will be outlined to clarify the 
relationship. First, an  image containing nothing but the 
noise to be analyzed is decomposed into its two-dimensional 
frequency components. These components, called the 
Fourier amplitudes, are then squared to obtain the "power" 
contribution at each frequency. This result is averaged with 
the results obtained from other similar images to arrive 
finally at the average noise power for each frequency, or, 
in other words, the noise power spectrum. The noise power 
spectrum is therefore proportional to the average (or 
mean) square value of the frequency amplitudes of the 
noise. Fig. 1 13-3 illustrates the computational procedure 
for obtaining the noise power spectrum of a one-dimen- 
sional noise sample. Note that the square of the amplitude 
is used instead of the amplitude itself, since the average 
value of the amplitude is zero while the average value of the 
squared amplitude is not. The  noise power spectrum is 
often referred to as the Wiener spectrum. Often the re- 
sponse of the system is assumed to be circularly symmetric. 
Then the two-dimensional noise power spectrum may be 
reduced to a one-dimensional spectrum that is a function 
of only the radial frequency (distance from zero frequency 
in two-dimensions). 

The  noise found in conventional radiographs is typified 
by a noise power spectrum that is roughly constant over 
a wide range of frequencies. Such a noise power spectrum 
is called "white" in analogy to white light, which contains 
a mixture of light of all frequencies within the visible spec- 

*The two-dimensional MTF is the frequency decomposition of a 
system's point spread function. The latter is the output of the 
imaging system when an extremely small point is used as input. 
A one-dimensional section of the two-dimensional MTF is obtained 
from the line spread function. 
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Fig. 113-4. Comparison of, A, "white" noisc and, B, C T  noise, each with the same rms deviation. 
The lack of low-frequency structure in the CT noise is evident, especially when viewed at a distance. 

Frequency 

Fig. 113-5. Noise power spectra of the two images in Fig. 113-4. 

trum. A white noise power spectrum indicates that the 
noise at one point in the image is uncorrelated with or  
independent from the noise at  another point. In conven- 
tional radiographs this comes about since separate x rays 
are detected at two different points. Thus the statistical 
fluctuations giving rise to noise at one point are not related 
to the fluctuations occurring at a different position. State- 
ments such as this can be made only if the points are sepa- 
rated by a distance sufficiently large to avoid "cross talk" 
between the points. Consequently, the noise power spectra 
of all physical systems must fall to zero at high frequencies 
just as the MTFs must do. 

Visual example 

T h e  relationship between the noise power spectrum and 
the noise it characterizes may be displayed visually. Fig. 

113-4 shows images containing two types of noise, one 
typifying white noise, and the other, C T  noise. The rms 
deviation of the noise is the same in both images. The noise 
power spectra of these images is shown in Fig. 113-5. White 
noise, typical of film radiography (see above) is charac- 
terized by a flat power spectrum at low frequencies. In this 
example its power spectrum falls off at intermediate fre- 
quencies because of an assumed Gaussian MTF, that is, 
exp(-af2).  As discussed later, the C T  noise power spec- 
trum typically is linear at low frequencies going toward 
zero at zero frequency. In this example the C T  noise power 
spectrum peaks at midfrequencies and then falls off with 
the same MTF as the white noise spectrum. The  major dif- 
ference between the two noise power spectra of Fig. 113-5 
is the greatly diminished contribution at low frequencies 
typical of C T  noise. Since low frequency corresponds to 
large distance, the C T  noise image would be expected to 
have little contribution from clumps of noise with large 
area. The  reduced blotchiness of the C T  noise can be seen 
in Fig. 113-4, especially when the figure is observed from 
a distance so the eye is tuned to large-area structure. 

Dependence on reconstruction algorithm and NEQ 

The  noise power spectrum for C T  noise has been de- 
rived by Riederer et al. (1978). The  derivation is based on 
the filtered back projection algorithm (Shepp and Logan, 
1974) for a parallel-beam geometry in which a constant 
density of x rays is detected in all the projections. The  cor- 
rective filter that is applied to the Fourier transforms of the 
projections is assumed to be: 

G(f) = I f 1  H(f) (113-1) 
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where f is the frequency and H is a weighting (or apodiza- 
tion) factor. The principal restriction on H is that it be 
nearly unity for very low frequencies f. It may be shown 
that the noise power spectrum S for statistical C T  noise 
can be written as follows (Riederer et al., 1978; Hanson, 
1979a; Wagner et al., 1979): 

where NEQ, the number of noise-equivalent quanta, is the 
total effective number of x-ray quanta detected per unit 
distance along the projections (summed over all the projec- 
tion measurements). If there is no source of noise other 
than statistical and the reconstruction algorithm is efficient, 
then NEQ will be just the total number-of detected x rays 
per unit projection length. The presence of other sources 
of noise can reduce NEQ compared with the actual number 
of detected quanta. Also, the measurement of the x-ray flu- 
ence by means of an energy-integrating detector (as is done 
on essentially all commercial CT scanners) leads to a slight 
reduction (-10%) in NEQ compared to that attainable 
through x-ray counting. In equation 113-2 it is assumed 
that the reconstructed image is the linear attenuation co- 
efficient lr, given in units of (cm-1). Then S will be dimen- 
sionless and NEQ will have dimension (cm-1), as it should. 

