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Abstract. An  experiment  has  been  performed to demonstrate  the  feasibility of proton 
computed  tomography.  The  proton  energy loss was used  to  measure  the  projections of the 
relative  stopping  power of the  phantom. High  quality  reconstructions  were  obtained  from 
scans of 19cm  and  30cm  diameter  performance  phantoms.  Comparison with  recon- 
structions  from  an EM1 CT-5005  x-ray  scanner  showed  the  proton  technique is more  dose 
efficient  by  a  large  factor. 

1. Introduction 

The history  of  heavy  charged  particle  radiography  began  in 1968 with the  pioneering 
work of Koehler  (1968).  He  showed  that  the  addition of an  aluminium  foil  0.035  g  cm2 
thick to a  stack of aluminium  absorbers, 18 g cm-’ thick,  could be  discerned by means of 
proton  radiography using film as  the  detector.  Subsequently,  Steward  and  Koehler 
(1973a,  b,  1974)  and  others  (Cookson  1974, Moffett et a1 1975,  Kramer er ai 1979) 
demonstrated  that  the high contrast images obtained by proton  radiography  provided 
improved  imaging of low contrast lesions in human  specimens  over  conventional  x-ray 
techniques. The high contrast  obtained in this  energy-loss  form of radiography is a 
consequence of the  sharpness of the well known  Bragg peak  that  occurs  near  the  end of 
the  proton  range.  Even  higher  contrast  may  be  achieved  through  the use of heavy  ions 
(Benton et a1 1975,  Capp er a1 1978). 

Although cited  as  a  possibility by Cormack in 1963  (Cormack  1963,  1964),  the first 
to  apply  charged  particles  to  computed  tomography (CT) was Goitein  (1972).  He 
employed  projection  data  measured by Lyman  with  alpha  particles  to  demonstrate  the 
utility of his least-squares  reconstruction  algorithm.  Later, in the  comparison of heavy 
charged  particle CT with x-ray CT (Crowe et a1 1975,  Huesman et a1 1975,  Cormack  and 
Koehler  1976,  Hanson  1978) it was shown  that  charged  particles  have  a  dose  advantage 
over  x-rays.  This  dose  advantage might be utilised effectively by providing CT recon- 
structions  with significantly better density  resolution  than is possible  with x-rays  at  a 
given dose level. Furthermore, in charged  particle CT, it is the  linear  stopping  power 
relative  to  water  that is imaged  rather  than  the  x-ray  attenuation coefficient. The 
unique imaging  characteristics of charged  particles  may  prove  to  be  beneficial in 
medical  diagnosis. 

In  another  form of charged  particle  radiography,  nuclear  scattering  radiography,  the 
particles  that  undergo  large  angle  deflection by means of nuclear  scattering are 
detected.  The  point of nuclear  interaction is determined by tracing  the  measured 
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directions of the  particle,  before  and  after  the  patient,  to  their  intersection. This 
method, which has  been successfully applied to  the investigation of human  subjects 
(Berger et a1 1978,  Duchazeaubeneix et a1 1980), has  entirely  different  imaging 
characteristics  from the energy-loss  methods  described above. 

In this  article we present  the  results of an  experiment  designed  to  demonstrate  the 
feasibility of obtaining high quality CT reconstructions  from  projections  acquired 
through  the  measurement of proton energy-loss. The  proton energy-loss method of 
obtaining  the  projections necessary  for CT reconstructions is presented in section 2. 
Section 3 describes  the  apparatus  used.  The  calibration  and stability of the residual 
range  determination  are  presented in section 4. The  spatial limitations of the  system 
and  the  method  used  to  improve  the  spatial  resolution  are discussed in section 5 .  The 
proton CT reconstructions  are  compared with those  produced by an x-ray  scanner in 
section 6. In section  7 we present  comparisons of dose efficiency and  spatial  resolution. 
Our conclusions are given in section 8. The  peak fitting algorithm  used in the  data 
analysis is compared with improved  methods in Appendix 1. The experimental  results 
obtained with alternative  residual  range  detection  systems  are  presented in Appendix 2. 
Preliminary  results of the  experiment  reported  here have  been presented  elsewhere 
(Hanson  1978,  Hanson et a1 1978b,  Hanson  1979a). 

2. Method 

The energy  loss  method of charged  particle  radiography is based  upon  the effect on the 
residual range of the particles  caused by the  material  being  radiographed.  The  energy 
loss incurred by protons of initial  energy Eo that follow a  path of length L in some 
medium is given by 

Eo-E = - J dl’  (dE/dx)(l’) = J p ( l ’ ) S ( l ’ ,  E’) dl‘ 
0 0 

where E is the final proton  energy,  the  integral is with  respect to  the position l‘ along  the 
path,  (dE/dx)(l‘) is the  linear  stopping  power of protons in the  medium at 1’, p( l ’ j  is the 
density of the  medium  at I‘ and S(l’ ,  E’) is the mass stopping  power of the  medium  at l’ 
evaluated  at  the  proton  energy E’ there.  Note  that E’ is implicitly dependent  upon 1’ 
and is determined by evaluating equation (1) with l‘ as the  upper limit  instead of L. The 
range R. in a  homogeneous  medium  for  protons of energy Eo is defined  as the  distance 
the  protons  travel  before losing all of their  energy 

R0 
Eo = p dl’ S(E’j. 

Consider  the  situation  where  protons of incident  energy Eo pass  through  a  two- 
dimensional  sample of possibly varying  composition  and  density.  Upon  emerging  from 
the  sample,  the  protons’ residual  range AR is measured in some  homogeneous 
reference  material. The residual  range  may be shown  from equation (1) to  be given by 

AR = R o - [  dl’ ~ ( x ’ ,  y ’ ,  E’)  

where R. is the  range in the  reference  material  corresponding  to  the  incident  energy Eo. 
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In  this  integral over  the  path  followed by the  protons  through  the  sample,  the Cartesian 
coordinates x’  and y’  are specified by l’. The  proton  energy E’ at 1‘ is found using 
equation (1) as indicated  above. In general,  the  contribution  to  the  integral in equation 
(3) from  any  particular  position (X’, y ’ )  will depend  upon  the  energy of the  protons  at 
that  position which in turn will depend  upon  the  path  taken by the  protons  to  reach  that 
point.  This implicit  energy dependence  means  that PR is not simply related  to  the 
projection of a  quantity  that  depends  only on x’  and y’ .  As such, hR does  not yield 
projections  that  generally fit into  the  normal  framework of CT reconstruction. 

