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ABSTRACT

Deformable geometric models fit very naturally into the context of Bayesian analysis. The prior probability of
boundary shapes is taken to proportional to the negative exponential of the deformation energy used to control the
boundary. This probabilistic interpretation is demonstrated using a Markov-Chain Monte-Carlo (MCMC) technique,
which permits one to generate configurations that populate the prior. One of many uses for deformable models is
to solve ill-posed tomographic reconstruction problems, which we demonstrate by reconstructing a two-dimensional
object from two orthogonal noisy projections. We show how MCMC samples drawn from the posterior can be used
to estimate uncertainties in the location of the edge of the reconstructed object.

Keywords: deformable geometric models, Bayesian estimation, tomographic reconstruction, uncertainty estimation,
Markov Chain Monte Carlo

1. INTRODUCTION

We have seen in recent years increasing use of deformable geometric models to analyze medical images. For evidence
of this trend, one has only to look in the relevant journals or conference proceedings. Many examples of the use of
deformable models can be found in this Proceedings for segmentation, registration, and tomographic reconstruction.
Deformable models have shown their usefulness by supplying a means of interpolating between noisy or missing data
and providing the regularization needed to solve ill-posed problems.

Deformable models allow one to move toward the goal of analyzing medical images in terms of organs. As the
field of medical imaging moves toward image interpretation, computer diagnosis, etc., a more automated approach
to image analysis and understanding will be essential. Deformable models can provide a framework within which
to organize an image. Although individual organs are currently being modeled, we can look forward to analyses
involving multiple organs, complete with interactions or constraints between various organs.

The main purpose of this paper is to provide an overview of deformable geometric models. In the authors’ view,
deformable models fit particularly well into the framework of Bayesian analysis. The smoothness of deformable
models is typically controlled by means of a deformation energy function that provides a measure of deviation from
smoothness.1 In the context of Bayesian analysis, the probability of the corresponding geometric configuration is
taken to be the negative exponential of this energy function.2,3 We will emphasize this interpretation by showing
a set of random samples of boundary configurations taken from a prior probability based on a typical form for the
deformation energy. These samples are generated using the Markov Chain Monte Carlo (MCMC) technique.

A secondary theme of this paper concerns the assessment of uncertainties in estimated models, a capability
greatly assisted by the use of Bayesian analysis. The general method we employ here is to generate a sequence
of random samples of the posterior probability distribution using MCMC. By fully mimicking the posterior, this
sequence of samples can be used to assess the uncertainties in estimated models. As an example of the usefulness
of this technique, we consider a problem of reconstructing an object from projections in two directions under the
assumption of a known, constant interior density. In the analysis, the boundary of the reconstructed objects are
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subject to a prior that promotes smoothness. We show how samples from the posterior can be used to estimate
uncertainties in the location of the boundary of the reconstructed object.

We deliberately choose our example of tomographic reconstruction from two views because this extremely difficult
problem can not be solved with conventional reconstruction algorithms, as shown in Ref. 4, for example. Our ability to
obtain an excellent reconstruction emphasizes the advantage of using deformable models in tomography when objects
have a relatively simple shape and possess constant density. MCMC provides the means to verify the reliability of
our reconstruction. Conventional approaches to uncertainty estimation are inadequate to treat this problem because
of the nonlinear relation between the data and the model parameters and, hence, the potential nonGaussian nature
of the posterior distribution.

2. DEFORMABLE GEOMETRIC MODELS

2.1. Deformable Boundaries

Researchers began to realize importance of edges in human vision5 several decades ago. However, it was not until
1987 or so that Kass, Witkin, and Terzopoulos1 introduced for use in computer vision the use of spline “snakes” to
represent the boundaries of objects in images. Deformable curves used to represent object boundaries have also been
called active contours. To generalize the terminology, we call them deformable geometric models, or just deformable
models, for short, and use this term to cover all types of flexible geometric models.