Equation 113-2 indicates that the noise power spectra of 
CT reconstructions should have a ramplike dependence at 
low frequencies (where H = 1). The slope of S at low fre- 
quencies is determined by NEQ. As such, NEQ may be 
used to characterize the large-area, low-contrast detection 
capabilities of C T  images (see discussion of optimum re- 
ceiver). It shall be shown that equation 113-2 implies there 
is no loss in detection performance in a filtered back projec- 
tion reconstruction compared to the input projection data 
for large objects. As more quanta are detected, S will be 
reduced inversely and the C T  image noise will diminish. 

The dependence of S on the weighting factor H of the 
algorithm should be noted. |/ H Imay be regarded as the 
MTF associated with the reconstruction algorithm in the 
absence of binning problems associated with the finite size 
of the reconstruction pixels (Hanson, 1979b). The MTF of 
the complete scanner system is the product of all the MTFs 
that contribute to the spatial resolution of the final image. 
For many CT scanner systems the dominant contribution 
is the MTF associated with the finite width of the radiation 
beam used in the projection measurements (Barnes et al., 
1979). Thus, although the total noise of the C T  scanner is 
closely related to the spatial resolution of the reconstruc- 
tion algorithm, it may have only a weak dependence on 
the overall spatial resolution. It should also be realized that 
the image noise is not dependent on the pixel size except 
insofar as the latter affects the choice of H. 

Results for a commercial scanner 

The noise power spectrum has been calculated for an 
EM1 CT5005 scanner* to demonstrate that it has the form 

*EM1 Medical, Inc., 4000 Commercial Dr., Northbrook, Ill. 
60062. 

Fig. 113-6. EM  I  CT50    scan of the EMI water phantom used  in 
calculation of noise power spectrum. The light spot near the top of 
the reconstruction is a roller mark produced by the film-processing 
unit. (Courtesy D. P. Boyd, University of California, San Fran- 
cisco.) 

predicted by equation 113-2. The EMI 26 cm diameter 
water calibration phantom was scanned six times at 140 
kVp, 28 mA using the normal scan time (20 seconds). The 
320 x 320 reconstruction matrix was obtained by decoding 
the EMI magnetic tape. The pixel size is 0.75 mm. These 
scans were performed at the University of California (San 
Francisco) Medical Center in October, 1977, and the scan- 
ner was not equipped with the new dose-reducing collima- 
tor (EMI 5221). 

Analysis of  the reconstructions showed that the rms 
deviation (see equation 113-3) of the noise (1.28%) was 
constant over the whole image to very good accuracy. Fur- 
thermore, the average values in the reconstructions were 
uniform to better than 0.1%. Fig. 113-6 shows one of the 
water scans used. Any variations seen in Fig. 113-6 can 
arise only from either the display unit or subsequent film 
processing. The presence of the film-roller mark demon- 
strates the need for quality control in these often neglected 
aspects of C T  technology. 

The noise power spectrum of the EMI reconstructions 
was calculated in a manner similar to that described in the 
earlier discussion of noise power spectrum. The resulting 
spectrum, Fig. 113-7, has the predicted linear behavior at 
low frequency (below 0.1 mm-1). The slope of the spectrum 
at midfrequencies (0.1 to 0.3 mm-1) is greater than at low 
frequency, indicating that EMI has used a value of H which 
is greater than 1 at these frequencies. The resulting edge 
enhancement sharpens edges in the reconstruction to a 
slight degree. Such edge enhancement is usually accom- 
panied by overshoots and undershoots in the step response 
function. 

The NEQ of the EM1 scans can be obtained from Fig. 
113-7 by using equation 113-2. The result is NEQ = 
(1.85 ? 0.03) x lo7 mm-l. Thus the total number of 
equivalent x-ray quanta detected in each scan (product of 
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Radial frequency (mm-'1 

Fig. 113-7. Noise power spectrum for normal 20-second scans on 
an EMI CT5005 of a 24 cm diameter water phantom. The slope 
of the spectrum at low frequencies determines NEQ. 

NEQ times the length of each projection) was 260 mm X 

1.85 x lo7 mm-' = 5 x lo9! 
As was pointed out previously, there are numerous 

sources of noise other than statistical that may contribute 
to C T  reconstructions. These other noise sources may not 
have noise power spectra similar to that expected for statis- 
tical noise. It has been verified that the noise power spec- 
trum of the EMI Mark I has the expected form (Wagner 
et al., 1979). However, it remains to be determined whether 
other C T  scanners produce images with similar noise 
power spectra. 