Proton mass stopping  powers  have  the  property  that  their  ratios  are  approximately 
independent of proton  energy.  For  example, using  water as the  reference  medium,  the 
difference  in S / &  between  100  and  250  MeV is less than  0.01%  for muscle (Janni 
1966)  and is only  0.2%  for  bone  even  though  the  linear  stopping  power  changes by a 
factor of 1.87.  For  stainless  steel,  a  metal  sometimes  found in patients,  the difference is 
2.1 ‘/o, Thus,  for  a  considerable  range of materials q may be considered to  be  a  function 
only of the  material  present  at  position (X’, y ’ )  and  the  dependence  upon  proton  energy 
may  be  neglected.  Equation (3) then  becomes 

that is, the  residual  range is simply related to the  projection of q ( x ‘ ,  y ’ )  along  the  proton 
path which is the  required  input  for CT reconstruction. It is clear  that  the  reconstructed 
quantity is q ( x ’ ,  y ‘ ) ,  the  ratio of the  linear  stopping  power of the  sample  to  that of the 
reference  material.  It will be  noted  that in  non-biological  applications if r) is dependent 
upon  proton  energy  for  the  materials being scanned, it  may  be  necessary to  correct  the 
CT reconstruction in a  manner similar to  the  beam  hardening  corrections  employed  for 
x-ray CT scans. 

3. Apparatus 

The  experimental  apparatus  depicted in figure 1 was placed  at  the  end of the  P3-West 
beam  line  at  the  Clinton  P  Anderson  Meson Physics Facility (LAMPF). Viewing a 
target in the  800  MeV  proton  beam  the P 3  channel was specially tuned  to  provide  a 
nearly  monoenergetic  proton  beam.  The  240  MeV  beam used  to  scan the 30 cm 
diameter  phantom  had  a  spot  1.6  mm (FWHM) wide by 3 mm (FWHM) high at its 
horizontal waist positioned  at  a  depth of about  10 cm in the  water  bath.  For  the  19 cm 
diameter  phantom,  at  192  MeV,  the  spot was  circular  with  a diameter of about  2.0  mm 
FWHM. The  beam was restricted  to  a  0.4%  energy  bite in order  not  to affect the  width of 
the  detected  residual  energy  distribution.  The stability of the  mean  proton  energy will 
be discussed  in  section 3. The horizontal  beam  divergence was about 14 milliradians 
(FWHM). Pion contamination in the  192  MeV  proton  beam was measured  to  be 0.4%. 

Protons  that  traversed  the  water  bath  and  phantom  without significant deflection 
were  detected in a  position  sensitive  proportional  chamber (PC), two  scintillation 
counters (S1 and S2), and  a  hyperpure  germanium  detector (HPGe). The signals from 
S1 and  S2  were  taken in  coincidence  with  the HPGe detector  to  form  the  master  event 
trigger. The horizontal  position of each  proton was determined  at  a  distance of 1.7 cm 
behind  the  water  bath  from  time  delay  measurements of the signals detected  at  both 
ends of the  cathode  delay-line of the  proportional  chamber. S2 confined the  events  to 
protons  that fell on the  central  region of the HPGe to  eliminate  edge effects. The active 
region of S2  was  defined by a  2 cm diameter,  2.9  mm  thick,  plastic  scintillator (NE102) 
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Figure 1. Schematic  layout of apparatus.  The  proton beam as  well as he detectors  remain  stationary. The CT - .. 

scanning is accomplished by translation and rotation of the phantom. 

disc, embedded in the  centre of a Plexiglas light  guide of like  thickness to avoid  energy 
disruption of protons  that  happened  to  traverse  the  edge of the scintillator. S2 was 
located 4.4 cm behind  the  water  bath  and 1 cm in front of the HPGe crystal. S1 was 
3.0 mm  thick. 

The  protons  came  to  rest in the  hyperpure  germanium  detector which measured 
their  residual  energy.  The crystal had  a  diameter of 3.3 cm and  a  thickness of 1.25 cm, 
sufficient to  stop  a 70 MeV  proton.  The gain of the  preamplifier was set  to  accom- 
modate  the  detection of thousands of high energy  particles within the 500 @ S  LAMPF 
macropulse.  Consequently,  the  resolution  measured  for CO gamma  rays, 15 keV 
(FWHM), was significantly worse than  the crystal's  intrinsic  capability. The HPGe 
detector was  chosen on  the basis of its  extremely  good gain  stability. The  0.2% RMS 

long  term gain  stability required by this  experiment is easily  achieved by the HPGe 
detector. 

The  water  bath  had  a  3.2  mm thick  Plexiglas entrance window that  could  be  moved 
to vary the  water  thickness.  The exit  window  was  3.2 mm  thick  aluminium.  In  addition 
to  the  material  already  mentioned,  a 0.73 g  cm-*  polyethylene  absorber was placed 
between PC and S1 for  the 19 cm  scan  to  bring  the  mean  residual  energy within the 
operating  range of the HPGe. For  the  30 cm scan, 0.14 g  cm-* was used. 

During  the  course of a  scan, the  phantom  position was controlled by computer, using 
analogue  servomechanism  units,  one  for  horizontal  translation  and one for  rotation 
about  a  vertical axis. During  the  scans  data  were  taken  for 0.9 S intervals  followed by 
short  0.2 S translational  movements of 1.0 mm  for  the 19 cm diameter  phantom  and 
1.25 mm for the 30 cm diameter  phantom.  Data  were  taken  over  a full 360" rotation  at 
1.33" increments  for  the 19 cm  diameter  phantom  and  one  degree  increments  for  the 
30 cm diameter  phantom.  Reproducibility of the  phantom  position was measured to be 
10 .2  mm in translation  and kO.1 deg in rotation. 

Data  taking was accomplished by means of standard  CAMAC  modules  readout by a 
PDP-11/45 computer.  The PC delay-line  signal  was  processed by a  time-to-amplitude 
converter  (Canberra 1443). The HPGe output was  amplified and  shaped by a  Tennelec 

60 
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TC-205  shaping amplifier with a 0.5 ks time  constant.  These pulse  heights  were 
digitised using two  Nuclear  Enterprises  9060  analogue-to-digital  converters (ADC). The 
eightfold  buffering  provided by these ADCS allowed the  data  to  be  acquired at an 
average  rate of 740 events  per  second  at  about 50% electronic  deadtime in the  LAMPF 
beam  macropulse  environment  (0.5 ms on, 7.8 ms off). At this rate  about 10% of the 
events  were  rejected by pile-up logic set  to  detect  the  occurrence of another HPGe pulse 
within 2 p,s of the  event.  The  PDP-11/45  transferred  unprocessed  event  data  as well as 
phantom position  information to magnetic  tape  for  later analysis. The  computer also 
controlled  the  scanning  motions  as well as  partially  analysing the  experimental  data  to 
assure to  the  experimenters  that all was going well. 

