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A general probabilistic technique for estimating background contributions to measured spectra is presented. 
A Bayesian model is used to capture the defining characteristics of the problem, namely, that the background 
is smoother than the signal. The signal is allowed to have positive and/or negative components. The back- 
ground is represented in terms of a cubic spline basis. A variable degree of smoothness of the background is 
attained by allowing the number of knots and the knot positions to be adaptively chosen on the basis of the 
data. The fully Bayesian approach taken provides a natural way to handle knot adaptivity and ailows uncer- 
tainties in the background to be estimated Our technique is demonstrated on a particle induced x-ray emission 
spectrum from a geological sample and an Auger spectrum from iron, which contains signals with both 
positive and negative components. 

PACS number(s): 02.5O.Rj, 07.60. -j, 29.3O.Kv 

L INTRODUCTION 

Quantitative spectral analysis often relies on being able to 
subtract from the data the contribution from the background. 
In a previous paper, von der Linden et al. [l] presented a 
general approach to estimating a background contained in 
spectral data that was based on the assumption that the signal 
varies much more rapidly than the background. In that work 
the background was represented by a sequence of cubic 
splines with equally spaced knots. The minimum knot spac- 
ing was determined by the width of the signal structure that 
one wishes to exclude from the background curve. 

This paper extends the earlier work in two important di- 
rections; first by employing adaptive splines to represent the 
background, which is achieved by allowing the number of 
spline knots to vary in accordance with the requirements of 
the data, and secondly, by handling bipolar signals, i.e., sig- 
nals with positive and negative components. We also address 
several calculational issues, including the improvement in 
the convergence procedure to determine the spine ampli- 
tudes. 

We motivate our improvements by referring to a graph of 
the results from Ref. [l] showing a particle induced x-ray 
emission (PIXE) spectrum and the estimated background 
function. The data in Fig. 1 are displayed on a logarithmic 
scale to exhibit a deficiency in the previous results, already 
pointed out in Ref. [2]. At the high-energy end of the spec- 
trum, which contains no apparent signal structure, the esti- 
mated background has many oscillations. These oscillations 
do not appear to be supported by the data, given their large 
uncertainties. Although the wiggles in this tail region of the 
spectrum do not pose a problem for interpreting this data set, 
they demonstrate an inherent problem in the previous ap- 
proach, which could degrade its estimates underneath signal 
peaks. Our primary goal here is to avoid this spurious behav- 
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ior in the estimated background The approach we take is to 
allow the number of knots and their placement to adapt to the 
requirements of the data, similar to what was used before for 
deblurring [3]. 

Another objective of this paper is to demonstrate that, 
with a minor modification to the method presented in Ref. 
[ 11, it is possible to cope with signals with positive and nega- 
tive components. We demonstrate this capability on an Au- 
ger spectrum. We refer the reader to the earlier paper [l] for 
details that we omit here. 

II. BAYESIAN APPROACH TO BACKGROUND 
ESTIMATION 

The general idea that we wish to capture with our Baye- 
Sian model is that a spectrum consists of a smooth back- 
ground with additive signal peaks that are relatively com- 

10° 0 0.1 0.2 0.3 0.4 0.5 
Energy (ah units) 

FIG. 1. A PIXE spectrum for a geological sample with the back- 
ground estimate obtained in Ref. [1] using 35 evenly spaced spline 
knots. The oscillations in the estimated background above the en- 
ergy of 0.25 seem unwarranted, given the large uncertainties in the 
measurements in this region. 
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pact. We seek a curve b(x), defined over an interval from 
x en to x-9 that describes the background under a spec- 
trum, which is discretely sampled at positions xi over the 
same interval. The measured values of the spectrum at these 
points are designated di, collectively referred to as the vec- 
tor d. To cover a wide range of applications, we identify the 
background by the fact that it is smoother than the signal. 
More restrictive specifications are certainly possible for a 
restricted class of problems and can be dealt with in a similar 
fashion. The smoothness of the background is ensured by 
expanding it in terms of a set of cubic spline functions 

E E 

bi= C &Xi 95v)cvz C @i,&v 
u=l v=l 

(0 

or in vector notation b= @c. The c, are the spline values at 
the E knot positions Sy. The transformation &(xi ,&,) de- 
pends on the vectors 5 and x and, hence, the matrix @ de- 
pends on these vectors. Without going into detail, we use the 
results of spline theory [4-61 to determine the elements of 
a. An implicit assumption must be made about the curve at 
the end points. We choose the natural spline condition, that 
is, assume that the second derivatives of b(x) are zero at the 
ends of the interval. Other possible boundary conditions are 
given in Refs. [4,5]. Although the basis set that we consider 
consists of cubic splines, our approach can be easily adopted 
to other smooth basis functions. 