Autocorrelation function 

The autocorrelation function provides a measure of the 
correlation between noise fluctuations that occur at  two dif- 
ferent points in the image. In  general, it is a function of 
the spatial distance between the points, both in X direction 
Ax, and Y direction Ay. I t  is thus two-dimensional in na- 
ture. If the autocorrelation depends only on the distance 
between point pairs, d =  AX)' + ( A Y ) ~ ,  then it is called 
isotropic. The autocorrelation for a separation Ax in the 
X direction and no separation in the Y direction is calcu- 
lated as follows: ( I )  the reconstructed value at a point x,y, 
r(x,y), is multiplied by the value at x + Ax,y, r(x + Ax,y), 
to form the product  r(x,y) r(x  + Ax,y) (2) the autocorrela- 
tion function is determined by averaging this product over 
all values of x and y throughout the image. A similar pro- 
cedure is followed when a y separation between the point 
pairs, Ay, is desired. 

When the autocorrelation of the noise is positive for a 
given separation, d ,  the noise is said to be positively corre- 
lated at  that distance. This means a fluctuation at a particu- 
lar point in the image is, on the average, going to be ac- 
companied by a fluctuation of similar sign at  a point a dis- 
tance d away. Similarly, a negative autocorrelation function 
for a separation d means that a fluctuation at one point is, 
on the average, accompanied by a fluctuation of opposite 
sign at a point a distance d away. The noise is said to be 

uncorrelated at a distance d if the autocorrelation function 
is zero for that distance. 

T h e  autocorrelation function of the noise is intimately 
related to the noise power spectrum. I t  is just the inverse 
two-dimensional Fourier transform (FT)  of the noise 
power spectrum. In fact, the most economical way of esti- 
mating the autocorrelation for a given noise image is to 
first estimate the noise power spectrum and then calculate 
its inverse F T  (Wagner, 1976). Since the autocorrelation 
function may be calculated from the noise power spec- 
trum, and vice versa, both of these methods provide equiv- 
alent and complete descriptions of the corre1ations present 
in the noise. 

T h e  autocorrelation function can provide some enlight- 
enment as to the fundamental differences between white 
and C T  noise. The  autocorrelation function corresponding 
to white noise is zero for all separations greater than some 
minimum distance. (This can be related to the flat noise 
power spectrum that defines white noise, since the inverse 
F T  of a flat spectrum is simply a 6-function, that is, non- 
zero at only one position-zero separation.) This indicates 
that for white noise, the noise fluctuation at one point is not 
correlated with the fluctuations that may occur at any 
other point. The value at each point in the image fluctuates 
in a truly independent and random fashion. 

For C T  noise, however, the ramp behavior of the noise 
power spectrum at low frequencies implies a long-range 
negative correlation of the noise (Hanson, 1979a). Thus 
the value at each point in the image is correlated or influ- 
enced to some degree by the noise values at all other points. 
If a strong positive noise fluctuation exists at one point, 
there will be a tendency for the noise fluctuations at nearby 
points (but beyond the spatial resolution of the reconstruc- 
tion algorithm) to be negative. This negative correlation 
decreases as the separation of the points increases. 

Noise granularity 

Several measures of the granular nature of image noise 
have been used in the past to investigate film noise (Dainty 
and Shaw, 1974). Although it is not as fundamental as the 
noise power spectrum, the noise granularity emphasizes 
some important properties of CT noise. The  noise gran- 
ularity displays the graininess of the noise as a function of 
the area over which the noise is averaged. It is defined in 
such a way that white or uncorrelated noise leads to a con- 
stant granularity independent of the area. I t  will be shown 
that the long-range negative correlations present in CT 
noise lead to decreasing granularity as the area increases. 
The  noise granularity can be calculated from the noise 
power spectrum, or  it can be estimated directly from the 
noise image. 

The  rms deviation from the mean, usually represented 
by u, of a set of N values V , ,  V,, V,, . . . VN is defined as:  

(1 13-3) 
a = rms deviation = 

(V, - q2 + (V2 - V)2 + . . . + (VN - V)2 
N - 1  
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where the average or mean value V is: 

The rms deviation u is a measure of the amount of scatter 
or variation in the values away from their mean V. Suppose 
the mean value of the reconstruction is calculated for an 
area A at N locations throughout the image. Then the noise 
granularity shall be defined here as: 

G(A) = crA 6 (1 13-5) 

where U A  is the rms deviation (equation 113-3) of these 
means and A is the area. Thus the noise granularity is a 
measure of the amount of scatter in the area-averaged 
values. G, defined by equation 113-5, is Selwyn's granu- 
larity coefficient (Selwyn, 1935) divided by $. 

It is convenient to extend the definition of noise granu- 
larity to include weighted means. The weighted mean is 
calculated by multiplying the reconstruction values by a 
weight function and then summing (or integrating) the re- 
sulting products. In equation 113-5, u.., is then the rms 
deviation of the weighted means. The weight function is a 
function of x and y, which usually is nonzero only within 
a certain distance from the central pixel. It is conveniently 
normalized such that the sum of the weights is unity, and 
it is characterized by an effective area A. For the strict un- 
weighted mean the weight function is a constant over the 
area A and zero elsewhere. The weighted mean then yields 
the average value over the area A. A more interesting 
weight function is, for example, pyramidal in shape. The 
largest weight is given to the central pixel, and the weight 
function drops linearly to zero in all directions away from 
the center. The application of this weight function will be 
demonstrated later. 