4. Calibration and stability 

The HPGe detector  response was calibrated in terms of the residual  range in water by 
scanning  a  Teflon  block  with 5 mm wide steps of increasing  thickness. The block was 
immersed in a  20.5 cm deep  water  bath.  Each  step was 0.638  g cm-2  thick correspond- 
ing to  an  increment of 0.224  g cm-' water  equivalent  range  (Janni  1966). The block 
was placed near  the  beam  entrance,  to  obtain  the best  spatial  resolution  (see  section 4). 
Figure 2 shows the HPGe response in terms of proton  energy.  The  energy  calibration 
was obtained  from  the pulse  height  produced by a high energy  proton  beam which 
passed  through  the HPGe detector.  The  energy  deposited was determined  from  the 
stopping  power of germanium  (Janni  1966)  and  the known  crystal  thickness. 

45 17 
35 I wedge 

I I l l l 
-1 -2 -3 -4 

Sconner position (cm1 

Figure 2. HPGe response  to  a Teflon step  wedge.  Fitting  to  data yields residual  range  calibration. 

The  data  plotted in figure 2  were  fitted by a  function of the  form 

E = C(Ro + AR)' (6) 

where AR is the  alteration in the  background  range R. produced by the  step-wedge  for 
the  reference  material,  water.  The statistical  uncertainty in the  mean  energy  measured 
at  each  point was 0.04 MeV.  In  addition,  an  uncertainty in the position of 0.2 mm was 
assumed in order  to  reduce  the influence of the  spatial  resolution function in the 
determination of the range-energy  relationship. The width of the  Gaussian  resolution 
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function  and  the  position of the  step  wedge  were allowed to  vary.  The fitted  values of 
C = 34.93 f 0.06, R0 = 1.895 * 0.001 g cm-*, and p = 0.522 * 0.025  were  obtained 
with x* = 28.2  for  29  degrees of freedom ( E  in MeV), 

The dynamic  range of the HPGe detector may be  estimated  from  the  knowledge  that 
the  range of the  maximum  energy of protons  that  can  be  stopped by the crystal is 
4.0  g cm-2 in water.  In  order  to  extract  the  maximum  amount of information  from  an 
ensemble of protons,  the  mean  stopping  position of the  protons  should  be  at  least  three 
standard  deviations away from  the  front  or  back  surfaces of the crystal. For  an initial 
proton  energy of 240  MeV,  the  range straggling is 0.40  g cm.-2. Thus,  the effective 
dynamic  range of the  detector is 1.6 g cm-2 of water  equivalent  range.  In  order  to  stay 
within this  limited  operating  range,  a  water  bath was used and only  low-contrast 
phantoms  were  scanned. 

Any CT method  requires  the  path  length  measurements  to  have  long  term  stability in 
order  to  avoid  artefacts  or excessive low frequency noise in the  reconstructions.  The 
stability of the HPGe measurements of proton  residual  range was determined  from  a 
series of runs  taken  over  a  35 min period.  Each of these  runs  lasted  30 S and  contained 
an  average of 25,800  events.  The  data  were  obtained  for  an  incident  proton  energy of 
192  MeV with a  20.5 cm thick water  bath.  The  mean  peak  energy was determined  for 
each of the  39 stability  runs  using the  optimum weighting  function  for the  iterative 
moment  technique  (Appendix 1). The RMS deviation of the  peak  location was 
measured  to  be  26.4*3.0  keV  or  expressed in terms of residual  range, 1.96* 
0.22 mg cm-2.  The  expected  uncertainty in the  range  determination  determined  from 
the  shape of the  energy  spectrum  and  the  mean RMS width of the individual fits is 
27.4  keV  or  2.04 mg cm-2  based on 25,800 events.  Comparison of the  measured RMS 

deviation with this  expected  value  leads  to the conclusion that  the  upper limit (90'/0 
confidence) on the RMS drift  in  the  range  determination  over  35 min is 0.94 mg cm-2. 
The  residual  range  method  used  here was indeed very stable!  Expressed differently, the 
upper limit on  the RMS drift in the incident  proton  energy was 4.4  keV  or  0.0023%. 

5. Spatial resolution 

In  passing through  matter all  charged  particles  undergo  numerous  small-angle 
deflections  caused by their  interaction with the  Coulomb field of the nuclei present.  The 
resultant  multiple  Coulomb  scattering  produces  a  divergence in an initial1 collimated 
particle  beam  that is unavoidable.  Figure  3  shows  the effect of multiple  Coulomb 
scattering on a  230  MeV  proton  beam in  its  traversal of 30 cm of water.  The FWHM 

envelope of the  beam  ultimately  broadens  to 14  mm  at  the  rear of the  water  bath 
(Hanson  1978).  The  width of the  proton  beam is directly related  to  the  spatial 
resolution in the CT reconstruction.  A  spatial  resolution of 14  mm FWHM is intolerable 
for  medical  purposes. 

Fortunately,  the effective  width of the  proton  beam  can  be  reduced by constraining 
the  protons  to  leave  the  water  bath  at  a  particular  lateral  position.  The effect of this 
constraint is shown in figure 3.  The  proton  beam is widest near  the  centre of the water 
bath  where it has been  reduced  to  a FWHM of 2.2  mm. Of course,  the effect of the initial 
beam  width,  1.6  mm FWHM in this experiment  and  beam  divergence,  14 milliradians,  as 
well as  the width of the exit  constraint  must be folded  into  the  beam profile.  In  this 
experiment,  the exit  position of each  proton  event was measured.  The  constraint on the 
exit  position was placed on the  events in the analysis. Thus, all the  events  could  be used 
and no sacrifice in dose efficiency was incurred. 
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Figure 3. Predicted  spreadingof  the FWHM of an initially collimated 230 MeVproton beam in 30 cm of water 
(solid line).  Dashed line shows effect of restriction to a particular exit position. 
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Figure 4. Edge  response functions of 240 MeV proton beam at a depth of ( a )  3.5 cm, (6)  15.5 cm,  and 
(c) 27.5 cm  in a 30.5 cm thick water  bath. The dashed curves show the effect of a 2 mm wide restriction on 
the exit position. 
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The  spatial resolution  achieved in this  experiment was measured by scanning 1 cm 
square Teflon  pegs at various depths in a  30.5 cm thick  water bath.  The initial proton 
energy was 240  MeV.  The  edge  response  functions  are shown in figure 4. The curves 
show the fit obtained using the  integral of a  Gaussian fitting function.  At  a  depth of 
3.5 cm the FWHM of the  resolution  function was 1.7  mm.  Little effect is expected  from  a 
constraint on the exit  position. At a  depth of 15.5 cm the width was 3.0 mm FWHM for 
all events.  Using only those  protons  that  exited within  a  2  mm  wide  band, the width was 
reduced  to  2.7  mm, in good agreement with the convolution of the  predicted 2.2  mm 
with the initial  beam  width of 1.7 mm.  Near  the  rear of the  water  bath  the  resolution 
widths  were 6.1 mm FWHM and 3.7 mm FWHM without and with exit  constraint, 
respectively. 