In our Bayesian approach we focus on the probability of 
the background having a value bi at each measurement po- 
sition xi represented by p(bild,M,Z). This probability de- 
pends on the full data set d, an as-yet-unspecified model for 
the background, summarized here simply as M, and all rel- 
evant information Z concerning the nature of the physical 
situation and knowledge of the experiment. We will include 
in Z knowledge of the noise in the experimental measure- 
ments. Also included in Z is the knowledge of the signal 
structure that we wish to exclude from background, summa- 
rized in our spline model by the parameter Ax, the minimum 
distance between sphne knots. Both of these specifications 
play a crucial role since they provide the information that the 
model uses to discriminate the signal from the background. 

Equation (1) allows us to focus on the c as the fundamen- 
tal set of parameters to be estimated. According to Bayes law 
[7-91, the desired probability for c can be expressed as 

p(cl4S,E,Z)= /WIG XE9z)p (4 ma 
P M  XE9Z) l  

p(cl S,E,Z) = v -E/2(zD)1’2r(E/2)(cTDc)-ER. (5) 

In this paper we allow the positions of spline knots & to 
The likelihood, p(dlc&E,Z), expresses the probability of vary, except for El and eE, which are fixed at xmin and x-, 
the measurements, given their uncertainties. The prior, respectively. The objective is to allow a variable degree of 
~(c~s,E,z), is a probabilistic statement of what we know smoothing for the background. Since the & are now pararn- 
about the quantities of interest, c in this case, independent of eters that are subject to a probabilistic treatment, we need a 
the experimental data. The denominator, p( d( 5, E ,z) prior for them. We pick a general noncommittal prior by 
=Jd% p(dlc,&E,Z)p(c(&E,Z), called the evidence, guar- assuming it is uniform over the phase space available to the 
antees that the posterior has the correct normalization: & [3]. For the interval from &=xmin to eE=xmax, taking 
JdEc p(cld, g, E,Z) = 1 o As we shah see, the evidence plays a into account the minimum spacing Ax and the required or- 
central role in determining the number of spline knots E in dering of the knot positions, that is & + Ax< 52,& + Ax 
our adaptive model. s53r l  - l  ,SE-l+A--h the prior on g is p(aE,Z) 

A. The prior probabilities 

The distinguishing characteristic of the background that 
we wish to exploit is its smoothness. In the earlier work [1], 
the prior on the background used to express its smoothness 
was based on the integral of the square of the slope of the 
background. That prior is inconsistent with the cubic splines 
used to represent the background, which are known to mini- 
mize the integral of the square of the second derivative. 
Therefore, we now use the more appropriate prior 

PUG4 = Zexp l (-Pj dx~bW~2), (3) 

where b”(x) is the second derivative of the background func- 
tion at X. This prior has the additional advantage over the 
previous one that it does not penalize linear backgrounds. 
The factor 2 is included for normalization. The positive pa- 
rameter p controls the width of this prior distribution. 

The expansion in Eq. (1) yields for the prior 

p(+,S,E,Z)= v -E’2pE’2( Zh) “2exd - pcTDc}, (4) 

where D,l ‘Y2 =@x+~~(x)~$~~(x). The matrix D can be 
evaluated analytically or numerically. 

The determinant of D provides the volume factor needed 
for the proper normalization of the Gaussian. The tilde over 
the determinant symbol indicates the need for a special treat- 
ment of the determinant evaluation. Because both constant 
and linear eigenvectors have zero eigenvalue, D has two zero 
eigenvalues. Thus the actual determinant of D is zero, which 
would make Eq. (4) useless. The proper interpretation is 
achieved through the addition of - epcTc to the exponent in 
Eq. (4), which adds a very small e to the diagonal elements 
of D. The modified determinant is det D= 8zD, with the 
understanding that GD is the product of the E - 2 nonzero 
eigenvalues of D. For parameter estimation, e is an unimpor- 
tant proportionality factor and for model comparison the 
term drops out. Thus one obtains the same results as if one 
had started with Eq. (4). 

Since p is a nuisance parameter for our problem, accord- 
ing to the rules of probability, it should be integrated out, 
that is9 p(cl~)=Id~p(~,cl~)=~~~p(cl~-)P(CLI~)- The? 
dot indicates any applicable conditionals that do not need to 
be specified. This parameter can be dealt with straight away. 
The appropriate prior for a scale parameter, such as F, is 
Jeffreys’ prior ~(&)a l/p, with the usual caveats [l]. The 
integration yields the multivariate Student’s t distribution 
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=Z-‘n~=~~[~~-~+A~~5kl, where the function 6 is unity 
when its argument conditions are met and zero otherwise. 
The normalization integral 

I 
x--(E-2)Ax x--(E-3)A-x Xmax -lb 

z= a2 
I 

a3 . . . 
I 

455-l 
X,h+AX 52+h &-2+Ax (6) 

is easily done, resulting in 
-E 

(E-2)! rl[ e[&.ml+Ax~&] -- 
k=2 

pW,Z)= -(E- ~)Ax]@-~) l  

(7) 

C 
X--X& 

The denominator is simply the total volume of the space in 
which the (E- 2) & parameters can vary. The factorial in 
the numerator accounts for the ordering requirement. 