Clearly, the idea behind the use of snakes is to focus on the geometry or shape of objects as described by their
boundaries. This kind of model actually imposes desirable constraints on the result of an analysis, namely that the
object’s boundary is connected and continuous and that it has a sharply-defined edge.

In the snake approach, the rigidity of the model is restricted through the choice of a restrictive representation
of the curve. For example, one could choose polynomial patches, such as B-spline or Bezier patches with continuity
constraints applied between them. Each patch has a limited number of degrees of freedom determined by the order
of polynomial chosen and the degree of intrapatch continuity constraint. The flexibility of the curve is controlled
by the order of polynomial and/or number of patches. This approach, which can be thought of as a finite-element
representation, is continues to be used.6 One has only limited and discrete control in this approach.

We believe there is a significant benefit to using the finely-divided polygon representation instead of finite elements.
A polygon can approximate a curve to any desired accuracy by subdividing the sides finely enough. However, by
itself, a polygon has no constraint on its shape. Constraints are placed on the curve by introducing a prior. Often
the form for the prior is taken to be an exponential of a deformation energy, for example, the integral of the square of
the curvature. Constraints other than on the curvature may be used, such as requiring that that curve not intersect
itself. The advantage of this overall approach is that alternative forms for the prior can be tried and assessed for any
particular imaging situation. The present work uses this approach.

This approach has the major advantage of allowing continuously tunable control over the flexibility of the bound-
ary. The strength of the prior (α in the following Subsection) regulates the effective number of degrees of freedom
that the curve has, much in the same way as the number of patches in a Bezier representation. Furthermore, it is
possible to multiply the contribution of each vertex in the sum in Eq. (1) by a variable weight. That would allow
one to encourage the curve to be smooth in some regions and very flexible in others. In the extreme case of letting
the weight go to zero at a vertex, it is possible to let the curve develop a kink there.8

Both the above approaches can be easily extended to analyzing three-dimensional objects. Then the bound-
aries are represented by surfaces instead of curves. The control of smoothness is even greater for boundaries in
three dimensions than in two, because of the additional constraint placed on the boundary by the extra dimension.
Extensions to even higher dimensions are easily visualized.

A natural way to think about the deformation energy functions used to control boundaries is in terms of the
analogy to mechanical systems. Thus, a curve can be thought of as a thin rod. The stiffness of the rod can help
control how it is affected by data. Of course, the term “spline” came from the use of bendable strips by draftsmen
to draw smooth curves. Just as derivatives of potentials are forces, the derivatives of the energy function can be
thought of as forces created by the rod to counteract the pull of data.
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2.2. Deformable Interiors

Instead of modeling the boundary of an object in terms of deformable models, it is possible to model its interior.
One advantage of this approach is that it is easy to avoid opposite sides of the boundary from crossing each other.
The classification of deformable boundary models into representations based on finite elements and those based on
a flexible continuous curve hold for deformable interior geometry, as well. A recent example using finite elements to
model the interior of the brain is that by Gee et al..7

Related to interior deformation models are those based on globally warping the spatial domain of the object.
Thin-plate splines falls into this category. Bookstein9 used these to analyze the deformation of biological shapes,
an area of study called morphometrics. Also, Hanson used this kind of model to solve the ill-posed problem of
tomographic reconstruction from several projections.10,11

Characterizing objects’ interiors in terms of deformable models can permit one to more carefully devise models
that can mimic the shapes of specific organs. Clearly the shape of a heart does not resemble that of a liver. As the
study of matching organs progresses, we can expect to see more attention paid to such organ-specific constraints on
the models. Geometric models of object shape may require multiscale representations of objects, for example as used
in cores, advanced by Pizer et al.12

2.3. Our Boundary Model

Here we use a deformable model to represent the boundary of the object to be reconstructed. The object’s boundary
is approximated in discrete terms as a finely-divided polygon. The length of the edges of the polygon can be made
short enough to adequately describe a curve at any degree of resolution desired.