The unconstrained  beam  widths  were  not  as wide as predicted  because of the 
geometric  restriction  imposed by the trigger  requirement  that  the  protons pass through 
scintillator  S2 and hit the HPGe detector.  The width of the  constrained  events  at  a  depth 
of 27.5 cm are wider than  the  2 mm wide constraint  because of the  intervening  3.0 cm of 
water, 0.3 cm of aluminium,  and  1.7 cm of air.  When  the CT scanning is done over an 
angle of 360" so that  each ray is measured  from  opposite  directions,  the effective 
resolution  near the  edge of the  water  bath is predicted  from  these  results  to  be  about 
2.6 mm FWHM and  near  the  centre  to  be  2.7  mm FWHM. 

The intrinsic  limitations on  the  spatial  resolution arising  from  multiple Coulomb 
scattering may be  reduced  through  the use of heavy  ions (Huesman et a1 1975). 
Unfortunately,  the use of alpha  particles or  even  heavier ions  reduces  the  dose 
advantage  relative  to  protons. 

6. Reconstructions 

Two  polyethylene  phantoms  were  scanned.  One  phantom  had  a  diameter of 19.3 cm. 
Forty-two million proton  events  were  collected  for  this  phantom  at  an  incident  energy 
of 192  MeV. A full 360" scan was taken with  angular  increments of 1.33'. The  other 
phantom  had  a  diameter of 29.5  cm.  During  a  45  h  running  period with an  incident 
proton  energy of 240  MeV,  62 million events  were  registered.  A  full  scan was taken 
with angular  step sizes of 1.0". 

The analysis of the  data was carried  out  on  a PDP-11/45. In  this  analysis, the  events 
at  each  phantom position  were sorted  into  eight  groups according to their  measured  exit 
positions.  Each group  corresponded  to  a  2 mm wide cut in the exit  position.  The HPGe 
spectrum  for  each of the  groups was fitted by the  Gaussian weight method  described in 
Appendix 1 to  determine  the  mean  energy  and  hence  mean residual  range of the 
protons in that  group.  The results  were  recorded on  magnetic  tape for subsequent 
reconstruction. 

The reconstructions  were  performed on a CDC  7600  computer.  Before  recon- 
struction,  the  data  obtained in each  traverse  scan  were  renormalised using both  ends of 
the scan  for which the  proton  beam passed only through  the  water  bath.  These  end 
values  were  set to zero so that  the processed  projections  measured  deviations  from  the 
water  value. Each exit  position  group, as  explained  above, was treated  separately.  A 
straight  line  approximation was made  to  the most probable  path of the  protons in each 
group.  The angle of this  line was taken  to  be  that of the  straight-through  trajectory  plus 
the exit  displacement  divided by the  depth of the  water  bath.  The exit  position of the 
line was displaced  from the  straight-through  trajectory by 2 the exit  displacement. The 
maximum  deviation in this  approximation was less than 1 mm.  In effect, 8 x 270 = 2160 
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projections  were  used in the  19 cm diameter  reconstruction  and  2880  projections  for 
30 cm diameter  reconstruction.  The  conventional filtered  backprojection  recon- 
struction  algorithm was used (Shepp  and Logan 1974).  The  projections were  filtered in 
frequency  space with a  ramp  function  times  a  Gaussian  where  the  Gaussian  reached its 
half value at  one half the  reconstruction Nyquist frequency.  Band-limited  interpolation 
was used in the  backprojection  process. The reconstruction pixel sizes were 1 .O x 
1 .O mm2  for  the  19 cm diameter  and  1.25 X 1.25  mm2  for the  30 cm diameter. 

( ( 1  ) ( h )  

FiRure 5. Proton CT reconstructions  for ( a )  19.3 cm  and ( h )  29.5 cm  diameter  phantoms  obtained at an 
average  dose of 0.6 cGy.  The  contrast of the  density  resolution  pattern  (bottom) is 1.8% with  hole  diameters 
of 12.7 mm, 9.5 mm, 6.4 mm, 4.8 mm,  and 3.2 mm. 

The  proton CT reconstructions of the  two  polyethylene  phantoms  are  shown in 
figure 5 .  The phantoms  were specially made  to allow direct  comparison  between  proton 
and  x-ray  scans by using materials with elemental  composition  similar to  the  back- 
ground  material  for  the  two  resolution  patterns.  The  central  spatial  resolution  pattern 
consisted of polyurethane-filled  holes.  In  each row the  centre-to-centre  hole  spacing 
was twice the hole diameter. The hole diameters varied  from 3 mm to 1 mm in 0.25 mm 
steps. The measured  contrast  relative to  the polyethylene was 10.7%.  The resolving 
power in the  19 cm diameter scan is 2.25  mm,  and in the  30 cm diameter case,  2.5  mm. 

The density  resolution pattern  at  the  bottom of the  phantom was made by pressing 
high-density  polyethylene  dowels into  holes drilled in the normal  density  polyethylene 
blank. The hole diameters in successive rows were 12.7,9.5,6.4,4.8,  and 3.2 mm. The 
contrast was measured  to  be 1.8 f 0.2%.  While  the  presence of the smallest diameter 
holes  can  be  detected in the  19 cm diameter  phantom, only the  6.4 mm diameter holes 
are readily  observed in the 30 cm diameter  phantom. Actually, one of the 4.8 mm 
diameter  holes is visible but the  other  two  are not. A  high-dose,  x-ray  scan of this 
phantom  showed  these  other two  holes possess considerab!y smaller  contrast  than  the 
rest  probably  arising  from  variations in the  density of the  material used. 

The large diameter  holes  at  the  top of the  phantoms were filled with nylon on the left 
and  water  on  the right. The reconstructed  density of the  polyethylene is -1.8%  and of 
the nylon is 14.5%, in reasonable  agreement with that  expected on the basis of the 
relative  stopping  powers of the  materials  (Janni  1966). 