The number of spline knots E is also variable. The prior 
on E is chosen to have a uniform value of [Emax-Emin 
+l]-’ for all integer values of E between the minimum num- 
ber E&=2, and the maximum number, E,, 
=integer&,-xti)/b]+ 1, where the output of the inte- 
ger function is the integral part of its argument. It is zero 
elsewhere. 

B. The likelihood 

The first factor in the numerator of Eq. (2), p(dlc,&E,Z), 
is the likelihood of the experimental data. The data generally 
consist of the sum of signal and background components, 
plus a contribution Corn noise. The innovative idea presented 
in Ref. [1] is to treat data points containing contributions 
from the signal as outliers when attempting to fit the back- 
ground. By incorporating it probabilistically and considering 
it to be a nuisance variable, the signal is removed from the 
analysis by integrating over it. This idea grew out of recent. 
Bayesian approaches to the treatment of outlying data in 
which it was recognized that the presence of a wide non- 
Gaussian tail in the likelihood function effectively reduces 
the influence of outliers [ 10-131. 

We introduce the proposition &: “datum di is purely 
background” and its complement &: “di contains some 
signal contribution.” The likelihood is the probability distri- 
bution corresponding to the measurement uncertainty, given 
the expected measurement, yi. When & is true, the likeli- 

hood for the it,h measurement is 

(24) - 1’2exp[ - ( di - y i) 2/2~f], Gaussian, 

p(dilBi ,yi Z)= Yei 
LeXp[ -yi], (yi’-O), Poisson, di! 

(8) 

where the expected value is just the background function at 
xi, namely, yi= bi . The parameters E and g do not appear 
here because their dependence is implicitly contained in bi . 
We allow for the two most common types of measurement 
noise corresponding to the uncorrelated Gaussian or Poisson 
distributions. When the measurement contains a contribution 
from the signal, the likelihood p(dilsi ,& ,bi ,z) is given by 
the same formula, but with yi=bi+si. 

Similar to what was done in Ref. [l], rather than treating 
the signal as a variable to be estimated, we describe the 
signal probabilistically in terms of a prior. We provide for 
the possibility of signals with both positive and negative 
components by writing the prior as a two-sided exponential 
function 

1 
Ailexp 

si [ I -hr , s+ 0, 
+ 

PtsilA+ 9X- 9z)= si 

i I 

(9) 
K’exp +x , Sic0 - 

with the restrictions X+ >O and X _ >O. In other words, we 
introduce two different scales for the signal, dependent on its 
sign. According to the Maximum-Entropy principle the ex- 
ponential prior is the least informative prior being constraint 
only to a given scale length A++=&+). 

The likelihood for the case Bi is obtained by marginaliz- 
ing over the signal 

p(diIBi ,bi J)= I O” dsip(di)si ,Bi ,bi ,z)p(siIA+ ,A- ,z)* -00 
(10) 

For the Poisson case, the lower limit must be set to - bi to 
respect the nonnegativity constraint of the Poisson likeli- 
hood. This integral can be evaluated analytically, yielding 
for the positive part of the exponential of Eq. (9), i.e., (A 
- - A ) + 

p(diIBi ,bi ,A,?)= 

&[ l+e{A’~$%$]}exp[ -*(diS:)+U”2], Gaussian, (11) 

exp[bilX] I’((di+ l),bi( 1 +A-‘)) 

Ihl(i +Pjdi+l IY(di+ 1) 
, Poisson, 

where I’(a,x)=J,“e-‘ta-i dt(a > 0) is the incomplete gamma function and r(a)=r(a,O) is the Gamma function [I’@ 
+ 1) = n !]. For the combined positive and negative signals in Eq. (9), the likelihood is the sum of two contributions, one 
obtained by substituting A+ for A in Eq. (11) and the other by substituting - A - . In the latter substitution for the Poisson case, 
one must replace I’((di+ l),b,( l+A-‘)) by T(di+ I)-r((di+ l),b,(l-AI’)) to account for the finite lower limit of 
integration. 
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To complete the specification of the likelihood, we em- 
ploy a mixture model [9], which effectively combines the 
probability distributions for the two possibilities Bi and &, 

P(~Ic,&E,P,XJJ=~ CPp(dilBi ,c,s,E,p,A,Q 
i 

+(l -p)p(dil~i 9C,XE,p9A,z)], 
(12) 

where p is the probability that a data point contains no signal 
contribution. We will consider the parameters E,&A + , and 
A- as auxiliary parameters for the adaptive spline problem, 
whose specifications will be addressed in Sec. II C. The like- 
lihood functions contributing to the mixture model are plot- 
ted in Fig. 2. The sum of the two types of likelihood in the 
mixture model for each datum results in a likelihood function 
with a central peak plus a long tail. The presence of such a 
long tail has the effect of reducing the influence of outlying 
data points when several data points are combined [lo-13). 
In the case of background estimation, the result is to reduce 
the influence of points that lie outside the uncertainty band of 
the measurement errors, which presumably contain signifi- 
cant signal contributions. Without this tail, the resulting 
curve would be drawn significantly toward the signal struc- 
ture and not be representative of the background. 

