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The detection l i t a t i o n s  inherent in statistically limited computed tomographic (CT) images 
are described through the application of signal detection theory. The detectability of large- 
area, low-contrast objects is shown to be chiefly dependent upon the low-frequency content 
of the noise power spectral density. For projection data containing uncorrelated noise, the 
resulting ramplike, low-frequency behavior of the noise power spectrum of CT 
reconstructions may be conveniently characterized by the number of noiseequivalent x-ray 
quanta (NEQ) detected in the projection measurements. The NEQ for a given image may be 
determined either from a measurement of the noise power spectrum or from the noise 
granularity computed with an appropriate weighting function. A measure of the efficiency of 
scanner dose utilization is proposed which compares the average d m  to that required by an 
ideal scanner to obtain the s&e NEQ. 

I. INTRODUCTION 

The introduction of the x-ray computed tomographic (CT) 
scanner' to medical imaging has made it feasible to detect 
the presence of lesions of very low ~ o n t r a s t . ~  A dramatic 
improvement in delectability over previous imaging tech- 
niques was made possible through the following innovations: 
( I )  The noise in the reconstructed CT images was signifi- 
cantly reduced through the use of efficient detectors and 
electronic processing techniques thereby permitting relatively 
efficient utilization of the radiation dose. (2) The images 
could be displayed with variable contrast thus overcoming 
the minimum contrast threshold of the human observer. (3) 
The CT reconstruction process almost completely eliminated 
the superposition of various anatomical structures, leading 
to the reduction of "structural" noise. 

Riederer, Pelc, and Chesler3 have pointed out that un- 
correlated statistical noise in the projection data will lead to 
the unique correlations in the CT reconstruction noise. The 
presence of these correlations in the images of a commercial 
CT scanner has been sub~tantiated.~ Furthermore, these 
correlations may be altered to some extent by the recon- 
struction algorithm used in a specific scanner. Conventional 
summary measures of noiseS cannot be used directly to 
characterize CT noise. Signal detection theory will be used 
in this paper to investigate the large-area, low-contrast de- 
tection capabilities inherent in CT images. This will lead to 
methods which provide a measure of the density sensitivity 
appropriate to CT noise. It should be noted that the approach 
taken here may be readily extended to images containing 
noise with characteristics other than those found in CT im- 
ages. When images containing conventional uncorrelated 
(white) noise are analyzed, the conventional figures-of-merit 
are obtained.6 

The restriction in this paper to the detection of objects with 
large area is appropriate to the study of noise properties since 
it eliminates the influence of the MTF and, what may be 
equally significant, the discrete representation of the CT 
image. The results presented here are directly applicable to 

the clinical problem of the detection of lesions of moderate 
size, >lo-mm-diam, and low contrast, <I%. The detection 
theory approach presented may beextended to the problem 
of the detection of smaller objects. 

It is hoped that ultimately a model of thedetection system 
of the human observer might be incorporated into a complete 
description of signal detection in images. CT noise is inter- 
esting from this point of view since it provides us with a new 
type of noise with which to explore the human detection 
system. Thus psychophysical tests with CT noise might well 
lead to a new understanding of how we interpret images. 

In Sec. 11 we review the derivation of the noise power 
spectral density for CT reconstructions and introduce the 
notion of number of noise-equivalent quanta (NEQ) used to 
form a CT image. The use of noiie granularity in describing 
CT noise is considered in Sec. I l l .  Section IV outlines the 
concepts of signal detection theory and their ~mplications for 
CT reconstructions. In Sec. V we discuss methods which may 
be used to compare the large-area, low-contrast detection 
capabilities of different CT scanners. Concluding comments 
are made in Sec. VI. 

II. PROPERTIES OF CT NOISE 

The statistical limitations which arise in x-ray computed 
tomography (CT) due to the counting statistics of the de- 
tected x rays have been discussed by numerous authors.' l 4  

Furthermore, correlation in CT noise was predicted by Ta- 
naka and linuma8 some time ago. The effect of this correla- 
tion on the rms deviation of the mean for averages taken over 
various-sized areas was first pointed out by R~ederer, Pelc, 
and C h e ~ l e r . ~  This led HansonI5 to speculate that the de- 
tection of objects in CT reconstructions would be affected 
by these correlations. 

The noise power spectral density may be used to charac- 
terize the properties of the noise in images. We will give a 
brief denvation of the noise power spectral density for CT 
 reconstruction^.^^^'^ The noise power spectral density S of 
an image 1s defined" as 
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FIG. I .  Naise power 
spectral density distri- 
butions in two-dimen- 
sional frequency space, 
(a) for a single projec- 
tion a O0 and, (b) for the 
complete reconstruc- 
tion. 

where r(x,y) is the reconstruction image containing only 
noise and the brackets indicate an ensemble average to be 
carried out over all such noisy images. A is the area over 
which r(x,y) is defined. For the moment we will consider the 

' filtered backprojection reconstruction algorithm7 applicable 
to a planar geometry in which the projections are obtained 
along parallel lines. The corrective filter to be applied to the 
projection p(x)  is of the form 

In the limit as f approaches zero frequency, HV) must ap- 
proach unity to obtain a reconstruction with the proper 
normalization. The contribution to S(f f ) from the 

.y  backprojection of a single filtered noisy projection will be 
along a spoke with the radial frequency dependence 

lf121HV)lZ~p(n,  (3) 

where S,, is the noise power spectrum for the projection. 
Figure I(a) shows the contribution to SV;fy) from a single 
projection containing white (S,, = constant) noise for HV) 
= I .  