A smoothness constraint on the boundary is achieved by placing a prior on the curvature of the boundary. The
minus-log-prior is taken to be proportional to

∫
κ2(s) ds, where κ(s) is the curvature of the curve as a function of the

arclength along the curve s. This prior serves to keep the curve smooth because large curvature is penalized. This
form for a prior has a physical analog in the formula that describes the potential energy created by bending a stiff
rod. We note that since the integral has the dimensions of reciprocal length, it depends on the scale of the curve.
To achieve a prior that is related to the shape of the curve, not its size, as suggested in Ref. 13, we propose that the
integral should be multiplied by the total arclength of the boundary, forming a dimensionless quantity. From the
Bayesian point of view, the prior is interpreted probabilistically. A specific probability is assigned to every closed
boundary, which ranks boundary shapes according to their plausibility. This probability expresses the uncertainty
about the possible shapes of the object that we have before we take data. The probabilistic interpretation of the
prior is underscored in Sect. 5..

For our discrete polygon model, we replace the integral by a sum of contributions associated with each ver-
tex in combination with half of each neighboring edge of the polygon. We use for the minus-log-prior a discrete
approximation to the expression

α

(2π)2

∫
ds

∫
κ2(s) ds . (1)

The factor of (2π)−2 is included to normalize the result to unity for a circle when α = 1. The parameter α, called a
hyperparameter rather than a parameter because it controls a general aspect of the model, determines the strength
of the prior relative to the likelihood. The form of Eq. (1) is such that for equal-sided polygons it is independent
of the length of the sides as the length goes to zero. In addition to the smoothness constraint, we find it useful to
control the lengths of the sides of the polygon to avoid any side from either getting too small, or too big, relative
to the rest. This control is accomplished in this study by adding to the above minus-log-prior an expression that
is quadratic in the deviation of each side of the polygon relative to the average side length. Further details can be
found in Refs. 8 and 14.

3. BAYESIAN ANALYSIS

Bayesian analysis is a model-based approach to analyzing data with a strong emphasis placed on uncertainty as-
sessment. Every aspect of modeling is assigned a probability that indicates our degree of certainty in its value. At
the lowest level of analysis, the estimation of the values of parameters for a specified model, a probability density
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function (PDF) is associated with each continuous parameter. Loosely speaking, the range of a probability distri-
bution indicates the possible range of its associated parameter. The benefit of Bayesian analysis over traditional
methods of uncertainty, or error, analysis is that it permits the use of arbitrary probability distributions, not just
Gaussian distributions, and of arbitrary measures of uncertainty, not just rms deviation (or variance). Bayesian
analysis reveals the use of prior knowledge and assumptions, which other kinds of analysis incorporate, but do not
always make explicit. Furthermore, it extends analysis to higher levels of interpretation, e.g., the choice of the
strength of the priors used, the rejection of any particular model, and the selection of appropriate models.15 For
detailed descriptions of Bayesian analysis the reader is referred to the several excellent books that have appeared
in the last few years, including Refs. 16–19 that address Bayesian analysis from a practical point of view. Another
useful source of background information is the collection of proceedings from the series of workshops on Maximum
Entropy and Bayesian Methods, the most recent editions of which are Refs. 20 and 21.

Before conducting an experiment, one starts with some knowledge about the physical object being studied. In
addition one often has a model for the object, with associated parameters x, that will be used to analyze the
experimental results. In Bayesian analysis, the uncertainties in what is known beforehand are expressed in terms
of a PDF on the parameters, p(x), called the prior. This prior knowledge can come from previous measurements,
specific information regarding the object itself, or simply general knowledge about the parameters, e.g., that they
are nonnegative. With the experimental data in hand, the prior is modified to yield the posterior, which is the PDF
p(x|d) of the parameters given the observed data d, using Bayes law

p(x|d) ∝ p(d|x) p(x) . (2)