C. Determining auxiliary parameters 

There are numerous parameters Ax, u, E, p, and A’s, that 
have so far been assumed to be fixed. These must be speci- 
fied to perform the data analysis. It is our view that as many 
of these parameters as possible should be determined from 
information about the experiment. Other parameters may 
have preferred values, based on general arguments, and still 
others are appropriately determined from the data. 

In the present background estimation situation, it is im- 
perative that the minimum knot spacing AX be determined 
from knowledge of the experimental situation or by exami- 
nation of the spectrum. This parameter should be set on the 
basis of the physicist’s experience with the experiment and is 
certainly no less than the instrumental resolution. Similarly, 
the experimentalist must choose between Poisson and Gauss- 
ian likelihood functions and in the latter case, specify the 
rms deviation of the noise, which may depend on the mea- 
sured spectral amplitude. The scale of the signal expressed 
by the A’s should also be set by the physicist on the basis of 
the expected signal amplitudes. If the signals are expected to 
be of one sign, that information should obviously be incor- 
porated. It is important to specify all these parameters, be- 
cause they play a major role in helping the spline model 
distinguish between background and signal. 

The parameter p, which is the probability that a data point 
contains just background, is one that can be specified by a 
general argument. Clearly p= 0.5 is the noncommittal value, 
stating that .each datum is equally likely to contain a signal 
contribution or not. This choice can also be motivated by an 
argument given in Ref. [12]. It was shown there that if a 
separate pi is associated with each data point, marginaliza- 
tion over the fls results in an integral of the 
form J&VW -Pl)p(dllB,-)+P*P(~,I~I~)l~~dP2r(1 

- p2)p(d21i?2=)+&p(d21B2+]- l  0. This integral 
can be done analytically to obtain [#p(d$&-) 
+~p(dllBl+][~p(d2jB2=)+~p(d21B2*)]- - 0. The effect 
is the same as setting all the pi equal to $. 

The last parameter to deal with is the number of spline 
knots, E. This parameter obviously cannot be set beforehand, 
since we want the spline model to adapt to the data. How- 
ever, E is a nuisance parameter, that is, we do not care what 
its value is, except to estimate the c and 5 parameters. Prob- 
ability theory requires that one integrates the joint distribu- 
tion over nuisance parameters. Beginning with the joint 
probability distribution in c, c, and E, we integrate over the 
first two parameters to obtain 

p(Eld,Z) = j dEc dE-2Ep(c,&J+UJ 

a 
I 

dEc dE-2Sp(dlc,~,E,z)p(c,XEIZ) 

- - Pwq dEc dE-2Sp(dlc,S,E,z)p(c,~E,Z), 

(13) 

where we have assumed that the priors on c and 5 are logi- 
cally independent from that on E. The leading factor is the 
prior for E, given in Sec. II A. This integral is the same as 
the denominator of Bayes law for estimating the parameters, 
given in Eq. (2), which is called the evidence. We define the 
scalar 

.@,#=- logCp(dlc,~,E,Z)p(c,SIE,Z)l, 04) 
which is the minus logarithm of the integrand in the previous 
equation. 

We approximate + by expanding it to second order in c 
around its maximum value at z yielding a Gaussian for its 
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FIG. 2. The likelihood functions for the cases that there is no 
signal present, and for positive and negative signals of scales A- 
=lOcrandh+- - lOOa. The relative contribution of the later to the 
mixture model (12) for the likelihood is weighted by 1 - p, and the 
former by p. 
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exponential. Because the Gaussian is restricted to a narrow of g. Since the c integration is treated analytically, only the g 
region, the integration can be extended to - 00 <cc 00, so integration needs to be done numerically, for example, by 
that the integral over dEc can be evaluated analytically. MCMC sampling [ 141 from p(@), as explained in Sec. 
Equation (13) becomes IIIC. 

p(Eld,Z)+(ElQ~ dE-25p(dl~,5;E,Z)p(~,~E,Z) 

x(27r)Endet(R,(s))-1’2. 0% 

The argument of the determinant is the Hessian, I&(5) 
= V,V,T&, the E by E matrix of second partial derivatives 
of (li with respect to c, evaluated at its maximum with respect 
to c. Because + is a function of both c and g, I& is a function 
of g. We will use this technique to approximate integrals 
several more times. 