Suppose that the complete reconstruction is performed 
using m projections taken a t  equally spaced angles covering 
from 0 to r each with the same Sp. If the projections are 
statistically independent, it follows from Eq. (1) that the 
resulting S is merely the sum of the contributions from each 
projection. The net result is 

where m/fr is the spoke density at radial frequency f and 
?r/m is the proper normalization factor for the reconstruction. 
Figure I (b) shows the calculated noise power spectrum for 
a 256 X 256 reconstruction (H  = 1) from 300 projections 
which contained simulated white noise. The technique used 
to calculate S is described in the Appendix for L = 32 and 
N,., = 128. The bumpiness in Fig. l(b) arises from the 
limited statistical accuracy attained in the estimation of S 
from a single reconstruction. Figure I(b) emphasizes the two 
dimensional nature of S. The radial dependence of S given 

by Eq. (4) has been verified for simulated reconstruc- 
tions.'5J6 

The noise variance in the reconstruction image is given by 
Parseval's relation as the total power 

where f~ is the Nyquist frequency implied by the assumed 
bandlimited nature of the projection data.'If the projection 
data are obtained from equally spaced, uncorrelated mea- 
surements, 

where a is the spacing between the projection measurements 
whose variance is a: and f~ = (2a)-I. The resulting variance 
in the reconstruction7 may be conveniently written as 

where 

The noise coefficient K.,,,. defined by Eq. (7) is a dimen- 
sionless quantity which describes the propagation of the noise 
inherent in a particular reconstruction algorithm. Equation 
(8) allows one to calculate K.,,, for the filtered backpro- 
jection algorithm when the reconstruction coordinates (x.y) 
are continuous. For example, for H = 1, K.,,, = r r / f i  = 
0.907, and for H = sine2(rrf/2f~), K ,,,., = 0.568. However, 
care must be taken in using Eq. (8) to calculate K,,,., in 
particular when x and y represent discrete variables. 

IHV)l may be thought of as the modulation transfer 
function (MTF)I7 associated with the reconstruction algo- 
rithm. It is interesting to note that when linear interpolation 
is used to interpolate between the sample points in the pro- 
jection, the result is to introduce a factor of sinc2(?rf/2fN) 
to H. However, no such factor occurs when bandlimited in- 
terpolation is used. It should be realized that the complete 
system MTF is the product of several contributing MTF's, 

' and H V )  is only one of these. For example, another contri- 
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bution is that which arises from the finite width of the ra- 
diation beam used to measure the projections. 

Let us consider the specific case of statistically limited 
x-ray computed tomography. Each projection measurement 
is determined from the ratio of the number of transmitted x 
rays N ,  to the number that would be detected if no object 
were present No, 

The statistical uncertainty (noise) in each measurement is 
readily found to be 

provided No >> N .  I f  approximately the same number of x 
rays are detected in each projection measurement, we obtain 
from Eqs. (4) and (6) the noise power spectrum 

We define the number of equivalent quanta (NEQ) as the 
total number of x rays detected per unit distance along the 
projections. 

whereby 

Recalling that H must approach unity as f goes to zero, the 
noise power spectrum has the limit 

VI lim S y )  = -- 
r-o N E Q '  

Also, the noise variance in  the reconstruction is 

Our definition of NEQ differs from that proposed by Wag- 
ner, Brown, and Pastells in that it includes the number of 
projections m and thus refers to the total effective number 
of detected quanta per unit length rather than to the number 
of per unit length in each project~on. It will be shown in Sec. 
IV that NEQ may be used to characterize the large-area, 
low-contrast detectability of CT images. 

It should be noted that the ramp-like nature of S  near f = 
0 is a general property of reconstructions in which the noise 
in the projection data is uncorrelated. Thus, any measureof 
the slope of S near the origin might be viewed as equivalent 
to the use of NEQ. NEQ has the advantage of possessing a 
physical interpretation when apphed to x-ray computed to- 
mography. 

The noise autocorrelation function C(x.y) may be used as 
an alternative description of the noise properties. Since it is 
just the inverse Fourier transform of S  

C provides equivalent information about the noise as does S.  
It may be shown that the ramp-like nature of S for uncor- 
related projection noise implies that the asymptotic depen- 
dence of C is -p-' where p is the radlal distance. Thus it is 
said that CT noise contains long-range negative correla- 
tions. 

A word about units is appropriate. We see from Eq. (9) 
that the projection p is dimensionless and that the recon- 
structed quantlty r has units of (length)-'. Then, Eq. ( I )  
indicates that S  will be dimensionless. From Eq. (14). NEQ 
has the same units as frequencyf; (length)-I, which is con- 
sistent with its definition as the number of quanta per unit 
length, Eq. (12). 