Relationship to noise power spectrum 

G may be readily calculated in terms of the noise power 
spectrum S, since -4 is simply the integral over frequency 
of S multiplied by an appropriate function (the square of 
the frequency representation of the weighting function 
used in calculating the mean). Thus S should be considered 
as a more fundamental measure of the noise characteristics 
than G. However, there may be some practical advantages, 
such as ease of calculation, to the use of G. Moreover, G 
is useful because it demonstrates the effect on the rms 
noise (uA) of averaging over different areas. 

The relationship between G and S may be used to show 
that G for large areas is principally determined by the mag- 
nitude of S at low frequencies. For CT noise the ramplike 
dependence of S at low frequency, or equivalently the long- 
range negative correlation in the noise, implies that (Han- 
son, 1979a): 

where NEQ is the number of equivalent x-ray quanta de- 
tected per unit length in the projections (equation 113-2). 
It should be noted that equation 113-6 is a good approxi- 
mation for weighting functions that have tapered edges, 

Fig. 113-8. Noise granularity for the EM1 CT5005 scans. The 
square data points were calculated using constant weight through- 
out square regions, that is, unweighted means. The triangular 
data points result when a pyramidal weighting function is used. 
The open triangles show the effect of not removing frequencies 
below 0.02 mm-1. 

such as Gaussian and pyramidal functions. Equation 113-6 
does not hold when G is calculated for unweighted means. 
The NEQ for a particular CT scanner may be determined 
from a careful measurement of G (A)   using tapered weight- 
ing functions (Hanson, 1979a). 

For CT noise, equation 113-6 indicates that G(A) will 
decrease slowly as the area A increases  (G(A) A-%). This 
is interesting, since for white noise, G(A) is independent 
of the averaging area, A. One interpretation of this effect 
is that as the averaging area increases, the reduction in rms 
deviation of CT noise is hastened by the negative correla- 
tions in the noise. 

Results for a commercial scanner 

The noise granularity has been calculated for the same 
EMI CT5005 water bath scans described previously. As 
shown in Fig. 113-8, G falls off for large A. With the pyra- 
midal weighting function, the falloff is in accordance with 
equation 113-6. The NEQ obtained from this curve using 
equation 113-6 is the same as that obtained from the noise 
power spectrum. The curve derived from unweighted 
(square) means does not drop as fast. The sharp edges of 
the square weight function generate substantial high-fre- 
quency components that accentuate the high-frequency 
portions of the CT noise power spectrum. 

The solid data points in Fig. 113-8 were obtained after 
the noise images were flattened by removal of the very low 
frequencies. When this is not done, the granularity does 
not continue to drop at large areas (open triangles) even 
though the uniformity of the initial EM1 reconstructions 
was good to begin with. Earlier calculations of the granu- 
larity (Boyd et al., 1976, 1977), which did not show the 
falloff of the granularity at large areas, apparently suffered 
from a lack of uniformity in the reconstructions. 
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rms noise 

Frequently the rms deviation (equation 113-3) of the 
noise is quoted for C T  reconstructions. It should be clear 
that the rms noise is not a complete characterization of C T  
noise, since it ignores the frequency dependence of the 
noise. Specifically, the rms noise depends critically on the 
weighting factor H( f )  used in the reconstruction algorithm, 
which will vary from one C T  scanner to the next. It will be 
shown that the ability to detect large-area objects is related 
to the low-frequency noise power content, which is rela- 
tively unaffected by H(f) .  Thus  detectability is not simply 
related to the rms noise. 

The rms noise may be calculated from the noise power 
spectrum (by Parseval's theorem) as the square root of the 
total noise power: 

Since a2 is the integral of the noise power spectrum, it con- 
tains no information about the frequency dependence of 
the noise. 

CT NOISE AND DOSE 

The statistical noise in C T  reconstructions is closely re- 
lated to the dose. T h e  dose efficiency of a given scanner 
may be obtained by comparison of its delivered dose to that 
required by an ideal x-ray scanner to achieve the same 
NEQ. This dose efficiency summarizes all contributions to 
the utilization of the delivered dose such as x-ray beam col- 
limation, compensation wedges, detector efficiency, and 
signal processing, as well as the degrading effects of poly- 
chromaticity, detection of scattered radiation, electronic 
noise, and inefficient reconstruction algorithms. 

Dose dependence 

The  dependence of the statistical noise power spectrum 
on dose is indicated in equation 113-2. Since the number 
of detected quanta (NEQ)  is proportional to the number 
of initial quanta, and hence the dose, D, it is concluded that 
S is inversely proportional to dose. Then, by equation 113- 
7, the rms value of the statistical noise should be inversely 
proportional to ,/6. This is not always the case for com- 
mercial C T  scanners. 