D. Variance in background 

The expectation value of the second moment matrix of b 
is obtained by integrating over the posterior probability of 
the parameters c and c, 

w ) 1 *= dEcdE-2@D(@ccT@T(@p(c,dd=) 

= dEcdE-2~‘D(S)ccT,T(#p(cI~,d=)p(~d=) 
I 

- - / dE-2ewa[ 1 dEcccTp(cl 54 ) **(#p(Jtde ) 1 
= dE-2@i!(5)C~1(~+:~]@T(5)p(~d-) 

I 

= dE-25[~(n~~‘(n~T(~+~(~~T(r>lp<~d->~ 
I 

06) 

where z is estimated as the mean value of p(c(&d - ) for a 
fixed g. The covariance matrix expressing the uncertainties 
in the estimated background is then 

(AbAbT)=(bbT)-(b)(bT) 

= dE-2g*(g)H,-1(gJQir(n I 
+A& @A6=(s>]p(& - h 

where Ab=b-(b) and A6=6(5,-(b). We have again in- 
troduced a Gaussian approximation for the integrand to do 
part of the integral analytically. The first term within the 
square brackets stems from the covariances of c around c^ 
given by H,, the Hessian of ~4 with respect to c. The second 
term describes the covariance of the 6( & due to the variation 

III. CALCULATIONAL PROCEDURE 

We describe in this section the separate steps in a com- 
plete calculation for any particular data set. In the innermost 
loop, we need to be able to find the spline values that maxi- 
mize the posterior (2), namely, Z. The next higher level in- 
volves finding the best knot locations for a fixed E and the 
highest level loop is over E to marginalize over E. 

A. Estimation of spline values 

The most basic calculation is to find the spline values c 
that maximize the posterior (2), assuming particular values 
for the knot positions g and the auxiliary parameters 
(E, &A + ,A -). The denominator in Eq. (2) can be ignored at 
this point because it does not depend on c. What is actually 
done is to minimize @, defined in Eq. (14), with respect to 
the knot values c, which is a nonlinear optimization problem. 
To evaluate @, we use the likelihood given in Eq. (12), in- 
serting the appropriate expression in Eq. (11) and the prior is 
given in Eq. (5). Both the gradient (first derivative) and cur- 
vature matrix (second derivative) of + are evaluated analyti- 
cally. A gradient-based quasi-Newton optimization algo- 
rithm is employed to minimize *. The optimization 
algorithm we use can impose a nonnegativity constraint of 
the background curve. We find that the optimization occa- 
sionally st%lls and the appropriate global minimum in c is not 
reached because of the existence of local minima. 

We have developed a new technique to enhance the con- 
vergence behavior of the optimization algorithm. Our tech- 
nique is based on artificially broadening the background only 
part of the likelihood function during the early part of the 
optimization process, which effectively eliminates local 
minima by forcing all data points to belong to the back- 
ground. This broadening is easily accomplished for the 
Gaussian likelihood by increasing the value of the a in the 
likelihood for the background term in Eq. (11). We do not 
find it necessary to resort to this technique for our Poisson 
examples, the PIXE data. However, a similar scheme might 
be used for the Poisson case, e.g., by dividing the expected 
number of counts yi and the measured counts di in the like- 
l ihood Eq. (8) by a common factor. The effect of our ap- 
proach is to increase the reach of the function being mini- 
mized, which is quadratic in the case of the Gaussian 
likelihood, and promote larger steps in the Newton-type op- 
timization algorithm. In a little more detail, we begin the 
optimization by multiplying u by a common factor, which is 
chosen to make the rms value of u the same as A. After 
convergence, u is divided by two and the optimization is 
resumed from the last operating point. This process is re- 
peated until the nominal values for u are reached. We find 
that this procedure, which resembles a multiscale approach 
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used to solve geometrical optimization problems 11151, yields 
very robust and speedy convergence to the global minimum. 

B. Estimation of knot positions 

The knot positions 5 are to be found by minimizing #, 
given in Eq. (14). This optimization problem is somewhat 
harder than the one associated with finding 2. The reason lies 
in the numerous constraints on the knot positions, namely, 
that they must be ordered and they must be no closer to each 
other than a specified Ax. Furthermore, there are many local 
minima in $. Therefore, we use another optimization strat- 
egy, that of simulated annealing [16], to find the most prob- 
able knot positions. Throughout this process, the number of 
knots E is held fixed. 

The simulated annealing technique is based on a Markov 
chain Monte Carlo algorithm (MCMC) [14], described in 
more detail in the next section. The widths of the Cauchy 
distribution for calculating the Markov steps are fixed 
throughout the cooling process. The probability distribution 
is flattened by dividing # by T, a fictitious temperature. The 
initial temperature is T= 500. When a step is accepted, T is 
decreased by multiplying it by 0.95 if the new value of + is 
smaller than any previous value, or by 0.995 if it is not. At 
the end of the full annealing sequence, the estimated knot 
position vector 5 is the one that had the smallest value for $. 