For ease of notation the formulae developed in this section 
have been based on continuous variables and continuous 
Fourier transforms. They may readily be extended to discrete 
variables appropriate to the practical situation, where r is 
determined for picture elements (pixels) at discrete values 
of x and y. The use of continuous variables is a good ap- 
proximation if the dimensions of the objects considered are 
both much larger than the pixel width, say greater than 5 
pixels, and much smaller than the full image width. This is 
precisely the realm of concern in the present paper for objects 
referred to as "large-area." 

Ill. NOISE GRANULARITY 

Several measures of the granular nature of the image noise 
have been used in the past to investigate film noise." Here 
we shall define the noise granularity as 

where uA is the rms deviation of the mean noise averaged 
over an area A. G is Selwyn's granularity coefficientI9 divided 
by fi. We wish to extend the above definition to include 
weighkd means. Consider the weighted mean of an image 
r(x.y) 

ma(x,y) = SSdxfdy'r(x - x',y - yf)w(x',y'), (18) 

where the weights w(x,y) are normalized io unity: 

JJdxdy w(x,y) = 1. (19) 

Then 05 is given by the variance in ma. The effective area 
is defined 

- A  = [SJdxdy w2(x,y)]-I, (20) 

so that G is independent of A for uncorrelated noise. 
The weighted mean ma(x,y) defined by Eq. (18) may be 

thought of as a smoothed version of the original image r 
where w is the smoothing function. The Fourier transform 
of m~ is therefore equal to the product of the Fourier trans- 
forms of r and w. It can be shown that the variance of ma 
may be written as 

where S  is the noise power spectrum of r and W is the Fourier 
transform of the weighting function w. Then G may be ex- 
pressed in terms of frequency variables as 

\ 
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FIG. 2. The noise granularity coefficients for several sine2 reconstruction 
filters. The dashed curves are for constant weiehts within a square region. . 
The solid curves are calculated using a pyramidal weighting function. 

It is observed that although G is related to S, S should be 
considered as a more fundamental measure of the noise 
characteristics than G .  However, there may be some merit 
in the use of G since it may be easier to calculate G in real 
space than to calculate S. Moreover, as will be shown in Sec. 
IV, G is directly related to the signal-to-noise ratio (optimized 
for white noise) for the detection of large-area objects. Thus, 
G may be more closely related to the detection capabilities 
of an image than S. 

In order to demonstrate the expected dependence of G 
upon A for CT noise, let us define an averaged noise coeffi- 
cient KA in a manner similar to Eqs. (7) and (8): 

Thus 

The A dependence of K A f i  is shown in Fig. 2 for a family 
of filters of the form H = sinc2(a?rf/2f~). The curves in 
Fig. 2 are calculated using the discrete equivalent of Eqs. (20) 
and (24) under the assumption that a is both the pixel width 
and the projection sample spacing. Two different weighting 
functions are used. The dashed curves are computed using 
a constant weighting throughout a square of area A. It is 
observed that the behavior of  these curves for large 6 is 
affected by the amount of high frequency filtering. This in- 
teresting result is easily understood since aside from an os- 
cillatory behavior, W asymptotically falls off as f-=, just 
cancelling thef2 factor in the integral in Eq. (24) and leaving 
the high frequency contributions of Hz. 

The solid curves in Fig. 2 are the results for a pyramidal 
weighting function which for even n is given by 

n +  1 

w(i,j) = i l l ~ - ' l l ~ i , j ~ n  otherwise. (26) 

Cis  fixed by Eq. (19j and A is calculated from Eq. (20). For 
m >> 1, A = 3n2/4. The curves for pyramidal weighting 
converge rapidly as .\/;I increases. This is a result of the more 
rapid fall off of W than for square weighting. Thus, py- 
ramidal weighting has the advantage that, for large a, it 
provides a better measure of the low frequency behavior of 
S. 

Equation (22) may oe used to derive a relationship between 
G and the low frequency behavior of S, as characterized by 
NEQ [Eq. (14)l. A gaussian weighting function will be as- 
sumed for the moment: 

Then the effective area is A = 4 ?ru2. Evaluation of Eq. (22) 
yields 

This formula holds for all values of A for an "exact" recon- 
struction in continuous variables, provided 6 is much 
larger than the width of the spatial resolution function. 
However, for discrete variables it can only be approximately 
correct for A >> pixel area. Equation (29) is useful since 
asymptotically it is approximately valid for a variety of 
weighting functions, provided the corresponding W(n falls 
off faster than f '. For example, above .\/;I a 10 pixels the 
curves in Fig. 2 for a pyramidal weighting function ap- 
proximately satisfy Eq. (29) with the constant changed to 
1.240. Thus, the noise granularity function G may be used 
to determine NEQ if calculated for appropriate weighting 
functions. 