The probability p(d|x), called the likelihood, comes from a comparison of the actual data to the data predicted on
the basis of the model of the object. The predicted data are generated using a model for how the measurements are
related to the object, which we call the measurement model. Under the assumption that the data are degraded by
uncorrelated and additive Gaussian noise, it is appropriate to use the exponential of −1

2
χ2 for the likelihood. As

usual, χ2 is the mean squared difference between the actual and the predicted measurements divided by the variance
of the measurements. The typical analysis consists of estimating the “best” model to explain the data. Often the
model that maximizes the posterior, referred to as the maximum a posteriori (MAP) estimate is found, although
other estimators can be argued to be more appropriate in some circumstances. While an estimate of the best model
is the objective of many analyses, it is only the beginning for the true Bayesian.

Bayesian analysis is open ended. For example, uncertainties may exist in the choice of model to apply to an
analysis. One typically has an initial concept of what model to use to analyze the data. However, the preconceived
model may fail to account for the data, which can lead to the realization that the model needs to be extended, or
even replaced all together. Model checking is an important aspect of any data analysis. Of course, the data may
not have enough accuracy to reject a particular model, in which case the model can be considered valid until more
discriminating data are available. Bayesian analysis essentially follows the scientific method; a proven model is used
until reliable data indicate that it needs to be altered or rejected. Bayes law can be used to choose between models.15

The present study is carried out using the Bayes Inference Engine (BIE). We developed the BIE to allow one to
easily develop complex models for both the objects under study and the measurement process. Various aspects of
the BIE are described elsewhere.4,22–26 The MCMC technique is a perfect match to the computational approach to
Bayesian inference adopted in the BIE.

4. MARKOV CHAIN MONTE CARLO
In Bayesian analysis there is often the need to integrate over the posterior. One way to do that is to use a Monte
Carlo technique, i.e. draw random samples from the posterior, The Markov Chain Monte Carlo (MCMC) technique
provides a means to sample an arbitrary probability density function (PDF).

A Markov chain is a sequence of states in which the probability of each state depends only on the previous state.
In MCMC the objective is to generate a sequence of parameter sets that mimic a specified PDF, let’s call it q(x),
where x is a vector of parameters in the relevant parameter space. More precisely, it is desired that the MCMC
sequence be in statistical equilibrium with the target PDF q(x), which is achieved when the MCMC sequence is
marked by the condition of detailed balance:

q(x)T (x → x′) = q(x′)T (x′ → x) , (3)
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where T (x → x′) is the transition probability for stepping from x to x′. This equation essentially requires that in a
very long sequence the number of steps from x to x′ is identical to the number from x′ to x. For more information
about MCMC, the reader is referred to the recent paper by Besag et al.27 or the excellent book edited by Gilks et
al.,28 which represents the best available compendium on MCMC.

The MCMC technique27 makes it feasible to perform some of the difficult technical calculations required by
probability theory (normalization of PDFs, marginalization, computation of expectation integrals, model selection)
in a computer. The MCMC technique has opened up the possibility of applying Bayesian analysis to complex analysis
problems. A desirable attribute of MCMC is that there are generally no restrictions on the types of PDFs that can
be sampled; no functional form for the PDF is required. In its basic form, MCMC only requires that one be able to
calculate ϕ = −log (posterior), although sometimes the gradient of ϕ is used.

4.1. Metropolis Algorithm

One of the simplest algorithms used in MCMC calculations is due to Metropolis et al.29 This algorithm ensures
detailed balance (3) for each step in the sequence. One starts at an arbitrary point in the vector space to be sampled,
x0. The general recursion at any point in the sequence xk is as follows:

(1) Pick a new trial sample x∗ = xk +∆x,
where ∆x is randomly chosen from a symmetric probability distribution

(2) Calculate the ratio r = q(x∗)/q(xk)
(3) Accept the trial sample, that is, set xk+1 = x∗,

if r ≥ 1,
or with probability r, if r < 1,

otherwise start over at step (1).