C. Marghalization over number of knots 

In probability theory, as explained in Sec. II C, it is proper 
to marginalize over nuisance parameters that we do not care 
about knowing, such as E. The probability of E is given in 
Eq. (15). Again the integrand is approximated as a Gaussian 
id 

x dE-2~p(#9z) 
I 

[ 

1 
X exp - p-gJ*H&(g-B 9 1 

where & is the (E-2) by (E - 2) Hessian matrix for + 
with respect to the variable 5, calculated at the optimal knot 
positions g. The prior probability in (15) p(c,aE,Z) has 
been replaced with the product of the prior on c and the prior 
on 5, which is valid because these are logically independent 
priors. The integration here is complicated by the ordering 

‘restrictions placed on the &s by the prior on f given in Eq. 
(7). Thus, the integration is over a restricted volume V de- 
fined by the ordering requirement. The integral cannot be 
evaluated analytically because it is impossible to simply ex- 
tend the integration limits to infinity. Therefore, & is re- 
placed by an effective Hessian Z$ , which must reflect the 
complicated integration volume V, 

XW) (E- 2)/2det( Hz) - 112. (19) 

The effective Hessian I3; is actually estimated using 
MCMC to draw knot positions from the probability distribu- 
tion in the integral in Eq. (1% i.e., 
p(tll&E,z)p(~E,Z)(2m)E’2detCR,(S)1-1n. The’ covari- 
ante matrix (Hz) -’ is estimated as the matrix of second 
moments of the resulting set of MCMC samples of g. 

The aim of an MCMC algorithm [14] is to generate a 
sequence of parameters yk ,(k= 1,2, . . . ,K) that represent 
random draws from a specified probability density distribu- 
tion, let us say r(y). To add a new member to the sequence 
yk+i, the Metropolis algorithm consists of trying a proposed 
step away from the present yk. The proposed step Ay is 
drawn randomly from a symmetric distribution, and is either 
accepted or rejected on the basis of the value of 7~ at the new 
position compared to the old position. If the step is rejected, 
yk+I is set equal to yk . For the step distribution we use a 
Cauchy distribution, i.e., a[ 1+(lAy(lw)2]-1, where W is 
the full-width at half-maximum (FWHM) of the distribution 
[17]. With its wide tails, the Cauchy distribution occasion- 
ally proposes large steps, which can be useful for getting out 
of local minima. In our algorithm, only one knot position is 
moved at a time. When a knot is moved to within Ax of 
another knot, the move is rejected. When a knot is moved 
past other fixed knots, the knots are renumbered to maintain 
the required knot ordering. 

The FWHM of the Cauchy distribution is started at a 
value of about one tenth the interval width (x--q&/(E 
- 1) and the width for each knot position is adaptively ad- 
justed during a training run to obtain an approximate 50% 
acceptance rate for proposed steps. For the PIXE spectrum in 
Fig. 4, the final FWHM values ranges from 10e4 to 0.02. For 
the MCMC runs to draw samples from the probability distri- 
bution of f: cited above, on the order of 105 cycles through 
the full parameter set are taken. We check the performance 
of our MCMC procedure by calculating the autocorrelation 
function for each knot position [14]. The estimated correla- 
tion lengths range from 10 to 1000 MCMC iterations. The 
pivotal knot position is chosen randomly. From this, the 
number of effectively independent samples from the prob- 
ability density function for a run of 10’ iterations is from 50 
to 5000. The simulated annealing procedure used to find the 
most likely knot positions described in the preceding section 
proceeds similarly, but with the introduction of the artificial 
temperature. 

As we shall see in our results, there are competing factors 
in Eq. (19). The likelihood factor p(&,&E,Z) should al- 
ways increase with increasing E because the data must al- 
ways be matched better by the spline model with more knots 
when the knots are allowed to move. The O&ham factors for 
& p(&,E,Z)(2~)E’2det(H,)-‘” [Eq. (5)] and for 5, 
p(aE,Z)(2@(E-2)nd,t(&)-“2 typically decrease as E in- 
creases. This competition between likelihood and the priors 
is the action of Ockham’s razor [l&20], named after Will- 
iam of O&ham, whose principle states that models should be 
no more complex than necessary to explain the available 
data. The overall effect is that there will be a maximum in 
the probability of E beyond which the addition of more knots 
does not help represent the background significantly better. 
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FIG. 3. The probability for the parameter E (the number of 
spline knots) given by Eq. (15), shown as the solid curve, with its 
various contributions. The maximum probability occurs at E= 14 
knots. 

D. Estimation of uncertainties in background 

The uncertainty bound on the estimated background func- 
tion may be calculated as described in Sec. II D. Equation 
(16) shows how the covariance in the estimates for b is ob- 
tained by splitting the covariance into two terms, one arising 
from the uncertainties in c for fixed g, and the other from 
uncertainties in g. The contribution from the first term is 
based on the analytic expression for the Hessian R,, which 
can be evaluated for any g. The rest of the calculation in- 
volves randomly drawing samples from p&Z) using the 
Markov Chain Monte Carlo (MCMC) technique described 
above. For each g drawn, the optimum i has to be found 
using the minimization procedure described above. Then, the 
spline values at the data points are obtained: 6=&. The 
integration in Eq. (16) is accomplished by averaging the 
quantity within the square brackets in the integrand over the 
tj samples. 