IV. SIGNAL DETECTION THEORY 

Signal detection t h e ~ r y ~ ~ . ~ '  may be used to develop a 
measure of the detectability of objects in CT images. To 
simplify matters we will only consider the binary decision 
problem in which the decision is to be made whether or not 
a specific object is present at a specific location. The binary 
decision case may be extended to the multiple decision sit- 

or to the problem of the search for objects within 
an image.5 

We will briefly review the procedure6 used to construct the 
best decision criterion, which is referred to as the "optimum 
receiver." The first step is to construct a decision function $, 
which is based on the relative likelihood that the image in 
question contains the object or not. In order to reach the 
optimum decision, $ will include the known correlation 
properties of the noise. If the noise is gaussian distributed (but 
not necessarily uncorrelated), then the relative frequency of 
occurrence of different values of $ for a given type of image 

Medical Physics, Vol. 6, No. 5, SepJOct. 1979 



445 Kenneth M. Hanson: Detectability in computed tomogr; ~phic images 445 

FIG. 3. Probability distributions of the decision function for an image 
conlaining purr. noi,e and for an magccuntaininga \ignal as well as notse. 
The cham of J,  ~nllucnccs the probabililie, of true positive (TPJ and h i s  
positive (FP) responses 

will also be gaussian distributed. Figure 3 shows two proba- 
bility distributions for $, one for images containing only noise 
and the other for images containing a signal in the presence 
of the noise. The signal-to-noise ratio SNR, for such a sit- 
uation is defined as 

where A$ is the difference in the mean values of $ for the two 
cases and a+ is the rms deviation of each distribution. The 
SNR for the binary decision problem at hand is identical with 
the detection sensitivity index d' used elsewhere.20 

A threshold $, must be selected in order to make the de- 
cision. A positive decision is made (that the object is present) 
of $ > $, and a negative decision if $ < From Fig. 3 it 
is clear that a positive decision will be made for certain 
fraction of images that do not actually contain the object. 
This is called the "false positive" probability and is repre- 
sented by the area labeled FP in Fig. 3. Similarly the "true 
positive" probability is labelled TP. As $, is varied, TP and 
FP will also vary and the resulting plot of TP versus FP is 
called the receiver operating characteristic (ROC) 
The appropriate choice of the value of $c will depend upon 
such factors as the relative cost of falsely identifying the 
presence of the object compared to the cost of missing an 
object that is present. 

From the foregoing discussion it should be clear that the 
best detection performance is attained when the SNR is 
maximized. The optimum receiver is that decision criterion 
which produces the maximum SNR for a given type of noise. 
In principle, the noise characteristics must he taken into 
account in the formulation of the decision function \I. to ob- 
tain the optimum receiver. If the noise characteristics in the 
image are different from that assumed in the formulation of 
the receiver, the receiver may not be optimum. Wagner6 has 
derived the SNR of an image for a receiver that is optimized 
for white (uncorrelated), gaussian noise: 

SNRw = SSdfx dfy lR(fxfv)12 
[SSdfx dfv ~s(fxy)lNf,fy)1211/2' 

(31) 

where R is the Fourier transform of the object to be detected. 
It is observed that the signal power as well as its overlap with 
the noise power spectrum determine SNRW. One may con- 

clude that for large area objects, it is the behavior of S near 
zero frequency which dominates the SNR since R2 will be 
concentrated there. It is important to emphasize that al- 
though S may be arbitrary, Eq. (31) gives the SNR of a re- 
ceiver optimized for white (S  = constant) noise and hence 
may not be the maximum SNR achievable. 

We may now apply signal detection theory to computed 
tomography. First consider the SNR for the detection of an 
object using the projection data. It is assumed that m equally 
spaced projections covering from 0 to a have been taken each 
with the same white noise spectrum given by Eq. (6). Then 
using the one-dimensional equivalent of Eq. (31). the SNR 
for the projection data is 

where PI is the Fourier transform of the jth projection of the 
object and the sums are over all projections from j = 1 to 
m. 

The projection-slice theorem states that PI is identical to , 
the two-dimensional Fourier transform of that object, R, 
evaluated along a slice through zero frequency at the angle 
corresponding to the projection: 

Furthermore, in the limit as m -, -, the summations may 
be replaced by an integral and the symmetry of the Fourier 
transform may be used to obtain 

Since the noise in the projections is assumed to be white, this 
is the optimum SNR for the projection data. 

The SNR for the detection of the object in the recon- 
structed CT image may be readily obtained from Eqs. (4) and 
(3 1 )> 

in which we have assumed that H = 1, appropriate for the 
"exact" reconstruction in continuous variables. Since the CT 
noise power spectrum is not white, SNR: is not theoptimum 
SRN for the reconstruction image. Indeed, it may be shown 
by simple rearrangement of the moment inequality 

((f-nZ) = V) - w2 2 0. (36) 

where ( ) is the mean value weighted by 1 ~ 1 ~  a n d j =  (f), 
that 

SNR," 2 SNR:. (37) 

This is not surprising since SNRT is optimum, whereas SNR: 
is not. Equation (37) shows that a decision based on the re- 
construction which assumes the noise to be white may lead 
to a smaller SNR than if the decision were based on the 
projections. 
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The SNR for an optimum receiver may be obtained from 
Eq. (31) by "whitening" thepoise spectrum so that the re- 
sulting spectrum is in agreement with the assumed white 
noise spectrum. This is done by applying the filter S-lJ2 to 
the image. Both R 2  and S are then niultiplied by S - I  yielding 
the optimum SNR for the well-known "matched filter" 
techniquez5: 

The optimum SNR for the reconstruction is 

The result is that for continuous variables there is no loss in 
the optimum SNR incurred by the process of "exact" re- 
construction. Conversely, Eq. (39) implies that in principle, 
detection perfdrmance is not improved by the process of re- 
construction. 