This algorithm is used in the majority of current MCMC research and works remarkably well.

5. PROBABILISTIC INTERPRETATION OF THE PRIOR

We can now put together the topics discussed in the last three Sections. We demonstrate the probabilistic interpre-
tation of the prior on the deformable models by using MCMC to sample this probability density function. In this
example we start with a circle of radius 0.8 mm, represented as a 50-sided polygon. The strength of the prior given
in Eq. (1) is set by choosing α = 5, consistent with the example of tomographic reconstruction presented in the next
Section. Finding that uncorrellated perturbation of the vertex positions does not lead to a very productive MCMC
sequence, we have instituted correlations between neighboring vertices by using for the x and y steps, the average
over seven uncorrelated x and y perturbations chosen from a Gaussian distribution with an rms width of 0.015 mm.
This sampling scheme results in a 35% acceptance of the MCMC steps. Representative samples from the sequence
are shown in Fig. 1.

During the generation of the MCMC sequence, the configuration of the boundary is saved at regular intervals,
every 100 accepted steps in the present exmaple. After the full sequence is generated, the saved configurations can be
played back as a video loop. We observe that the MCMC sequence seems to come into equilibrium with the posterior
distribution after about 2000 accepted steps. Visual observation also indicates that there is a strong correlation in
the configurations over several frames, that is, over several hundred steps in the sequence. This correlation might be
expected because of the small step that each vertex can take in each iteration of the Metropolis algorithm.

6. UNCERTAINTY IN A TOMOGRAPHIC RECONSTRUCTION

6.1. Problem Statement

We demonstrate the usefulness of deformable models and the versatility of the MCMC technique with an example
of tomographic reconstruction from just two views. This problem is an extraordinarily difficult inverse problem. Its
solution is made feasible by employing the prior information that the object being reconstructed has constant density
and consists of a fairly simple shape with smooth boundaries. Figure 2 displays the object devised for this example.
It is fashioned to be representative of a lumen, the cross section of an artery, possessing a sizable occlusion. The
calculations here are based on images with a full width of 128×128 pixels, arbitrarily set to a size of 4 mm × 4 mm.
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Figure 1. Configurations of the boundary drawn from the prior for α = 5 using the MCMC technique. These
realizations, taken at intervals of 1000 steps in an MCMC sequence, represent the range of possible shapes allowed
by the prior on the curvature.

For better visualization, all the images shown here display just the central 2.5 mm × 2.5 mm region. To give the
scale of the images, the width and height of the object are roughly 64 pixels, or about 2 mm.

Two orthogonal views of the object shown in Fig. 2 are generated, one consisting of the vertical projection and
the other of the horizontal. Each projection consists of 128 samples over a distance of 4 mm. Gaussian noise is added
to these projections with an rms deviation of 5% of the peak projection amplitude. For this simulation, we ignore
blur in the measurement system.

6.2. MAP Reconstruction

For reconstruction the object is modeled in terms of a finely-divided polygon filled with a constant density, which
we assume is known beforehand. The polygon has 50 sides to approximate a continuous curve. The parameters
in the model consist of the x and y values of the 50 vertices. The –log(posterior) for this problem is the sum of
–log(likelihood) = 1

2
χ2 and the –log(prior) contributions given in Eq. (1) and the prior of side length. However, the

strength of the prior, i.e. α in Eq. (1), must be specified. Ideally, the hyperparameter α that is consistent with the
data would be calculated utilizing the next higher level of Bayesian inference.15 As we are not yet equipped to do
that in the BIE, we tried several values for α and selected what seemed to be an appropriate value, α = 5.0. Figure 1
shows several realizations of the object shapes allowable with this prior. See below for further justification.