The polyethylene  phantoms  were  scanned  on  an EM1 5005 x-ray  scanner  for 
comparison. The scanner was operated in the normal (20 S )  scan  mode at  140 kV,, 
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28  mA with scan diameters of 24 cm and  32  cm.  The EM1  reconstructions  are  shown in 
figure 6. The spatial  resolutions of the EM1  scans are obviously better  than  the  proton 
scans with resolving  power of about 1.5 mm. The contrast  sensitivity is observed  to  be 
better  than  the  proton scan  for  the  20 cm diameter  phantom  and worse  for the  30 cm 
diameter  phantom.  The  quantitative  comparison  between  the EM1 5005 performance 
and  that of the proton  scans will be  made in the next section. The reconstructed  density 
of the  polyethylene is -10.8%, and of the nylon 8.0%. The contrast of the poly- 
urethane relative to  the  polyethylene is 10.0%, essentially the  same as  measured with 
the  protons. 

( ( 1  l ( h )  

Figure 6 .  EMI-5005 scans of ( a )  19.3 cm and ( h )  29.5 cm diameter phantoms. The average  doses for these 
scans were 3.3 cGy and 2.2 cGy respectively. 

7. Comparison with x-ray  scanner 

In this  section we will compare  the  spatial  resolution,  contrast sensitivity  and  doses of 
the  proton  and  x-ray  scans  obtained in this  study. The spatial  resolution was deter- 
mined using the  edge  response of the nylon dowels in the  phantoms. For the  proton 
scans,  Gaussian  shape was assumed  for  the line  response which is reasonable.  Since  the 
EM1 response  contained  a 10% overshoot  arising  from  the  edge  enhancement 
incorporated in the filter function  (Hanson 1979b) this  method  could  not  be  used. 
Instead,  a  smooth  curve fit to  the  edge response was differentiated to obtain  an 
approximate line  response  curve  from which the FWHM was measured  directly. The 
spatial  resolutions  are  tabulated in table 1. The resolution  for the 30 cm diameter 

Table 1. Comparison of proton crscans with those  obtained with EM1 CT-5005. NEO provides a measure of 
contrast sensitivity as explained in text. The average  dose is for  a  series of scans with 1 cm steps. 

Spatial  Average  Proton 
Diameter resolution RMS noise NEQ dose dose 

Method  (cm) (mm FWHM) ( X )  ( 1 0 ~ m r n - l )   ( c ~ y )  advantage 

Proton 19.3 3.4 0.24 4.2 0.44 
EM1 19.3 1.6 0.63 7.1 3.3 

Proton 29.5 3.8 0.22 2.5 0.47 
EM1 29.5 2.0 1.13 0.91 2.2 

4.5 

13 
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phantom is approximately  what is expected  from  the  measured  intrinsic  resolution 
(section 4) when  account is taken of the 2.2 mm FWHM blurring  function  associated with 
the  reconstruction filter. The resolutions  measured  for  the EM1 scanner  are  somewhat 
worse  than  those  obtained by Boyd et a1 (1976,  1977)  presumably  because of the 
limited  number of edge scans  used here. 

Comparison of doses  delivered by two  different  scanning  techniques is incomplete 
without  taking  into  account  the  relative  contrast  sensitivities.  While  the low contrast 
sections of the  phantoms  used in this experiment  provide  a  rough  measure of the 
contrast sensitivity,  a more  accurate  procedure is desirable. The  number of noise- 
equivalent  quanta (NEQ) per  unit  length in the  totality of projection  measurements will 
be used here  to  provide  a  quantitative  measure of contrast sensitivity. It has been 
shown  (Hanson  1979b,  Wagner et a1 1979)  that NEQ is directly  related  to  the  detection 
sensitivity  index d'  for  the  detection of large  area, low contrast  objects in an  x-ray CT 

reconstruction,  The NEQ may be  determined  either  from  a  measurement of low 
frequency  behaviour of the noise  power spectrum  or  from  the  evaluation of the noise 
granularity  function  for  large  averaging  areas  (Hanson  1979b). 

For  the  purpose of quoting  an NEQ value  for  proton CT reconstructions, it was 
assumed  that  a  change in the  proton  stopping  power  equivalent  to  water  corresponds  to 
a  change in the  linear  attenuation coefficient in water of x-rays in the  diagnostic  energy 
region,  that is 0.19 cm". The NEQ values for  the  proton scans  were determined  from 
the  measured RMS noise in the  reconstructions  and  the  relationship  between  the KMS 

noise and NEQ derived  from  the  reconstruction filter function  (equations (8) and (15) in 
Hanson  (1979b)).  These  were  checked by comparing the noise  granularity  computed 
from  an 80 X 80 pixel  section  taken  from  a flat region in the  reconstructions  to  that 
expected  for  the filter function  used. Also, the NEQ agreed with the RMS noise in the 
projection  measurements.  The NEQ values  for the  EM1  CT-5005 scans  were found by 
scaling the NEQ measurements  made on water  phantoms  such  as  those shown in Hanson 
(1979b) by the  inverse  mean  square  deviation  of  the noise in the  reconstruction.  These 
were  also  checked by a  rough  measurement of the noise  granularity  function. The NEQS 
given in table 1, accurate  to  about 5 % ,  show the  same  relative  ordering of the 
reconstructions in terms of contrast sensitivity as deduced  qualitatively in the  preceding 
section. 

The doses given in table 1 are calculated as the average  dose  for  a  series of scans with 
1 cm steps  between scans. The  proton  doses  are  based  on  the  number  of  incident 
protons  required  to  obtain  the  number of protons  detected in each  scan  neglecting  any 
loss arising from  deadtime in the  electronics  or  scanner  motion.  Only  the  geometry  of 
the  apparatus is taken  into  account.  For  the  19 cm diameter  scan, 34% of the  incident 
particles  resulted  in  triggers  and  for  the 30 cm diameter  scan, 28%. The loss of  beam 
particles was approximately  evenly  accounted  for by large  angle  deflection due  to 
nuclear  scattering  in  the  water  bath  and  phantom  and by small  angle  multiple Coulomb 
scattering. The  number of incident  protons was reduced  by  a  factor  of 1.132 = 1.28 to 
include  the  improvement in the  range  peak  fitting  procedure  that could  have  been 
achieved  through  the use of an  optimum weighting  function  as  described in Appendix 1. 
The  energy lost by the  protons in traversing  the  water  bath was calculated from  the 
range-energy  relation  and it was assumed  that  nuclear-scattered  protons, on the 
average,  lose  the  same  energy  as  the  unscattered  protons. 

The doses  for  the  EM1  CT-5005  scans  were  derived  from  the  measurements  made 
by Boyd  and his collaborators  (Boyd et a1 1977) on the  same  scanner used to  obtain  the 
reconstructions  shown in figure 6.  The  dose  for  the 30 cm diameter  phantom Scan was 
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taken  as  the  average  dose  measured on an elliptical phantom with  a  circumference  of 
91 cm. The dose  for  the scan of the  19 cm diameter  phantom was scaled  from 
measurements  made on a  25 cm diameter  water  bath  phantom assuming the  average 
dose is inversely proportional  to  the  phantom  diameter,  an  assumption verified by 
Brosch et a1 (1978). 