In the practical case of reconstruction onto a discrete pixel 
array from discretely sampled projections, there may well 
be some loss of information. A measure of the amount of 
information lost in the process of reconstruction is the de- 
tective quantum efficiency (DQE)f7: 

Equation (40) may be used to calculate the DQE for any 
reconstruction algorithm applied to a given object once the 
optimum SNR's are obtained for the reconstruction and the 
projection data. An extension to this approach is to define 
DQE as a function of frequency which avoids the dependence 
of DQE upon a specific object. 

It is readily apparent that "binning" (the discrete repre- 
sentation of the reconstruction), could play a significant role 
in the detection of small objects, especially when the pixel size 
is not much smaller than the "spatial resolution." When 
binning is important, its effect should be taken into account 
in the calculation of SNR by averaging over all possible po- 
sitions of the object relative to the display array. If the 
binning effects are large enough to produce nongaussian IJ 
distributions (Fig. 3) the simple concept of SNR may not be 
valid. Rather, the system response characteristics may only 
be completely described in terms of the $ distribution or the 
ROC curves. However, such considerations are unnecessary 
in the present discussion where our major concern is the de- 
tection of large objects. 

There is a strong similarity between the SNR for a receiver 
op t imid  for white noise, Eq. (32). and the noise granularity 
relation, Eq. (22). If we define the effective area of the object 
r(x,y), assumed to be of one sign as 

which is consistent with Eq. (20). and its effective contrast 
( A p  for x-ray reconstructions) as 

then it is easily shown that the SNR for the reconstruction 
of objects large enough to be unaffected by the MTF is 

where G is evaluated with the weighting function 

While Eq. 43 provides a useful interpretation of G in terms 
of SNR:, it should be borne in mind that the latter is not the 
optimum SNR. 

The optimum SNR for the reconstruction of large objects, 
Eq. 39, may be expressed in terms of the number of equiva- 
lent quanta, Eq. 12, as 

For a gaussian object, 

in the limit as fN + - (valid for A >>pixel area, i.e., A 2 20 
pixels), this optimum SNR may be expressed as 

where A = 4n02. Equation (47) is a good approximation for 
a large class of objects. For example, the optimum SNR for 
large circular objects is only 2.1% less than that given by Eq. 
(47). The nearly universal applicability of Eq. (47) arises 
from the fact that the optimum SNR for the detection of 
large objects is mainly dependent upon the slope of S at  low 
frequencies, characterized here by NEQ. It is also noted that 
the ramplike nature of S leads to an AWdependence for the 
SNR. For white noise (S = constant), the optimum SNR 
would behave as All2. 

It. is interesting to note that G ~ i t e i n ~ ~  obtained a result 
comparable to Eq. (47) for the least squares reconstruction 
algorithm. 

The relation between the optimum SNR and G for a 
gaussian object is obtained using Eq. (29). 

This shows the same dependence as the non-optimum SNR, 
Eq. (43), but is 25% greater. Equation (48) will be a good 
approximation for most large objects of area A provided 
G(A) is obtained using a weighting function with soft edges 
such as the pyramidal function discussed in Sec. 111. 

V. APPLICATION TO SCANNER COMPARISON 

In the preceding section it has been shown that the slope 
of S near zero frequency is closely related to the optimum 
SNR for the detection of large-area, low-density objects in 
CT images. As a measure of the detectability of such objects, 
we propose the use of the number of equivalent quanta 
(NEQ), defined in Eq. (14). The ratio of NEQ to the ap- 
propriate measure of dose will then be a suitable figure-of- 
merit of dose utilization. 
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The implementation of these concepts will be demon- 
strated for an EM1 CT-5005 x-ray s~anner.~ '  Six recan- 
structions of EMI's IO-in. water calibration phantom were 
used in the following analysis. This phantom consists of a 
3/8-in. thick Plexiglas cylinder with a 24-cm inside diameter 
filled with water. The EM1 CT-5005 was operated at 140 
KVp in the normal 20-s scan mode. The 320 X 320 recon- 
struction matrix was obtained by decoding the EM1 magnetic 
tape. Therefore, the results do not include the effects of the 
normal EM1 display device. The pixel width is 0.75 mm. 

It was verified that the standard deviation of the noise in 
each image was constant throughout the image to very high 
accuracy. Furthermore, the mean values in the reconstruction 
were quite uniform. For example, the mean value inside a 160 
X 160 array in the middle of reconstruction differed from 
that outside the square and inside a circle of 256 pixels di- 
ameter by only 0.17 CT numbers or 0.034%. The almost 
complete lack of a cusping artifact was presumably due to 
the fact that these scans were performed on the very phantom 
used to calibrate the scanner. 

