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INTRODUCTION

Recent developments in theoretical microdosimetry require the use of proximity
wctions (1). These functions refer to two different aspects of the process of cellular
jon induction by ionizing radiation: the geometrical distribution of sensitive loci
the cell [denoted s(x)] and the pattern of elementary energy transfers [#(x)].
he function s(x) characterizes the irradiated structure; it is therefore indepen-
of the radiation field and will not be considered here. #(x)dx is the expected
m of energy transfers contained in a shell of radius x and thickness dx centered
n-energy transfer point randomly selected in the irradiated medium. In this
nition, it is assumed that the random selection of transfer points is made at a
te proportional to the energy transferred at that particular point.
he biophysical significance of the proximity distribution, #(x), is apparent in
context of the generalized formulation of the dual radiation action theory (1),
ere it is related to the yield of lesions per cell from intratrack interactions.
her details may be found in Ref. (7). In particular, Kellerer and Chmelevsky
have established a direct mathematical relation between #(x) and the micro-
simetric quantity yp, i.e., the dose-average of the lineal energy. For a spherical
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cavity of diameter A, this relation is

3 A[ 3x x3:]
)’D(A)—zA | 1 2A+2A3 t(x)dx.

To date no experimental methods are available for directly measuring f(y
However, a number of calculations of #(x) have been performed using Monte Cayj
techniques [for example, Refs. (3-6)]; presently their accuracy is limited by t
scarcity of reliable cross-sectional data for the primary interaction processes
simulated in the computer codes. Furthermore, Monte Carlo calculations are fre
quently hindered by the rather large amounts of computer storage space and run
ning times necessary to attain a reasonable degree of statistical accuracy. It
therefore desirable to establish a more direct method for obtaining #(x) from ex
perimentally available quantities. Such a method is suggested by Eq. (1).

In the present paper, an algorithm is proposed for the unfolding of #(x) fro
Eq. (1). The development of this algorithm was stimulated by recent measuremen
of yp for photon fields over a wide range of simulated site diameters using the s
called variance technique (7, 8). A calculation, based on these measurements, o
the proximity function for ®Co is presented, together with practical methods fg
the application of the algorithm. The applicability of these methods is furthe
illustrated with a set of yp values derived from a calculated proximity function.

THE ALGORITHM FOR CALCULATING #(x)

Let us assume that the function yp(A) is known for any value of A, ie, th
diameter of the spherical site. The solution of Eq. (1) can be obtained using Melh
transforms (9); consider Eq. (1) rewritten in the form

ep(A) = j:o u(i) t(x)dx,

“\a)” TaaTaar TR

=0, x> A, 3
and the dose-averaged lineal energy, yp, has been replaced for convenience by th
dose-averaged energy, ep:

where

_2A

ep
3)’1)

Let E(o), U(s), and T(s) be the Mellin transforms of ep(A), u(x/A), and t(x
respectively. For instance, by definition, the Mellin transform of #(x) is

T(o) = fw x*'t(x)dx
0

and the inverse transform is

C+ico

1
tH(x) =— « x °T(o)do,
T 2mi

C—ioo
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re C is a positive real number, sufficiently large to avoid poles in the integration

E(c) = OOO A'dA fo ) u(—z)t(x)dx, (7

1sing Monte Cagl, E(o) = f x“1(x)dx f Y u(y)dy, (8)
0 0

lculations are fr re y = x/A. From Eq. (8), using Eq. (5),

1ge space and ry E(o) = T(c + 1)U(—0), (9)
sal accuracy. It  thus
1ng #(x) from e T(s) = E(s — 1)/U(—0 + 1). (10)

yy Eq. (1).
lding of #(x) fro
:ent measuremen
eters using the g
measurements,
ctical methods fg
nethods is furth
»ximity function.

s result indicates that, given the transforms E(o) and U(s), one may calculate
) and the corresponding function #(x). U(—o + 1) may be readily calculated
g Eq. (3), and Eq. (10) becomes

T(o) =% (1 —06)2—0)4—0)E(c —1). (11)
m using Eq. (6),

Ct+ico

H(x) = # x (1 —0o)2—0)4—0)E(c — l)do. (12)

C—ioo

s solution of Eq. (1) can be simplified by using two theorems of the Mellin
nsform (9): Let F(o) be the Mellin transform of f(x). Then:

ue of 4, ie., tﬁ
ained using Melli

heorem 1: F(o + n) is the transform of x"f(x),

: d\
“heorem 2: (—1)"¢"F(0o) is the transform of (x E) f(x),

Qre n is a constant integer. Using Theorem 1 with #» = 1, one obtains, from Eq.