Table 1 summarises  the  relative  dose efficiencies of the  proton  and  x-ray scans given 
in terms of the  ratio of NEQ to  average  dose.  The  proton  dose  advantage  compared  to 
the  EM1  CT-5005 is 3.5 for  the  19 cm diameter  phantom  and 13 for  the 30 cm diameter 
phantom.  This  means  that  at  the  same  dose level, the  contrast sensitivity  could  be 
improved by nearly  a  factor of two for  19 cm diameter  phantoms  and by over  a  factor of 
3.5 for 30 cm diameter  phantoms if the  proton CT technique  were  employed  instead of 
an  EM1  CT-5005  scanner. While the  dose efficiency of the  EM1  scanner may  be 
representative of present-day  commercial  x-ray  scanners, it has  been  shown  to  be only 
about  12%  compared  to  an ideal x-ray  scanner  that uses monoenergetic  x-rays,  perfect 
collimation  and fully efficient detectors  (Hanson  1979b).  It may be feasible to  construct 
practical x-ray  scanners with three to four times  higher dose  utilisation.  On  the  other 
hand, only about  one half of the  protons  emerging  from  the back of the  water  bath  were 
detected in the  present  equipment. With  larger  detectors  the  dose utilisation in the 
proton  technique could  be  increased by almost  a  factor of two.  In  conclusion, the use of 
protons  instead of x-rays could  reduce  the  dose  required  to  achieve  a given contrast 
sensitivity  for 30 cm diameter specimens by an  order of magnitude. The advantage  for 
20 cm diameter specimens  would be considerably less dramatic. 

In  the  comparison  between  the use of protons  and  x-rays  for diagnostic  procedures, 
it will be  desirable to compare  the  deleterious effects of the  radiations  upon  humans. 
Unfortunately,  there  are no data on these effects in the  dose  range involved,  namely, 
about 1 to 2 cGy.  Measurements  at  doses of from  2  to 4 Gy  indicate  the RBE of 
160 MeV  protons  are nearly the  same as that of diagnostic x-rays  (Hall e l  a1 1978). 
While  extrapolation to low doses by means of a  model  for  cellular  radiation  damage 
indicates the RBE of protons may  increase  substantially,  this  procedure is highly 
speculative.  Further, it is unclear  whether  single cell effects are  at all related  to  the 
long-term  response of complex  organisms  at  these low doses. 

8. Conclusion 

We have  demonstrated  experimentally  that  reconstructions of diagnostic  quality may 
be  obtained using the  proton energy-loss method. While the  spatial  resolution  achiev- 
able by this method is fundamentally  limited by multiple  Coulomb  scattering,  it is not 
intolerable. The  proton  technique can  achieve  a given contrast  sensitivity  for  a dose  an 
order of magnitude  lower  than  the  x-ray  transmission  method  for 30 cm diameter 
specimens. The  proton  dose  advantage is significantly diminished  for 20 cm diameter 
specimens.  Since the  proton  method  reconstructs  the  stopping  power  relative  to  some 
reference  medium  rather  than  the  linear  attenuation coefficient for  x-rays,  proton CT 
scans  provide  imaging  characteristics  different  from  x-ray  scans.  It is possible that this 
alternative  imaging  modality  may  provide  diagnostic  benefits  when  applied  to clinical 
studies. 
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Appendix 1. Peak fitting algorithms 

We  present  here  a  method  for  determining  the  peak position of a  distribution  from  a 
limited data  sample.  The  method is based  upon an iterative  calculation of the weighted 
moment of the  data  and is generally  useful.  It is assumed  that  a  histogram, such  as an 
energy  spectrum, is measured with ni  events in the ith bin where xi  specifies the position 
of that bin.  First, it is assumed  that  only  the position of the  data  relative  to  the x-axis is 
to  be  determined.  Let  the  ensemble  average of ni  be  f(xi - a )  = fi,  where a is the  peak 
position. The problem is to  determine a from  the  data ni. The  procedure is to calculate 
the weighted moment which for  the  kth  iteration is 

(Al. 1) 

where  the  weighting  function W f is determined by the kth  estimate of a, ak: 

w j  = w(Xj-ak). k (A1.2) 

The choice of weighting  function will be discussed below. The next  estimate  for a is 

ak+l=.fk+A  (A1.3) 

where A is the offset of the  peak position  from the weighted moment  determined  from 
the known  function f as 

(A1.4) 

Here A and wi do not  have  a  subscript  since it is assumed  that  they  are based on the 
known  function fi. More generally  they  might  depend  upon k. The initial  choice  for a. 
may  be determined by (a) a priori information,  (b)  operator  intervention  or, (c) 
calculation of the  moment of the  data using a  uniform weight function. In situations 
where  the  function f possesses only  a  single  reasonably well-defined peak,  the  latter 
method works well. 

The variance in the  estimate of a obtained  when this  iterative  method converges 
may be  found by substitution of equation  (A1.3)  into  equation (Al . l )  setting ak+l= a k .  

Then  differentiation of equation ( A l . l )  with respect  to  ni yields 

(A1.5) 

where  the k subscript  has  been dropped, azi = ni = fi has been used and afi/ax is the 
derivative off  evaluated  at x i  -a .  
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In the analysis of the  data  obtained in this  experiment,  a  Gaussian  weight  function 
was used  and A was assumed to  be  zero: 

(A1.6) 

The RMS width of the weighting  function I T k  was varied in the  iterative  procedure  to  be 
the  same as that of the fitting function,  also  assumed  to  be  a  Gaussian.  Thus 

(A1.7)  

An example of the  results of this procedure when  applied to  the HPGe energy  histogram 
data is shown in figure 1A.  It is found  that  the  iterative  procedure converges  rapidly  and 
reliably with the  Gaussian weighting  function.  This  weighting  function  has the  advan- 
tage  that it removes  the influence of long  tails in the  data, as seen in figure lA,  upon  the 
peak position  localisation. For  example,  the position of the  energy  peak in figure 1 A  is 

Energy (MeV)  

Figure 1A. The  energy  histogram  obtained  from  the  entire  series of stability  runs  comprising lo6 events.  The 
curve  shows  the  Gaussian fit to the  data by the  iterative fitting procedure  described in the  text. 

determined by the uniformly  weighted moment, 47.7 MeV. By equation (A1.5) the ua 
is the RMS width of the  complete  histogram, 8.13 MeV, divided by the  square  root of the 
number of events  (a well known  result).  However,  the  uncertainty in a for  the  Gaussian 
weighted moment  method given by equation (A1.5)  11 is 4.96 MeV divided by the 
square  root of the  number of events. The values of a and U found by this method  are 
48.8 MeV  and 3.85 MeV.  Thus we see  that  the uniformly  weighted moment  results in a 
value  for the  peak position that is both biased  as well as  subject  to  a  larger  uncertainty 
than  the  Gaussian weighted moment by a  factor of 1.64. 