The noise power spectral density ( S )  was estimated from 
the 6 water scan images using the technique described in the 
Appendix for L = 128 and N,., = 128. Only the central 300 
X 300 pixels were used. Nine overlapping samples were ob- 
tained from each image. Contributions from frequencies 
below 0.01 8 mm-I were removed to avoid a bump at f = 0. 
The usefulness of the two-dimensional display of S for 
diagnosing instrumental problems is demonstrated in Fig. 
4. S obtained for the second scan in the series, [Fig. 4(a)] 
shows enhanced noise along spokes through the origin (center 
of display). These spokes occur at 10' intervals which is the 
same as the increment of the scanner angle between trans- 
lation scans. They may well be caused by the miscalibration 
of one or several of the 30 detectors used in the EM1 CT- 
5005. Indeed, these spokes disappeared on scans subsequent 
to the calibration procedure [Fig. 4(b)]. The standard de- 
viation of the noise (a) changed only slightly, decreasing from 
about 1.32% before recalibration to 1.28% aft&. 

The radial frequency dependence of S is shown in Fig. 5. 
S was estimated using all six images which were found to 
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FIG 4 Two-dtmen- 
snonal d~splay of n o m  
power spectrum from 
EM1 5005 (a) before 
and (b) after recallbra- 
tion procedure 

have the same shape. The normalization of S was taken from 
the scans subsequent to recalibration for which o = 1.28%. 
S is dimensionless when the reconstruction images are ex- 
pressed in terms of linear attenuation coefficients (p = 0.190 
cm-I was assumed for water). The curve shown in Fig. 5 was 
smoothed over a frequency interval of 0.07 mm-I to reduce 
statistical fluctuations. The estimated uncertainty in the 
relative values o f S  varies as f ' f 2  and is about 1% at f = 0.35 
mm-I. Recalling the relationship between S and the filter 
function used in the reconstruction algorithm [Eq. (4)] Fig. 
5 shows evidence for a small amount of edge enhancement 
in the EM1 algorithm. While edge enhancement sharpens 
edges in the image, it usually results in overshoots in the 
step-response function which are readily observed in EM1 
CT-5005 reconstructions. 

The predicted linearity in S at low frequencies is demon- 
strated in Fig. 6. The estimates of S at the individual discrete 
frequencies are presented without smoothing in radial f r e  
quency. The only smoothing present is that which results 
from the use of the Hanning window in the calculation pro- 
cedure described in the Appendix. Although frequencies 
below 0.018 mm-I were removed, the point a t  about 0.012 
mm-I is not zero because of this minimal smoothing. The 

0 I I I I 1 I 
0 01 0 2  0 3  0 4  0 5  0 6  0 7  

RADIAL FREQUENCY (mm-ll 

FIG. 5. Noise power spectrum of EM1 5005 scannerused in normal made 
with 24-cm-diam reconstruction. 
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FIG. 6. Low frequency portion of Fig. 5 

error bars showll in Fig. 6 indicate the estimated statistical 
uncertainty in each datum point. The straight line drawn in 
Fig. 6 represents the best fit to the data points which passes 
through the origin. NEQ, determined from the slope of this 
line using Eq. (14). is (1.85 f 0.03) X lo7 mm-I. 

An alternate and less fundamental way to investigate the 
noise properties is through the noise granularity, G. Figure 
7 shows G calculated from the six EM1 5005 water scans 
using the two weighting functions discussed in Sec. 111, square 
and pyramidal. G was calculated from the rms deviation of 
the weighted averages taken over non-overlapping square 
regions. G was normalized to o = 1.28% as discussed above. 
It is seen that if the low frequencies are not removed (open 
triangles, dashed curie), there is a strong effect upon G for 
large A. Elimination of the frequencies below 0.018 mm-1 
removes this anomaly. The slope of the pyramidal weighting 
curve for v% > 2 mm is -11% Thus, for la'rge A, G - A-If4, 
as predicted in Sec. 111 for CT noises, whereas, for white noise 
G could be constant. NEQ may be calculated from the nor- 
malization of G for large A using Eq. (29) with the numer- 
ator equal to 1.240. It is found from the pyramidal curve that 
NEQ is (1.81 f .05) X lo7 mm-l. This is nearly the same as 
the NEQ obtained above from the slope of S. The uncertainty 
in the result is larger than above since nonoverlapping regions 
were used in the calculation of G and only data within a 
square completely inscribed within the circle of reconstruc- 
tion were included. In principle, the same accuracy in NEQ 
could be attained by either method through complete use of 
the available data. For comparison, the time required to 
compute the complete S distr~bution for the six EM1 images 
was 135 son  a CDC 7600, and the time to compute G at 6 
points was 40 s. 

As shown in Sec. 11, NEQ is the equivalent total number 
of x-ray quanta detected in all projections per unit length. In 
the absence of additional noise sources, NEQ is proportional 
to the dose (D) delivered in the scanning procedure. The 
NEQJD ratio is clearly a measure of the efficiency with 
which the dose is utilized. Since many commercial CT sys- 
tems provide a selection of slice thickness, this important 
parameter should be considered. In order to sEan contiguous 
sections, the slices are usually taken at intervals equal to the 
slice thickness, t. In this situation the dose required to achieve 

a given NEQ in each slice will be proportional to t-I for a 
properly collimated x-ray beam. The choice o f t  might be 
viewed as similar to the choice of D which must be made on 
the basis of the diagnostic task at hand. Thus, an appropriate 
measure of dose efficiency is 

The dose D may be specified in several ways. Common cur- 
rent practice is to specify the peak surface dose either for a 
single scan or a series oficans: The surface dose is easiest to 
measure since the surface is readily accessible. However, the 
specification of D as the average dose throughout the whole 
slice for a series of scans hasconsiderable merit. The average 
dose is appropriate if radiation damage effects are propor- 
tional to the integral dose. The integral dose per slice is the 
average dose times the mass included in one slice. Further- 
more, the proportionality of D upon 1-I is insured for the 
average multiscan dose, independent of x-ray collimation. 
The measurement of the average dose is more difficult since 
several dose measurements are required over the cross section 
of the phantom. 