Fig. 113-9 shows the dose (proportional to mAs) depen- 
dence of the rms noise in reconstructions from a GE CT /T 
8800 scanner of an 18-cm-diameter phantom (Cohen and 
DiBianca, 1979). The  (D)-" dependence expected for sta- 
tistical noise is represented by the dashed line. T h e  de- 
parture of the measured noise from this dependence indi- 
cates the presence of contributions to the total noise other 
than statistical. The  source and frequency characteristics 
of these background noise contributions have not been 
determined. For the GE C T / T  8800, the rms noise is pro- 
portional to D-% up to about 200 mAs, indicating that at  
the lower exposures the noise may be statistically limited.  

   
A word of  caution must be given. Other sources of noise 

may also follow the D-% dependence, depending on how 
the increase in dose is achieved. If, for instance, the dose 
is increased by simply integrating the x-ray signals over 

Fig. 113-9. The rms noise dependence on exposure (milliampere- 
seconds) for the GE CT/T 8800 scanner.  The dashed line shows 
the dependence expected for statistical noise. (Modified from 
Cohen, G., and DiBianca, F. A.: J. Comput. Assist. Tomogr. 3:189- 
195, 1979.) 

longer time intervals or by increasing the scan time, other 
random noise sources (e.g., electronic) may be reduced in 
the same way as statistical noise, leading to the same D-% 
behavior. Thus, although the D-" dependency is necessary, 
it is not sufficient to prove that the scanner noise is "quantum 
limited." Proof must be based on the comparison of the 
measured NEQ to the actual number of x-ray quanta de- 
tected. 

Dose efficiency 

The  dose required to obtain a given NEQ for any prac- 
tical scanner will always be more than that required for an 
ideal scanner. How much more will depend on scanner 
design, principally in regard to x-ray beam filtration and 
collimation, and detector quantum efficiency. A good mea- 
sure of dose efficiency is: 

where DNEQ is the minimum dose required to produce the 
measured NEQ for the phantom used and D is the actual 
dose delivered by the scanner. 

Dose specification 

T h e  dose D may be specified in several ways. Common 
current practice is to specify the peak surface dose for 
either a single scan o r  a series of scans. Of course, the sur- 
face dose is easiest to measure, since the phantom surface 
is readily accessible. However, the specification of the dose 
as the average dose throughout the whole slice for a series 
of scans has both calculational and physiologic advantages. 
T h e  average dose is an appropriate measure of physiologic 
damage or risk if radiation damage effects are propor- 
tional to integral dose. T h e  measurement of the average 
dose is more difficult, and several dose measurements are 
required over the cross section of the phantom. 

D N E ~  
DNEQ will be calculated for a highly idealized scanner. 

It is assumed that a perfectly collimated, monochromatic 
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x-ray beam is employed. The  dose is calculated for a cylin- 
drical phantom with no additional bolus material surround- 
ing it. The x-ray source intensity is varied to maintain a 
constant unscattered intensity density at the detector (Fig. 
113-10). Hence NEQ is held fixed across the projection and 
the rms noise is constant throughout the resulting recon- 
struction. The unscattered beam is detected with 100% 
quantum efficiency with no contribution from scattered 
radiation. The average dose in a series of scans is: 

Deposited energy E N~~~ 3 
DNEQ = -- - 

Mass 
( 1 13-9) 

PV 

where NToT is total number of x rays incident on the phan- 
tom, E is x-ray source energy (monochromatic), V is volume 
of each slice, p is density of the phantom, and 8 is fraction 
of the total incident energy that remains in the phantom. 
Under the conditions just described the average dose is: 

where d is phantom diameter, t is distance between ad- 
jacent scans, and /* is linear attenuation coefficient at 
energy E. The integral I required to relate NTOT to NEQ is: 

The approximation given in equation 113-12 is accurate to 
within 0.5% for p d  2 2, which applies to most medical 
situations. 

It will be noted that DNEP (equation 1 13-10) is inversely 
proportional to the scan separation, t. T o  maintain a fixed 
noise level (NEQ), the dose has to be increased when the 
slices are taken at smaller separations. T h e  choice o f t  may 
be viewed as similar to the choice of the dose, which should 
be made on the basis of the diagnostic task at hand. 

The fraction of energy that is backscattered from a 
planar phantom (Berger and Raso, 1960) places an upper 
limit on 8 of about 0.75 in the C T  diagnostic range of 60 
to 100 keV. It is estimated that a further 10% to 25% of the 
incident energy will scatter out of or be transmitted 
through waterlike phantoms with diameters between 20 
and 40 cm. 8 is estimated to be approximately 0.6 for a 
20 cm diameter phantom and should be only weakly de- 
pendent on the diameter. 