IV. RESULTS 

We now describe the results of applying the analysis out- 
lined in the preceding section to the PIXE data shown in Fig. 
1. For this analysis the underlying auxiliary parameters, de- 
scribed in Sec. II C, are the same as used in the previous 
analysis shown in Fig. 1. The minimum distance between 
knots is Ax = 0.015, the approximate width of the conspicu- 
ous signal peaks at their base. Because we know that the 
signal peaks in the PIXE spectrum must be positive, we ex- 
clude the contribution of negative signals to the likelihood, 
in effect setting h, - - 0. The scale h + should be derived 
from the signal [l]. As the signal is much larger than the 
background, we set X+ equal to the average value of the data 
set, about 270 in this case. Figure 3 shows the probability 
distribution for E given in Eq. (19). Note the extremely large 
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FIG. 4. The same PIXE spectrum as in Fig. 1, showing the most 
probable background estimate obtained using adaptive splines in 
which the optimal number of knots is found to be 14. In the energy 
region above 0.25, the estimated background is now smooth, indi- 
cating a lack of evidence in the data for the oscillations visible in 
Fig. 1. 

dynamic range of this plot. The likelihood, p(dl&&E,Z) in- 
creases monotonically with E since the fit to the data always 
improves with more knots. The O&ham factor for 2, 
p <iI g, E ,z) (2 @‘ndet( H,) - 1/2 [Eq. (5)] decreases gradually 
over the range of E shown. The corresponding factor for g, 
p(jlE,z)(27r)‘E-2’n det(Hg) - 1/2 decreases substantially. 
The net result is a strong peak in the probability at E= 14, 
which contains a probability of 80%. Since most of the prob- 
ability falls into the single E= 14 bin, we may legitimately 
fix E at 14, instead of marginalizing over E, to obtain the 
final background estimates. 

The background estimate with the highest posterior prob- 
ability obtained in the simulated annealing search for the 
most probable knot position is shown in Fig 4. The high- 
energy portion of the spectrum is now fit with a smooth 
background, consistent with a physicist’s expectation. It is 
remarkable that our model requires only one additional 
spline knot to fit the energy region above 0.25. It is also 
interesting to note that the background under the first signifi- 
cant peak at an energy of approximately 0.06 is smoother 
and more plausible than for the previous analysis. The place- 
ment of the knots is of interest. The highest knot density 
occurs in the vicinities of the three major peaks in the back- 
ground. While these seem like fairly smooth sections of the 
background on this semilog plot, the curve varies somewhat 
more rapidly in the linear space in which it is modeled. 
These adaptive background estimates are very plausible. 

The rrns uncertainties in the estimated background curve 
are summarized in Fig. 5 as uncertainty bounds. These are 
derived from Eq. (16) by combining the variances from un- 
certainties in c using the analytic part for fixed knots plus 
uncertainties arising from the knot positions g, obtained by 
numerical integration over the possible knot positions. First 
of all, we see that the uncertainties are quite small compared 
with the background itself, on the order of a few percent in 
the peak regions and about an order of magnitude smaller in 
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FIG. 5. The uncertainties in the background function displayed 
in Fig. 4. The separate contributions to the rms deviation of the 
background values are shown; from the uncertainties in the c and 
the variance arising from the knot positions k 

the high-energy end of the spectrum. The uncertainties due 
to those in c dominate at the first significant peak and in the 
high-energy tail. However, the uncertainties arising from 
knot placement are most important around the two signal 
peaks in the spectrum around an energy of 0.2. Clearly, no 
simple formula based on a single contribution to the total 
uncertainty applies. 

The uncertainty bands shown in Fig. 5 actually corre- 
spond to the square root of the diagonal terms of the covari- 
ante of b given in Eq. (16). These are useful for showing the 
limits of uncertainty of the curve, but are not applicable for 
estimating the consequences of these uncertainties in the 
background on further computation, e.g., on the areas under 
a signal peak. For that, the full covariance matrix is required 
because one expects a sign&ant degree of correlation in the 
uncertainties f!rom one position to another. For example, 
when two points lie near each other in the same spline inter- 
val, there is a strong positive correlation in their uncertainties 
because their estimates both rely on the same cubic spline 
curve. It is feasible to calculate the full covariance matrix 
using Eq. (16), but not so easy to display it. 

To demonstrate how well our background method works 
for signals with both positive and negative contributions, we 
turn to the Auger spectrum shown in Fig. 6(a). This spectrum 
was obtained for an iron sample using a four-grid low-energy 
electron diffraction (LEED) optics, operated in the retarding- 
field mode. Harmonic modulation of the retarding potential 
and lock-in detection of the transmitted current on the second 
harmonic of the modulation frequency results in spectra as 
shown in Fig. 6(a). Such spectra constitute the energy deriva- 
tive of the sum of the Auger electron energy distribution, the 
signal, and the slowly varying, much larger secondary elec- 
tron energy distribution, the background. The signal contains 
both positive and negative components. For quantitative Au- 
oer analysis it is mandatory to separate the two contributions & 
to the total signal [21,22]. The principal signal seen at 47 eV 
comes from an A&VV Auger transition. 