The MAP reconstruction is obtained by using the BIE to find the minimum in ϕ = −log (posterior) with respect
to the 100 variables specifying the polygon model. The BIE accomplishes this in an efficient manner through the
use of the Adjoint Differentiation In Code Technique (ADICT)30 to calculate the gradient of ϕ with respect to the
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Figure 2. (UL) The original object. (UR) The MAP reconstruction from two orthogonal noisy projections, shown
as a grayscale image with the boundary of the original object superimposed. Three representative samples from the
posterior shown as curves on top of the grayscale images of (LL) the MAP reconstruction and (LR) the original
object.

variables. The initial object is taken to be a circle of diameter 1.6 mm = 51 pixels, for which 1
2
χ2 = 396.15 and

–log(prior) = 7.88. At the minimum in ϕ, these values are 1
2
χ2 = 119.16, and –log(prior) = 18.24. The resulting

reconstructed object compares reasonably well with the original, as shown in Fig. 2. The maximum discrepancy in
the position of the two boundaries is about 3.3 pixels, which occurs in the lower lobe. Over the vast majority of the
perimeter, the reconstructed boundary lies at most one pixel away from the original.

The reconstruction shown in Fig. 2 is vastly superior to one that would be obtained using conventional reconstruc-
tion algorithms. For example, see Ref. 4 for a reconstruction of a similar object from two views obtained using the
multipicative algebraic reconstruction technique,31 which yields an image that maximizes entropy and incorporates
a nonnegativity constraint. We will now prove the reliablity of this reconstruction by using MCMC to assess its
uncertainty.
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Figure 3. The average of the grayscale images for full MCMC sequence of samples from the posterior with the
contour for the MAP reconstruction shown as a dotted line.

6.3. MCMC Results

The MCMC algorithm described above was used to generate samples from the posterior of this reconstruction
problem. In our present example, for each MCMC trial step, the increments in the x and y position of each of the
vertices are independently chosen from a Gaussian distribution with an rms step size of 0.06 pixels. Since we are
drawing vertex step samples from the space of x and y and the priors outlined in Sect. 2.1 are stated in the θ, L
space, we need to transform from p(θ, L) to p(x, y) using the Jacobian of the transform to properly evaluate the
priors for the MCMC algorithm. This Jacobian alters the approximately quadratic form of Eqs. (1) by adding terms
that are approximately constant for small θs. We believe these terms amount to relatively minor adjustments in the
values of the priors and so ignore them.

In all, 150,000 trial steps were calculated for a total computation time of about 16 hours on a DECstation 250
with a DEC Alpha processor running at 266 MHz; 42049 steps were accepted, yielding an acceptance rate of about
28%. Three widely-separated samples from the full MCMC sequence are shown in Fig. 2. While it is not possible to
get a quantitative estimate of the uncertainty from these three samples, they provide some indication of the amount
of variation in the shapes that occupy the posterior. The amount of waviness observed in the boundary is moderate,
as can be observed in Fig. 2. The superfluous waviness compared to the original object is evidence that α = 5 is a safe
choice, i.e. is weak enough that it does not exert an undue influence on the shape of the MAP solution. Comparison
to the configurations from the prior shown in Fig. 1 confirms qualitatively that the posterior is much narrower that
the prior.

Visual observation of the replayed MCMC sequence indicates that it takes several hundred steps in the sequence
for the boundary to move from plus to minus one standard deviation about the mean position, a distance of a few
pixels. Roughly speaking, one might expect that it would take on the order of [2/(0.06

√
2)]2 ≈ 500 random steps of

rms radial distance 0.06
√
2 pixels to move a total distance of two pixels.

A quantitative estimate of the characteristics of the posterior is obtained by averaging over the MCMC sequence.
Such an average of the grayscale image of the object is shown in Fig. 3, which is calculated as an overlap of the
boundary interior with the pixels of a 512×512 image for increased resolution. Of course, it does not make sense to
average the positions of the vertices, because there is nothing to keep the polygon from slipping around the boundary
of the object, which has no bearing on the actual object shape. The average MCMC image in Fig. 3 represents
the posterior mean image, which may be interpreted as a probability image; the value of each pixel is the posterior
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probability that the pixel lies inside the boundary of the object. The amount of blur in the edge of the object
indicates the variability in the position of that edge allowed by the posterior, i.e. the uncertainty in edge location.