If the  function f is known,  it is feasible to  determine  the  optimum weighting 
function. In general  the maximum  likelihood method yields the best  estimate  for 
unknown  parameters.  Under  the  assumption  that  the  data  values  are  normally  dis- 
tributed, valid when  the  number of events  per bin is large,  the maximum  likelihood 
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condition  may  be  restated  as  one of minimum  chi-squared,  where 

979 

(A1.8) 

In fitting a  single parameter,  the  peak position a, the minimum x’ is achieved  when its 
derivative with respect  to a is zero: 

(A1.9) 

where f l  is the  derivative  off with respect  to x evaluated  at xi -a .  The variance in the 
estimate of a is given by 

( A l .  10) 

where  the variance in ni has  been  replaced  byfi = f ( x i  - a ) ,  the  ensemble  average of ni, 
appropriate  for Poisson statistics.  It is observed  that  the  condition  to  be satisfied for 
minimum X’, equation (A1.9) is equivalent to  the  moment calculation, equations 
(Al.1,  3 and 4), at  convergence ( a k + l =  a k )  if the weighting  function is chosen  as 

(Al.11) 

and with 1 wini inserted in the  dencminator in place of C wifi in equation (A1.4). 
Equation ( A l . l l )  does  not diverge at xi = a k  since  it is assumed  that ak marks  the  peak 
position  where fl = 0. Thus,  the  minimum x’ method  provides  the  optimum weighting 
function  for  the  iterative  moment calculation. Equation (A1.5) yields equation (A1.lO) 
under  these conditions. Equation ( A l . l l )  corresponds closely to a filter method  for 
optimally finding peak locations  developed by Gatti  and Svelto (1966) and recently 
elaborated  on by Llacer (1981). 

Take as an  example  data  that  have  a  Gaussian  shape in x .  Then  from  equation 
(Al .  11) it is found  that  the best  estimate  for  the  peak  position is found using a  uniform 
weighting  function.  This is the  general result obtained by the maximum  likelihood 
method.  Furthermore,  the  uncertainty in a given by equation (A1.lO) is the RMS width 
of the  Gaussian divided by the  square  root of the  number of events. If the  Gaussian 
weighting procedure  described by equations (A1.6 and 7) were  used, then  the 
uncertainty in the  peak  position,  equation (A1.5) would be  larger  than this by a  factor of 
(8 /343)’”  = 1.241. Thus, while the  Gaussian weight  function  may  have  some  advan- 
tage in reducing  the effects of events in the tails of the  data  distribution, it will not, in 
general,  provide  the  best  determination of the  peak  position. 

The  optimum weighting  function to use in the  moment calculation  for the  energy 
histogram in figure 1A has  been  estimated using equation (Al.11). It is shown  as  the 
dashed  curve in figure 1A. The uncertainty in the  peak position given by equation 
(A1.10) is 4.40 MeV divided by the  square  root of the  number of events.  This  has  been 
verified by breaking up  the stability run  into  one-second samples,  each  containing dn 
average of 861 events.  The RMS peak position was found  to  be 0.156* 0.003 MeV, 
higher than  the  predicted value of 0.150 MeV by only 4%. When  the  same  data  were 
fitted using the  Gaussian weighting  function, the result was. 0.178 f 0.004 MeV, 4% 
higher than  predicted.  It is concluded  that if the  optimum weight method  had  been used 
to  analyse  the 19 cm diameter  scan,  the RMS noise in the  reconstruction  would  have 
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been  lower by a  factor of 1.13.  The similarity of the  energy  histogram  obtained in the 
30 cm diameter scan  indicates  a  comparable  reduction in noise is possible there,  too. 

Appendix 2. Alternative  detectors 

For  the  present  experiment  the  hyperpure  germanium  detector was chosen  to  measure 
the  residual  proton  range  on  account of its  excellent  stability.  While  the HPGe detector 
performed very well, it would be difficult to  make it operate efficiently  at event  rates 
higher  than  about  50  kHz  because of its slow rise time,  As  a  consequence, two 
alternative  range  measurement  schemes  were  investigated.  Both  are  based on the  use 
of plastic  scintillators  in  conjunction  with  photomultiplier  tubes.  Since  this  arrange- 
ment  can yield electronic  pulses less than  10 ns long, instantaneous  rates  approaching 
10  MHz may be  accommodated  without significant loss due  to overlapping  pulses. 

In  the first alternative  detector,  the  protons  were  stopped in  a  block of scintillator. 
The pulse  height of the  photomultiplier viewing this  scintillator  should  be  roughly 
proportional  to  the  proton  energy.  The  scintillator,  Nuclear  Enterprises  NE  102, was 
machined to a  4.9 cm long  right  circular  cylinder  with  a diameter of 3.65  cm. The  front 
of the scintillator was tapered  over  a  distance of 1.9 cm to  a  front  surface  diameter of 
2.9  cm.  The  scintillator was wrapped with aluminised  Mylar  to  improve  light  collection. 
The back  face of the scintillator  block was glued  directly to  an  EM1  9759  phototube. 
This  photomultiplier was chosen  for  the  inherent  stability of its venetian  blind  dynode 
structure.  The  output pulse  width was 30 ns FWHM. Our  tube was selected by EM1  for 
better  than  0.5% gain stability  over  a 3 h  period.  The  phototube  and  scintillator  were 
contained in a Pacific Photometric  Model  33  photomultiplier  housing  to stabilise the 
temperature since the gain  change  for  an 1 l-stage photomultiplier is about  0.5%  per "C 
(Liberman  1977,  private  communication).  The  temperature stability was measured  to 
be  about  0.4 "C over  a  30  h  period.  The  phototube  base  provided  equal  increments of 
voltage  between all dynodes  with  double  that  increment  between  the first dynode  and 
the  photocathode. 

The  detector was calibrated  in the  same  manner as described in section  4  at  an 
operating  voltage of 520 V. With R. = 1.895  g cm-', the  exponent in equation  (6) was 
found  to  be p = 0.363.  The  response of this detector  showed  some  type of saturation 
effect  since p is less than  that  observed  for  the HPGe. This is contrary  to  what is 
expected  from  the  response of scintillators  to low energy  protons  (Smith et ai 19681, 
possibly because of the effect of the  scintillator  shape on light  collection efficiency (Falk 
and  Sparman  1970)  or  just  photomultiplier  saturation.  When  operated  at  1000 V, the 
detector  showed  even  worse  saturation ( p  = 0.23). Table  1A summarises  the stability 
results  obtained  for  this  detector  from  a  series of 11 runs  taken  over  a  13 min period  for 
the  520 V operating  voltage. 