Equation (49) suffers from its strong, intrinsic dependence 
upon the diameter of the phantom. A much more satisfying 
measure of dose efficiency would be 

where D N ~ Q  is the minimum average dose required to pro- 
duce the measured NEQ for the phantom in question and D 
is the actual average dose delivered by the scanner. In order 
for this definition to be useful, D N E ~  must be calculated. For 
a monochromatic x-ray beam of energy E, the average dose 
for a series of scans is 

where NTOT is the total number of incident x rays for each 
scan, V is the volume of each slice and p is the phantom 

FIG. 7. Noise granularity for EMI-5005 normal scans. The square data 
poms uerc calculted u31ng cunrtant weight throughout rqLarr. rcywns. 
The triangles red1 u hcnd p\ramidsl eeighttng function is uwd Theqcn 
tr~angles show the effect of not remowng frequencies below 0.018 mm-I. 
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density. 9 is the fraction of the total incident energy that 
remains in the phantom. For a circular phantom of diameter 
d, where the incident x-ray beam intensity is varied to keep 
o, (therefore N) constant throughout each projection, Fig. 
8. 

where p is the linear x-ray attenuation coefficient of the 
phantom at energy E. I is the integral 

The approximation given in Eq. (54) is accurate to within '12% 
for pd 2 2. The strong dependence of D N E ~  upon d is self- 
evident. Consequently, it is important to state the phantom 
diameter wherever measurements of NEQ or D are quoted. 
On the other hand, q should have little dependence upon d. 
The fraction of energy which is backscattered from the 
phantomz8 places an upper limit on 3 of about 0.75 in the CT 
diagnostic range of 60 to 100 keV. Furthermore, it is esti- 
mated that 10% to 25% of the incident energy will scatter out 
of the sides or be transmitted through solid phantoms with 
diameters between 20 and 40 cm. 3 is estimated to be ap- 
proximately 0.6 for a 20-cm-diam phantom and should be 
a weak function of diameter. 

It should be borne in mind that the dose efficiency calcu- 
lated here is based on a comparison to an ideal CT scanner 
which employs a monochromatic x-ray beam. All practical 
scanners are restricted to the use of polychromatic x-ray 
sources. The utilization of polychromatic x rays leads to a 
reduction in q for two reasons. The first is that with the light 
beam filtration often used, a significant portion of the de- 
posited dose arises from low-energy x rays which contribute 
little to the detected signals (due to enhanced absorption in 
the phantom). The second reason is that for the detection 
schemes employed, the detector response is proportional to 
the integrated energy of the detected x rays rather than to the 
number of detected x-ray quanta. It is estimated on the basis 
of primary transmitted x-ray spectraz9 that this typically 
reduces q by about 10%. 

Y 
-. 

The source intensity is 
reduced at the edges of 

SOURCE 

I 
1 

the phantom to main- 
tain a constant number 
of unecattered quanta 
per unit length of de- 
tector. 

I \ 

1 1 DETECTOR 1 

FIG 8 Idealized x-ray 
geometry assumed for 
calculation of DNEO 

For the EM1 CT-5005 the average dose of a normal scan 
of the 10-in. calibration phantom is estimated to be 3.7 rad 
for a series of scans taken a t  1 cm intervals."' Then, using t 
= 1 cm, Eq. (49) gives 1 = 7.1 2 X lo7 rad-' ern-=. Using E 
= 82 keV3I, p = 0.182 cm-','Zd = 26 cm, and 3 = 0.6, the 
dose required by an ideal scanner to achieve NEQ = 1.85 X 
lo7 mm-I is DNEQ = 0.43 rad. Thus, the overall dose effi- 
ciency of the EM1 CT-5005 is q = 12% compared with the 
ideal x-ray scanner. It should be noted that this study took 
place before the scanner was equipped with EMl's dose re- 
ducing collimator (No. 5221). 

VI. DISCUSSION 

There is good evidence that signal detection theory has 
some applicability to the problem of object detection by the 
human observer. Numerous studies have been made of the 
threshold contrast at which human observers are able to 
detect discs in images containing white or in 
"noiseless" images viewed at low light levels.35 These studies 
have shown that for objects whose angular subtense at the 
eye is between 1 and 10 mrad, that the detection threshold 
of human observers is such as to maintain a constant 
SNR: 

The observed values of k range between 2 and 5 depending 
upon the viewing conditions and the detection  riter ria.^.^'.'^ 
These values are quite reasonable when one considers their 
predicted ROC performance22 for the detection of an object 
that may be positioned in any one of a large number of po- 
sitions. However, when human observers are asked to detect 
the presence of bars or lines, the simple SNR approach does 
not seem to hold.36 