From the measured distance between the 10% and 90% points of the blurred edge of this posterior average, we
deduce that the rms uncertainty in edge location varies from about 0.5 pixels to about 1.0 pixels at various positions
around the periphery. The smallest rms deviations occur at the limiting edges on the top, bottom, and right sides
of the object. The smaller uncertainty at these positions appears to be a consequence of the fact that they are
effectively located by the tangential rays of the two projections. The horizontal position of the left edge is not quite
as well determined. Of course, it is possible to measure correlations between the uncertainties at different positions.

Another way to summarize the uncertainty in boundary position is to display those pixels in the MCMC average
image whose value lies between 0.025 and 0.975. When we do this for the present example, we find that indeed 92%
of the original boundary lies inside the 95% credible interval.14

Figure 3 also shows that the MAP reconstruction (the model that maximizes the posterior) appears to be con-
sistent with the contour at half the amplitude of the posterior mean image. This result suggests that the posterior
probability distribution is symmetric about its maximum. From the shape of the edge profile of the posterior average
we tentatively conclude that the posterior may approximately be a multivariate Gaussian distribution, despite the
nonlinear relation between the vertex parameters and the measurements.

An important feature of the MCMC technique is that any feature that one wishes to characterize, e.g., the average
edge position and its uncertainty in the above example, is not conditional on the other parameters in the model.
In the terms of probability theory, MCMC provides marginalized results, which means that the dependence on the
uncertainties in “nuisance variables” is integrated out. In the context of the above example, the uncertainty in
the edge position deduced for any particular location of the boundary is independent of the uncertainties in edge
positions for the rest of the boundary.

7. DISCUSSION

We have presented a brief overview of deformable geometric models. We have demonstrated their usefulness for
solving a limit-angle tomographic problem of reconstructing a simple object from two views and have used MCMC
to assess the uncertainties associated with the reconstruction.

We have not addressed in much detail the subject of selection of the hyperparameter α. We have chosen α on
the basis of the degree of variation observed in the MCMC samples of the posterior, which indicates that the prior
is not restricting the smoothness of the boundary very much. Since the value of α affects the width of the prior
probability distribution, it influences the posterior uncertainty. Therefore, it is imperative to place more emphasis on
understanding how to choose hyperparameters.15,32 We note that this problem is not confined to Bayesian analysis.
As we argued in Sect. 3, choosing α is equivalent to selecting the number of degrees of freedom in the representation of
the boundary description. This problem is a common feature of all methods of solving inverse problems, particuarly
when they involve finding more model parameters than measurements.

Another limitation of the present study is that α is fixed. A more appropriate approach would be to consider α
as a parameter that should be determined from the data, which goes by the name of empirical Bayesian analysis. By
including α in the list of variables to be sampled in the MCMC process, the uncertainty in α would be taken into
account in the overall uncertainty analysis.

In regard to our use of a polygon to represent a smooth curve, one would ideally like to reduce the length of
the polygon sides to a size where this discretization does not affect the results. However, in the present formalism,
shorter sides can lead to an increasing frustration of the MCMC algorithm, for example, because of the prior on side
length. The result is that one is forced to use increasingly smaller MCMC steps, which leads to a reduced efficiency
of the algorithm. One approach to overcoming this problem is to limit the direction of trial steps of each vertex to
be along the bisector of angle between neighboring sides, somewhat like the suggestion of Lobregt and Viergever.13

Another approach avoids the use of the prior on polygon side length by using adaptable discretization, either on
an edge-by-edge basis13 or by routinely resampling the full polygon boundary to create equal-length sides. Another
means that warrants investigation is to use a multiresolution representation of the boundary. The advantage would
be that one could adjust the size of the MCMC steps at each resolution to improve the overall efficiency of the
posterior sampling algorithm.
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