The second  type of detector  studied was  a standard  range  telescope.  It  consisted of 
ten  squares of NE 102 plastic  scintillator each  0.246 f 0.009 cm thick and  wrapped in 
0.005  cm thick  shiny  aluminium foil, Light from  each  scintillator was conducted  to  an 
EM1  9813B  phototube  through  an  adiabatic Plexiglas light pipe. Signals from  the 
central  eight  counters  were  pulse  height  analysed by an LRS 2248.  In  addition, 
discriminators  were  used on all of the  counter signals. The  discriminator  and pulse 
height  information was recorded  on  magnetic  tape by the  on-line  PDP-11. 

The calibration of the  range  telescope was found  to  be  0.258 f 0.002 g cm-' per 
counter ( p  fixed at  unity), slightly less than  the  0.271  g cm-*  predicted  from  the  counter 
thicknesses. 
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Table 1A. The RMS width of the  range  distributions  and  the RMS deviation of the  mean  range for a  series of 
runs  obtained  with  various  detectors,  The  Gaussian  weighted  moment  method  was  used  throughout.  The 
range  telescope  results  are  given for two  energy  thresholds.  Here uR is the effective RMS range  straggling. 

RMS deviation 
of mean  range 

U R  Predicted  Observed 
Detector  Measurement (g cm-’) Events/run (mg cm-’) (mg  cm-*) 

HPGe Energy  deposited 0.285 25 800 2.30  2.42k0.27 
Scintillator Energy  deposited 0.318 27  500 2.51  2.29 * 0.49 
Range  telescope Range (1.2 MeV) 0.328 19  500 2.98  2.09 f 0.52 

(7.1 MeV) 0.292  19  500  2.65  3.20*0.80 

For  the stability  series of runs,  lasting 12 min,  the  proton  stopping  distribution was 
centred  between  counters 7 and 8. The energy  calibrations of the pulse  height  spectra 
were  determined  from  the  energy lost by 192  MeV  protons  traversing  the scintillator 
stack,  roughly  10.6  MeV.  The  data  were  analysed by placing  a  threshold on the pulse 
height  spectrum of each  counter.  A  histogram of the last counter  to  exceed its threshold 
was used  to represent  the  stopping  distribution. Very  few  holes in the  pattern of 
counters  that fired were  observed.  The  results of the eight  stability  runs  are given in 
table 1 A  for  two  energy  thresholds,  assuming  a  linear  energy  scale.  Since counter  10 
registered all the  particles  that passed through  it,  not  just  those  that  stopped in it, 
counter  10  presented  an  anomalously high response. 

Note  that  as  the  threshold  energy is increased, so is the  depth  into  the  counter  that  a 
proton must penetrate  to  produce  that  energy.  This  depth we call the  counter’s  dead 
layer.  Taking  into  account  the  nonlinear  response of the scintillator  to  low-energy 
protons  (Smith et a1 1968),  the  actual  proton  energies  corresponding  to  the  thresholds 
given in table  1A  are estimated  to  be 3.7 MeV  and  13.0  MeV.  The  corresponding  water 
equivalent  dead layers are  20 mg  cm-’ and  193 mg cm-’ (Janni  1966).  The shift in the 
stopping  distribution  between  these  thresholds was 0.38 counter  widths  or 98 mg cm-’, 
The  dead  layer is important  since instabilities in photomultiplier  gain  produce  changes 
in the stopping  distribution  relative  to the  dead  layer.  The  thinner  the  dead  layer,  the 
smaller  the effect of photomultiplier gain instabilities.  Thus,  quite  poor  stabilities in the 
photomultiplier  gains  may  be  tolerated in a  range  telescope if the  dead  layer is small 
enough.  This effect is perhaps  responsible  for  the  improved stability  observed  for the 
lower  threshold.  However,  the  anomalous  behavior of counter  10 may bC the cause of 
this as well as of the  larger  range straggling for  the  1.2  MeV  threshold. 

Comparison of the  three  detectors  studied in the  course of this  experiment shows the 
range  straggling  to  be  similar, with the HPGe straggling the smallest. The expected 
range  straggling of a 192  MeV  proton  beam in  water is 0.284  g cm-’ in good  agreement 
with the HPGe measurement.  The  width of the  range  telescope  distribution is expected 
to  be  about 3% larger  or  0.294  g cm-’ because of the finite  widths of the  range bins. The 
predicted RMS deviation of the  mean  range was estimated  as  1.24  times  the  effective 
RMS range straggling  divided by the  square  root of the  number of events in the Gaussian 
fitted  peaks  (Appendix 1). We  observe  that  none of the  detectors  showed  an RMS 
deviation  that was  larger  than  one  standard  deviation  above  that  predicted.  We 
conclude  that all of these  range  detection  methods possess an RMS stability of better 
than  a  few mg cm-’, sufficient for  use in proton  computed  tomography. 
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Resume 

Tomographie computeriste utilisant la perte d’energie des  protons. 

Nous avons fait une experimentation afin de montrer la possibilite d’iffectuer  de la tomographie  compu- 
teriste par  protons. Nous avons utilise la perte d’energie  des  protons pur mesurer les projections des pouvoirs 
d’arrst relatifs des f a n t h e s .  Nous avons obtenu des  reconstructions de  haute qualitd a partir  des images de 
fantBmes de 19 cm et 30 cm de diamktre. La comparaison avec les reconstructions obtenues a partir  d’un 
tomodensitometre a rayons X EM1 CT 5005 montre  que la technique utilisant des  protons est beaucoup plus 
efficace pour  une  dose  recue  par le malade. 

Zusammenfassung 

Computertomographie mit Hilfe des Protonenenergieverlustes. 

Vorgestellt wird ein Experiment, daJ3 die Eignung der Protonencomputertomographie demonstriert. Man 
benutzte den Protonenenergieverlust  zur Messung der Projektionen  des relativen Bremsvermogens der 
Phantome. Aus Scans von Phantomen mit 19 und 30 cm Durchmesser  erhielt man qualitativ hochwertige 
Rekonstruktionen.  Der Vergleich mit Rekonstruktionen von einem E M 1  CT 5005 Rontgenstrahlscanner 
zeigt, dag die Protonentechnik im Hinblick auf die niedrigere  Strahlenbelastung bei vergleichbarer Bildgiite 
vie1 effizienter ist. 
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