The strong dependence of DNEQ on the phantom diam- 
eter is evident in equations 113-10 and 113-12. Conse- 
quently, it is important that the phantom diameter be stated 
along with measurements of NEQ o r  dose. O n  the other 
hand, the dose efficiency 7 should have little dependence 
on d. 

It should be borne in mind that the dose efficiency cal- 
culated here is based on a comparison to an ideal C T  scan- 
ner that employs a monochromatic x-ray beam. All prac- 
tical scanners are restricted to the use of polychromatic 
x-ray sources.  The  utilization of polychromatic x rays leads 

Source 

Detector 

Fig. 113-10. Idealized x-ray geometry assumed for calculation of 
DNEQ The  source intensity is reduced at the edges of the phantom 
to maintain a constant number of unscattered quanta per unit 
length of detector. 

to a reduction in -/I for two reasons. The  first is that with the 
light beam filtration often used, a significant portion of the 
deposited dose arises from low-energy x rays that con- 
tribute little to the detected signals (because of enhanced 
absorption in the phantom). The  second reason is that for 
the detection schemes employed, the detector response is 
proportional to the total x-ray energy rather than to the 
number of x-ray quanta. This typically reduces 7 by about 
10%. 

Results for a commercial scanner 

As an example, the dose efficiency of the EMI CT5005 
scanner may be estimated. The  average dose for a normal 
scan of the 10-inch calibration phantom is estimated to be 
about 3.7 rad for a series of scans taken at 1 cm intervals. 
E is set equal to the effective energy of the scanner, 82 keV 
(Millner et al., 1978). If d = 26 cm, /* = 0.182 cm-' (Storm 
and Isreal, 1970), and 8 = 0.6, the dose required to achieve 
an NEQ of 1.85 X lo7 mm-' with an ideal scanner is DNEQ = 

0.43 rad. Thus the dose efficiency of the EM1 CT5005 is 
about 7 = 12% compared with the ideal scanner. Note that 
this efficiency is quoted for a CT5005 scanner not equipped 
with the now-available dose-reducing collimator. It should 
be noted that the 7) calculated here includes all contribu- 
tions to the dose efficiency. It is a far more stringent mea- 
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sure of dose efficiency than just the "detector efficien- 
cy." 

DETECTABILITY IN THE PRESENCE OF 
CT NOISE 

It is clear from Fig. 113-2 that a reduction in the mag- 
nitude of the noise leads to improved detection of contrast 
differences. But suppose the same phantom were scanned 
on another scanner with completely different spatial resolu- 
tion and, more important, a completely different recon- 
struction algorithm. What measure of noise would allow 
comparison of the ability to discriminate contrast differ- 
ences in the two scans? This is the central issue in the de- 
scription of noise. It is important to use parameters to char- 
acterize the noise that are directly and simply related to de- 
tectability. In this discussion the close relationship between 
N E Q  and the detection of large-area objects is described. 
This relationship is established for the optimum receiver, 
which fully takes into account the characteristics of CT 
noise. The connection between the detection performance 
of the optimum receiver and that of the human observer 
is not well documented. However, it is expected that the 
two performances will track each other in a relative evalu- 
ation of similar images. Thus the basis of comparison dic- 
tated by the optimum receiver will probably be useful in 
the comparison of clinical images. 

Detection task 

To simplify matters, only the binary decision problem 
will be considered here. The decision to be made is whether 
a specific object is present at a specific location. Further- 
more, it is assumed that the background on which the ob- 
ject is superimposed is completely specified. This detection 
problem is exemplified by the phantom in Fig. 113-2 in 
which circular objects are present on a flat background. 
However, the presence of a row of circles rather than a 
single circle alters the problem slightly and complicates the 
analysis of the results. The binary decision case may be ex- 
tended to the multiple decision problem (Goodenough, 
1975; Goodenough and Metz, 1974) or to the problem of 
the search for objects within an image (Wagner, 1977). 
Although the binary decision problem represents a gross 
simplification of the clinical detection situation, at present 
this simplification is necessary to permit theoretical analysis 
and psychophysical testing. 

Clinical diagnosis clearly relies heavily on the ability of 
the radiologist to recognize patterns. The general pattern 
recognition problem is very difficult to model in full detail. 
However, the ability to detect component parts of a pattern 
must form the basis of pattern recognition. Thus it is hoped 
and expected that results obtained from analysis of the 
simple detection problems often encountered in psycho- 
physical testing will be relevant to the more complex clin- 
ical situation. 

Optimum receiver 
Detection sensitivity index, d ' 
Given an object to be detected in the presence of a spe- 

cific type of noise, the best detection performance that is 
possible may be determined through application of signal 

detection theory (Whalen, 1971; Van Trees, 1968; Wagner, 
1978). The  best decision criterion that can be used in a 
given detection problem is referred to as the "optimum' 
receiver" in signal detection theory. The optimum receiver 
will depend on the situation at hand. In particular, the op- 
timum receiver must take into account the properties of 
the noise to be "optimum." It is often possible to charac- 
terize the detection performance of the optimum receiver 
without actually constructing or implementing the detec- 
tion criterion. 