)

1 C+ioo
(3 xt(x) = — P x °c(o — 1)(o — 3)E(0)do
.onvenience by th : T Voo
1 C+ioo
, = — Py x (¢® — 46* + 30)E(0)do. (13)
« T C—ico
4
¢ ng Theorem 2, this expression becomes
ST R D S
£ 1(x) is : xt(x) = 3 xdx + 4 )de + 3 )tdx ep(x) (14)
e gt 4]
tH(x) = 3 l:x i + Tx e + 8 i ep(x). (15)

vial transformation, using Eq. (4), yields a similar expression relating

0 yp(x). -
‘he technique for deriving #(x) from a set of discrete yp, values therefore involves
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ascertaining the first, second, and third derivatives of yp at all diameters betwee
the minimum value at which yy, is known and R, the maximum range of the partic
under consideration [for values x = R the proximity function #(x) is identica]
zero, by definition, and no calculation is necessary®]. Some applications of th
proposed algorithm, Eq. (15), are discussed in the next section.

PROXIMITY FUNCTION FOR “Co y RAYS

Bengtsson and Lindborg (7) have reported a set of experimental values of yy, fo
a %°Co beam as a function of the site diameter. These results cover a wide rang
of diameters (11 nm to 22 um) and were obtained using the variance technique
It is important to remark, however, that the detection system was sensitive tg
ionization processes only, and this limitation will be carried over in the assocmted
proximity function.*

The calculation of #(x) with Eq. (15) requires that the experimental data eD(x
be fitted by some technique yielding continuous first, second, and third derivatives
Perhaps the simplest approach is to find a simple continuous function that gives
a good fit to the data in the “minimum x-square” sense. Such a function has been
reported by Forsberg et al. (8) for their *°Co data, i

yo(x) = 2.01x704, (16

where yp and x are, respectively, in keV/um and pm. From Egs. (4), (15), and
(16), the proximity function can be easily calculated,

((x) =% (B + 1)(B + 2)(B + 4)x",

where, in this case, « = 2.01 and 8 = —0.04 [see Fq. (16)]. The results, togethe
with the y;, data, are shown in Fig. 1. An error band for the proximity function
corresponding to one standard deviation is also shown.’

3 For site diameters x > R the analytical form of yp(x) is well defined and is given by

yo(x) = A/x — B/x* + C/x*,

where the constants A, B, and C are defined in terms of the zero, first, and third moments of #(x
respectively:

A= l.5f H(x)dx = 1.5E,
o

B=25 J. xt(x)dx,
0

C=0.75 f x*t(x)dx.
o

Here E is the energy of the primary particle. A fit to yp(x) data for large diameters (compared to &)
may therefore provide useful information concerning the moments of #(x).
4 The significance of this effect has been discussed in Ref. (6).
SIf yp(x) = yp(x,a,8), where o and B are parameters as in Eq. (16), then from Eq. (15) one obt
t(x) = t(x,a,8). The variance of #(x) can be calculated to first order using

at ot ot ot
7 (a ) Ta (66) o 38 %

where ¢2 and ¢} are the variances of « and g and 0.5 their covariance, as obtained from the fitt
procedure for evaluating « and 8.
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Jiameters betweey
inge of the particle
t(x) is identically
pplications of the

As with any functional fit to experimental data a certain bias is introduced
ending on the particular analytical expression chosen. The effect of such a bias
q the calculated proximity function is difficult to estimate since the choice of any
ticular form [such as that of Eq. (16)] is rather arbitrary. It was felt, therefore,
t a more general fitting procedure should be applied such that, with only minimal
constraints, a least-biased, smooth analytical representation of the data is obtained.
a procedure, based on B-spline “minimum x-square” fitting, was selected in
jer to reanalyze the same *°Co data.

A short description of the theory involved in fitting data in the least-squares
se using B-splines is given in the Appendix. Further details may be found in
ef. (10). The basic idea in a spline calculation is to fit the data with piecewise
olynomial curves (i.e., splines) defined, apart from normalization constants, by
et of breakpoints or knots. The normalization constants are calculated such that
pline functions provide a best fit to the data in the “minimum x-square” sense.
r the present application, splines of fourth degree (or more) are necessary since
unction that gives ntinuity up to the third derivative at the knots is required [see Eq. (15)].
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G. 1. Circles: Experimental values of yp for ®Co redrawn from Ref. (7). Broken curve: Analytic
p data using Eq. (/6). Full curves: Proximity function calcylated using the analytic fit to yp(x),
error bands corresponding to one standard deviation (see text). All distances in the figure correspond
it density material.

tained from the fitti
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yp or t(x)/ eV nm’’

10?

x/um

F16G. 2. Circles: Experimental values of yp for ®Co redrawn from Ref. (7). Broken curve: Quarti¢c B
spline fit to yp, for ®Co. Full curve: Proximity function calculated using the B-spline fit to yp{x). Al
distances in the figure correspond to unit density material.

We have used the computer code “FC” (/1) from the SLATEC mathematica
library (12) to fit discrete data in a “minimum x-square’ sense using B-splines a
basis functions.® An important feature of this code is that it allows the user t
impose equality and inequality constraints on the spline functions and their deriv
atives; the shape of the required curve may thus be specified.

The B-spline subroutinc was uscd to obtain a smooth fit to the cxpcrimental data
for yp. The fit was obtained using a full logarithmic representation (i.e., In yp v
In A) with the following constraints: (a) nonpositive derivative at the last knot, and
(b) nonnegative second derivative for all the knots. The B-spline fit is shown i
Fig. 2. Also shown is the proximity function calculated with Eq. (15).