The relation of SNR to human detection capability in CT 
images is not yet fully understood. Several psychophysical 
s t ~ d i e s ~ ~ J 5 J ~ ~ 3 ~  have indicated that under certain circum- 
stances observer detectability of large objects is improved by 
smoothing CT images. The reason for this improvement is 
uncertain. Signal detection theory implies that the SNR of 
an object is not affected by smoothing (or filtering) provided 
the receiver is optimized for the noise properties both before 
and after smoothing. The exception to this is when the filter 
used in smoothing is zero over some range of frequencies 
where the signal power is nonzero, in which case the SNR 
decreases as a result of smoothing. I t  appears that some de- 
ficiency in the human observer detection system is overcome 
by smoothing the CT images. It is possible that the eye cannot 
"integrate" the noise properly, perhaps because the noise 
fluctuations are too large or that the human receiver cannot 
readily optimize itself to the CT noise characteristics. Further 
psychophysical investigation of these effects may provide a 
deeper understanding of the human detection receiver. 

in Sec. IV we discussed the application of signal detection 
theory to the detection of a two-dimensional object on a single 
CT scan. In reality, however, the radiological detection 
problem is three dimensional in nature. The difficulties in 
detecting three-dimensional objects in CT scans have long 
been referred to as "partial volume" effects. In the three- 
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dimensional extension of Sec. IV, we might refer to these 
difficulties as "binning" effects, where the bin width is the 
individual slice thickness, t. To illustrate the problem, con- 
sider a sphere of diameter t immersed in a uniform back- 
ground of slightly different density. If the sphere happened 
to lie completely within a CT slice, its effective reconstruction 
density would be less than its actual density due to the partial 
volume effect. Moreover, if adjacent slices happened to split 
the sphere in half, its reconstructed density would be reduced 
further by a factor of two. The SNR in each slice would be 
half the maximum SNR. It is interesting to note that if the 
two slices containing the sphere were averaged, the SNR 
would increase by the factor of fi over either individual 
slice. It is clear that there exists an optimum slice thickess for 
the detection of a given size object if the slices are viewed 
separately. But a major improvement in detectability at a 
fixed dose can be achieved by performing the CT scans with 
small slice thickness and then averaging a variable number 
of them together to maximize the SNR for various-sized 
objects. The implementation of a display that allows the 
observer to make full use of the available three-dimensional 
information remains one of the most important problems in 
CT imagery. To emphasize the three-dimensional nature of 
CT scanning, it might be appropriate to include the slice 
thickness in thedefinition of NEQ. 

In the present paper we have concentrated on the detection 
limitations imposed by the statistical noise arising from x-ray 
quantum detection. There are several other sources of noise 
which could play an important role in the detection problem. 
Electronic noise in the detectors or subsequent amplifiers, 
analog-to-digital converten, etc., is an obvious example. This 
type of noise will simply add to the statistical noise in the 
projections and be subjected to the same reconstruction 
processing. If this noise is white, it will not affect the shape 
of S .  Another source of "noise" is that which arises from 
artifacts produced by, the reconstruction process. These may 
arise from beam hardening, aliasing or a variety of other 
causes. Sometimes these artifacts produce clearly defined 
patterns in the reconstruction. But at other times they are 
essentially masked by the statistical noise. The point of 
concern is that artifactual noise contains strong correlations 
which may add coherently leading to false signals. "Struc- 
tural" noise may also be present in CT scans even though the 
reconstruction process removes the principal superposition 
of overlapping structures. Superposition within the slice 
thickness due to the partial volume effect may lead to a 
confusing background against which it is difficult to deter- 
mine the presence of a lesion. 
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APPENDIX: NOISE POWER SPECTRUM 
ESTIMATION 

The procedure used to estimate the noise power spectrum 
from an image is the two-dimensional extension of the 
method due to Welch.39 

(1) The average value within the circle of interest is sub- 
tracted from a reconstruction image which contains only 
noise. 

(2) The area outside the circle of interest is filled with 
zeros, and the image is windowed using a Hanning window 
as a function of radial distance which drops to zero at the edge 
of the circle of interest. 

(3) The very low frequencies of the complete image are 
removed by two-dimensional Fourier transform of the image. 
The entries for the low frequencies are set to zero and the 
inverse Fourier transform computed. Removal of the very low 
frequencies eliminates contributions from cusping artifacts 
and is as important in CT images analysis as it is in film 
analysis (Wagner 1977). 

(4) An L X L subsample of image is multipled by a two- 
dimensional Hanning window and augmented with zeros out 
to Nmg X Naug 

(5) The square amplitude (power) of the Fourier trans- 
form of the subsample is computed. 

(6) Steps 4 and 5 are repeated for subsamples which 
overlap by L/2 in both directions. The two-dimensional noise 
power spectral density estimate is the average of the power 
spectrum for all such subsamples. For images known (or 
assumed) to have symmetry, a symmetrization may be per- 
formed to improve statistical accuracy. An octagonal sym- 
metrization is frequently employed by the author. 

(7) The one-dimensional radial frequency power distri- 
bution is obtained by averaging the power for all two-di- 
mensional frequency values that are near each value of radial 
frequency. The one-dimensional distribution may be 
smoothed to reduce statistical fluctuations. 
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