The detection performance of any detector applied to a 
given detection task may be summarized by its receiver 
operating characteristic (ROC) curve. The ROC curve is 
a plot of the probability of a "true positive" response versus 
the probability of a "false positive" response (Chapter 115; 
Green and Swets, 1966). For additive, Gaussian distributed 
noise, the ROC curve for the binary decision problem may 
be completely specified by a single parameter, the detec- 
tion sensitivity index d'. The d '  depends on the object's 
contrast, size, and shape as well as on the magnitude and 
correlations of the noise. For the optimum receiver d '  may 
be expressed in terms of the frequency representation of 
the object R(f) as follows (Barnard, 1972): 

where S is the noise power spectrum (see earlier discussion 
of dependence on reconstruction algorithm and NEQ) .  
It is observed that dfOPTIMUM is determined by the frequency 
sum or integral of the ratio of the signal power to the noise 
power. It should be noted that the design of an optimum 
receiver depends critically on the properties of the noise. 
Thus a receiver that is optimum for white (uncorrelated) 
noise will not be optimum for CT noise. 

The plausibility of equation 113-13 may be illustrated 
for two limiting cases. For the first case the following situ- 
ation will be considered: S is zero for some finite frequency 
interval in which the object power I R / is not zero. The 
integrand in equation 113-13 would then be infinite over 
that frequency interval yielding an infinite value for 
d'opTIMuw This is reasonable, since the optimum receiver 
would only have to check the image power (after the known 
background was removed) in the appropriate frequency 
interval. If there was any power present, it could only be 
due to the object. The optimum receiver could never make 
a mistake! Hence, dlOPTIMUM = m. In the second case, the 
situation in which I R 1 is zero over some finite frequency 
interval is considered. Equation 113-13 indicates that noise 
power in that frequency interval will not influence the op- 
timum receiver. Again, this is reasonable, since the opti- 
mum receiver can remove these frequency intervals from 
consideration by Fourier transformation of the image fol- 
lowed by zeroing out the Fourier amplitudes in the relevant 
frequency interval. 

Equation 1 13- 13 leads one to an interesting conclusion 
concerning the trade-off between noise magnitude and spa- 
tial resolution. It is well known that the rms noise may be 
reduced by smoothing the image. Smoothing also results in 
a loss of spatial resolution, which is supposed to make it 
more difficult to detect small objects or to locate the posi- 
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tions of sharp edges. However, image smoothing is equiva- 
lent to the multiplication of the frequency representation 
of the image by a filter, which generally reduces the high- 
frequency components of the image. Since both / RI "nd 
S arc affected by the filter in the same way, equation 113-13 
indicates that d'opT,MuM is not altered by the smoothing pro- 
cess, unless the filter is zero for some finite range of fre- 
quencies where I R I "s not zero. Thus the performance of 
the optimum receiver is not affected by smoothing (unless 
information is lost by a zero filter). Indeed, it is not neces- 
sary to trade off between low noise and high spatial resolu- 
tion for the optimum receiver. 

These statements concerning the optimum receiver may 
or may not have bearing on what might be expected of a 
human observer. For example, the human observer may 
suffer critical band masking between frequency intervals 
(see Chapter 115). Thus it is unlikely that the human ob- 
server could make use of information in one frequency 
interval that through filtering was reduced by a factor 100 
relative to neighboring frequency intervals. Of course, the 
"optimum receiver," being a conceptual entity, would have 
no difficulty recouping the information in the attenuated 
frequency band. 

Although the optimum receiver may not realistically 
characterize the performance of the human observer, it 
provides the ultimate standard against which the human 
observer may be compared. If it is found that the perfor- 
mance of the human observer falls short of this ideal in the 
simple detection task envisioned, then it may prove useful 
to explore the reasons for the shortcomings of the human 
observer. 

Application to CT 

The application of signal detection theory to computed 
tomography leads to an interesting result (Hanson, 1979a). 
Of course, the projection data themselves may be used to 
detect the presence of an object within the projection field. 
It is found that when the totality of projection data is ana- 
lyzed by the optimum receiver, the resulting dlOPTIMUM is 
equal to or greater than the dfoPTIMuM obtained from anal- 
ysis of the reconstruction. In other words, the detection in 
a C T  reconstruction of a specific object on a known back- 
ground can be no better than when the detection of the 
same object is based on the direct projection measurements. 
Furthermore, the detection performance based on an ef- 
ficient reconstruction can equal that based on the pro- 
jections. It has been shown that the filtered back projection 
algorithm is efficient, in this sense, for the detection of large 
objects (Hanson, 1979a, 1980). I n  the practical case of 
reconstruction in a discrete pixel array from discretely 
sampled projections, there can be a loss of information 
leading to some degradation in detection sensitivity (Han- 
son, 1979b). 