In order to further test this algorithm, a proximity distribution and yp value
were calculated from 100 Monte Carlo-simulated tracks of 1.0-keV electrons i
water vapor. Simulated “experimental” y;, values were generated by displacing
randomly the calculated yp values with standard deviation of 5%. Using thes
“experimental” data (10 points from 10 nm to 70 nm) the B-spline procedur
described before was repeated. The results are shown in Fig. 3. From the good
agreement between the calculated and unfolded proximity functions, it is apparent
that the procedure proposed is reliable if a sufficient number of yp values of re
sonable accuracy are provided.’

¢ B-Splines are a special representation of spline polyngmials, easier to use in computer codes. (S
Appendix.)
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CONCLUSIONS

An algorithm was demonstrated which allows the computation of the proximity
inction when the variation of yp with site size is known. As pointed out above,
present experimental techniques for measuring yp only a proximity function
jonizations can be obtained; the significance of this limitation remains to be
estigated.

For highly stabilized photon beams, such as those used by Bengtsson and Lind-
org (7) and Forsberg et al. (8), the acquisition of data on the variation of yp with
iameter down to nanometer diameters is now an established procedure. However,
or particle beams such as neutrons, pions, and heavy ions similar techniques have
- yet been established. In the authors’ opinion, however, such techniques are
easible and should be developed. The advantages of such a system would lie not
in the possibility of doing basic investigations with the resultant proximity
tions, but also in the ability to make fast determinations of yp, a good indicator
gross radiation quality.

APPENDIX: MINIMUM x-SQUARE CURVE FITTING WITH B-SPLINLS

‘Qnsider a set of data points (x;, y;), i =1, ..., n. The problem is to find a
ction (in this case a family of functions) f(x) defined for all x such that

f(x) =y, i=1,2,...,n (17)

the “minimum x-square’” principle is adopted then the function f(x) should be
h that the weighted sum of squares

- z wilf(x) — il (18)
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is minimized. In Eq. (18) w; are the weights of the observations y; when thejr
standard deviations, o;, are known, then

w; = 1/ct. (19)

In many cases the functional form of f(x) is known and the problem then reduces
to finding values for the parameters of the functional form that minimize Eq. (18),
If no such information is available, the next best procedure is to fit the data with
piecewise polynomial curves (a single, high-degree polynomial is usually not sat-
isfactory because the solution will oscillate widely between the data points). To
define this approach more precisely, consider an interval [a,b] that contains the
data points {x;} and let {z;},i =1, ..., n, be an ordered set of points in [@,b]. The
points {z;} are called knots. On each interval [z, z,] * -+ [2,1, 2,], the function
f(x) is a polynomial of degree k (a different polynomial for each interval). In
general, a spline of degree k (or order k + 1) is defined as a piecewise polynomial
of degree k with k — 1 continuous derivatives. A special subset of the spline functions
that are especially amenable to computation are B-splines that have only k; < k
— 1 continuous derivatives at the knots. A natural requirement for splines is con-
tinuity for f(x) and for the first and second derivatives of f(x) at each knot (..,
slopes and curvatures are continuous at the knots). Clearly cubic splines are the
lowest order that satisfy these requirements; it is clear, however, from Eq. (15),
that for our application quartic polynomials are required to ensure continuity of
the third derivative. :

The basic approach in a B-spline representative is to express the spline in the
form of a set of polynomials B(x),

f(x) = 2. A:B(x), (20)

such that B(x) is zero over as many intervals as possible. It can be shown (10)
that for a spline of degree k, B(x) can be made nonzero over a minimum of (k
+ 1) successive intervals (for quartic splines, five intervals). Then, apart from a
normalization constant, B{x) may be written’

B(x) =0, X = Zick+1s
i «
=2, Clj-irkan(X — Zj)kH(x = Z)Zikr1 < X < Zigy, (21
Jj=i—k .
=0, X = Zits

where H(x) is the Heaviside function
H(x) =1, x =0,
=0, x < 0. (22

For quartic splines, four of the five “C” coefficients in Eq. (21) can be evaluat@d
using the continuity of B; and its derivatives at the knot z,,,. The general “minimum
x-square” fitting problem reduces then to determining the parameters 4
in Eq. (20). ‘

- i
7 Since each polynomial B, is defined over five intervals, it is necessary to add four additional knot

at each end of the interval [a,b].
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18 y; when their The actual selection of knots in the interval [a,b] is somewhat arbitrary since

o date no established procedure is available. For simple curve-fitting purposes the
(19) esult is frequently insensitive to the actual number or position of the knots. The
" uation is different, however, when the final result involves higher-order derivatives
f the spline fit, as in the proposed algorithm. The B-spline calculations in the
resent paper were performed using the following two guidelines: (a) the number
f knots was much smaller than the number of data points (a natural requirement
r a minimum x-square approach), and (b) the position of the knots was selected
o obtain the minimum weighted sum of squares, 7, in Eq. (18).
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