It is evident from Fig. 6 that, while the background may 
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FIG. 6. (a) An MVV Auger spectrum for iron. The estimated 
background shown is that obtained for the transformed spectrum 
shown in (b). (b) A logarithmic transformation of the Auger spec- 
trum shown in (a) reduces the curvature of the background, render- 
ing it suitable for the general approach presented here. The esti- 
mated background is shown. (c) The signal determined by 
subtracting the estimated background from the original spectrum. 
The inset in (c) shows the autocorrelation of the signal vs energy 
difference. A significant secondary peak is seen at an energy offset 
of 39 eV. 

be smooth, it varies quite rapidly at low energies. This be- 
havior is inconsistent with our general background model, 
whose prior is based on the second derivative of the back- 
ground. However, a simple transformation of the measured 
spectrum brings the background into conformance with our 
background model and does not dilute the signal character- 
istics unduly. By taking the logarithm of the measured spec- 
trum, the nearly exponential rise of the spectrum is trans- 
formed into an approximately linear dependence that is more 
easily accommodated by the background model. Further- 
more, such a transformation of the ordinate does not change 
the width of the signal structure, leaving unchanged the 
minimum knot separation criterion. As a general principle 
for applying our model to a specific spectrum, it may be 
transformed to bring the background into conformance with 
the background model, provided the signal contributions do 
not lose their assumed rapid and localized characteristics. 
For example, we find that taking the square root of the hori- 
zontal scale, after a suitable offset, yields a data record that 
also provided reasonable estimates of the background. 

Figure 6(b) shows the Auger spectrum after the transfor- 
mation z(k) = log[a-y(k)], where y(k) is the original spec- 
tral amplitude and a is a constant (=340 in this case). The 
uncertainties in the transformed spectrum are obtained by 
dividing the uncertainties in the original spectrum CQ by a 
- y(k) . CQ is estimated to be approximately 35 over the en- 
tire spectrum. The transformed spectrum is analyzed using 
the background models described earlier. The minimum knot 
separation is set at Ax = 15 eV. In this analysis, h+ and X- 
are assumed to be equal because the positive and negative 
signals are expected to have approximately the same ampli- 
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tudes. They are set to a typical value of about 0.1. The evi- 
dence evaluation of Eq. (19) shows that p(Eld,Z) is rather 
flat for the number of nodes between E= 8 and E = Em 
=12. The lack of a strong peak in the evidence, as seen in 
the earlier PIXE analysis, may be explained as follows. The 
prior on g, given in Eq. (7), increases considerably as E 
approaches Em because of the decreasing available volume 
for knots. This effect is partly counteracted by the decreasing 
volume given by Hs, but not completely. Thus, the O&ham 
factor pertaining to 5 may effectively increase with increas- 
ing E, a behavior that is ‘unexpected, but plausible. It is not 
the number of parameters that define the penalizing O&ham 
factor but the phase space of the prior covered by the high- 
likelihood region, which may increase when the parameters 
are highly correlated. As the likelihood probability increases 
insignificantly for E> 8, we show the background estimated 
for E = 8. The results for E> 8 lie within the line thickness 
of the results for E = 8. Thus marginalization over E would 
yield quite the same result. The estimated background is 
shown in Fig. 6(b), and is transformed back into Fig. 6(a) for 
comparison with the original spectrum. 

After plotting the difference between the original spec- 
trum and its estimated background shown in Fig. 6(c), a 
possible secondary peak is observed. This small peak is dem- 
onstrated in the autocorrelation of this background subtracted 
spectrum, shown as an inset in Fig. 6(c). A secondary peak 
with an amplitude of about 2% of the main peak is convinc- 
ingly shown at an energy offset of 39 eV, which corresponds 
to an MIVV Auger transition for iron. In this case, a proper 

background subtraction even helps one ident@ the presence 
of less apparent signals in an Auger spectrum. 

v. SUMMARY 

We have developed a probabilistic model to separate the 
background from signals in spectra. The general assumptions 
are that the background varies smoothly and that each rap- 
idly varying signal peak is confined to a well-defined inter- 
val. The background is represented by a cubic spline basis. 
In order to allow the smoothness of the background to ac- 
commodate the data, we have allowed the number of spline 
knots and their position to vary. Our Bayesian approach pro- 
vides a straightforward way to deal with this adaptivity by 
marginalizing over the probability of the number of knots. 
The effect of O&ham’s factor is to produce a maximum in 
this probability. We have f+rther extended the earlier work 
by incorporating signals with either positive or negative 
components, or both. The uncertainties in the estimated 
background have also been shown. 
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