The  frequency representation, R(f), of an object with 
large area is concentrated at low frequencies. Then equa- 
tion 113-13 indicates that the detection sensitivity of large- 
area objects will be principally determined by the low-fre- 
quency content of the' noise power. Since statistical C T  
noise has a ramplike noise power spectrum at low fre- 
quencies, the single parameter that characterizes the slope 

of the ramp, NEQ, is a sufficient measure of the detection 
sensitivity for large objects. I t  is found (Hanson, 1979a) 
that the optimum sensitivity index is: 

7 

d f O p T ~ ~ U ~  = A p  A',/NEQ (113-14) 

where A p  is the average contrast of the object with an ef- 
fective area A. Equation 113-14 is a good approximation 
for most objects of large area (square, circle, etc.). The A'/" 
dependence of dlOPTlMUM should be noted. It arises from 
the ramplike nature of the C T  noise power spectrum. For 
white noise (s = constant), d '  is proportional to A%. 

Example 

An example can illustrate the use of equation 113-14. 
Consider a 5 mm diameter cylinder placed in a water phan- 
tom with a 26 cm diameter. What is the value of d '  achieved 
by an EM1 CT5005 scanner if the reconstructed density 
of the cylinder differs from water by 0.4%? Since p = 0.019 
mm-' for water, and the area of the reconstructed circle 
is A = n x 2.5' = 19.6 mm2, equation 113-14 gives: 

For the binary decision problem, a d '  of 3.0 results in an 
ROC curve such that a true positive response can be made 
93% of the time for a false positive probability of 7%. If the 
position of the cylinder is unknown, then its detection is 
made much more difficult by the necessity of a search pro- 
cedure. The  resulting ROC curve would be much poorer 
than that for the binary decision case (Goodenough and 
Metz, 1974). 

Human observer 

The  relationship between the detection capabilities of  the 
ideal detector and those of the human observer has not 
been fully explored for images containing CT noise. It is 
possible that human observers may have shortcomings, 
particularly in their ability to integrate the noise over the 
object area. The unusual correlations present in C T  recon- 
structions may prove difficult for the eye-brain to take into 
account. Several psychophysical studies (Hanson, 1977; 
Joseph, 1977, 1978; Chew et al., 1978; Orphanoudakis*) 
have shown that under certain circumstances observer de- 
tectability of large objects is improved by smoothing C T  
images. T h e  reason for this improvement remains to be 
explained. Furthermore, the A-% dependence in the 
threshold contrast for a constant d '  predicted in equation 
113-14 has not been verified for human observers (Cohen, 
1979). The  effects of altered viewing conditions and train- 
ing have yet to be investigated. Further discussion of this 
topic may be found in Chapter 1 15. 

Three-dimensional aspects 

T h e  discussion of preceding sections dealt with the de- 
tection of a two-dimensional object in a single C T  scan. In 
reality, however, the radiologic detection problem is three- 
dimensional in nature. The difficulties in detecting three- 

*Personal communication, 1979. 
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dimensional objects in C T  scans a r e  often referred t o  as 
"partial volume" effects (Chapter  109). T o  illustrate the 
problem, consider the detection of a sphere of diameter 
d immersed i n  a uniform background of  slightly lower 
density. I f  t h e  sphere happened to lie completely within a 
single C T  slice, its effective reconstruction density would 
be less than its actual density because of the  partial volume 
effect. But  if adjacent slices happened  to split the  sphere  in 
half, its reconstructed density would be halved relative to 
the case just described. In  t h e  latter situation, t h e  detection 
of the sphere is made  more  difficult by t h e  large reduction 
in its reconstruction density, particularly if each slice is 
viewed independently. A n  improvement  in  detection could 
be attained by simply averaging t h e  two slices, since the 

rms noise would be  reduced by a factor of  -. This  prob- k 
lem illustrates the  desirability of  a display system that  allows 
full use o f  t h e  three-dimensional information available in 
C T  (Hanson, 1979a). 

CONCLUSION 
T h e  detection limitations inherent  in statistically limited 

computed tomographic (CT) images have been described 
through the  application of  signal detection theory. T h e  
detectability of  large-area, low-contrast objects has  been 
shown to be chiefly dependent  o n  the  low-frequency con- 
tent of the  noise power spectral density. For  projection data  
containing uncorrelated noise, the  resulting ramplike, low- 
frequency behavior of the  noise power spectrum of the  C T  
reconstruction may be  conveniently characterized by t h e  
density o f  noise-equivalent quanta (NEQ) detected in  t h e  
projection measurements. T h e  NEQ for  a given image can 
be determined either f rom a measurement of  the noise 
power spectrum o r  f rom the  noise granularity computed 
with a n  appropriate  weighting function. T h e  performance 
for  the detection of  large objects is as  good in a n  efficient 
reconstruction (e.g., filtered back projection) as  that  based 
o n  the projection data. A measure of the  efficiency of  
scanner dose utilization was presented that  compares the  
average dose required by a n  ideal x-ray scanner to  obtain 
the measured NEQ to that delivered by the  actual scanner. 
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