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ABSTRACT

Geometric models have received increasing attention in medical imaging for tasks such as segmentation, reconstruc-
tion, restoration, and registration. In order to determine the best configuration of the geometric model in the context
of any of these tasks, one needs to perform a difficult global optimization of an “energy” function that may have many
local minima. Explicit models of geometry, also called deformable models, snakes, or active contours, have been used
extensively to solve image segmentation problems in a non-Bayesian framework. Researchers have seen empirically
that multi-scale analysis is useful for convergence to a configuration that is near the global minimum. In this type of
analysis, the image data are convolved with blur functions of increasing resolution, and an “optimal” configuration
of the snake is found for each blurred image. The configuration obtained using the highest resolution blur is used
as the solution to the global optimization problem. In this article, we use explicit models of geometry for a variety
of Bayesian estimation problems, including image segmentation, reconstruction and restoration. We introduce a
multi-scale approach that blurs the geometric model, rather than the image data, and show that this approach turns
a global, highly nonquadratic optimization into a sequence of local, approximately quadratic problems that converge
to the global minimum. The result is a deterministic, robust, and efficient optimization strategy applicable to a wide
variety of Bayesian estimation problems in which geometric models of images are an important component.
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1. INTRODUCTION

Geometric models have received increasing attention in medical imaging for tasks such as segmentation, reconstruc-
tion, restoration, and registration. Explicit models of geometry, e.g. snakes1 or deformable models,2,3 are desirable
when some user interaction can be tolerated. The parameterization of an explicit model can easily be changed to
control its “stiffness”, which is useful, e.g. to allow a segmentation algorithm to segment regions of the image where
the edge disappears. Controlled continuity splines4,5 can be used to match edges with sharp corners. Simple cal-
culations can be performed on the optimal configuraton of an explicit model, e.g., one can easily compute the area
contained by the model.6 Finally, if the geometric model is part of a Bayesian solution to the analysis problem, the
confidence one should have in the final configuraton can be assessed using directed7 or stochastic8 searches of the
probability of nearby configurations. One could compute the posterior probability that the area contained by the
geomtric model is the calculated value plus or minus 10 percent, for example.

On the other hand, when a completely automatic optimization is needed, implicit models, i.e. Markov random
field (MRF) prior probability distributions,9 may be preferrable because they require almost no user involvement
and can handle very complex geometrical configurations. MRF models, since they are part of a Bayesian solution to
the problem, can be queried to obtain credible intervals as mentioned above, or can be used to generate more robust
estimators than the MAP solution, e.g. the mean posterior or median posterior solution. However, calculations tied
to the optimal configuration may be more difficult than for an explicit model, since the geometry is not a set of
explicit, closed paths. Furthermore, control of the “stiffness” does not appear to be meaningful for these types of
models.
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In this article, we use explicit models of geometry in the context of a Bayesian approach to many 2D image
analysis problems, including reconstruction, restoration and segmentation. A crucial component in the way that we
accomodate geometric models in the fitting of image data is the transformation of a geometric model into image
space. We show that this transformation is highly nonlinear over the scale of the image pixel spacing, and that it
makes global optimization using deterministic strategies essentially impossible without some modification. We show
that blurring the result of this nonlinear transformation increases the scale over which the blurry transformation
is linear. Since linear models of images produce quadratic log likelihood functions (in the case of Gaussian noise),
we show that, if a blur is used that is much larger than the largest perturbation to the geometric model which
could result in a more probable configuration, then the optimization problem at that scale is quadratic, and can be
solved efficiently and automatically. We propose a multi-scale approach that starts at coarse resolution and proceeds
carefully to fine resolution, which may sound very similar to multi-scale approaches applied to image segmentation
using snakes. It should be stressed, though, that we are applying the blur to the geometric model, rather than the
image data, and that what we are proposing is a robust, deterministic, global optimization strategy that is useful for
a whole variety of Bayesian estimation problems which rely on explicit models of geometry.

2. THE BAYESIAN APPROACH

The Bayesian approach provides a complete methodology for model building from measurements. Given a set of
measurements, it can be used to answer the fundamental questions: What are the “best” values of the parameters used
in a particular model? What is the uncertainty in the parameter values implied by uncertainty in the measurements.
Which of two models is more appropriate to use? If using prior information, how strongly should one rely on it? The
reader is encouraged to learn more about the fundamentals of Bayesian analysis by studying some of the references
available.10–13

In Bayesian analysis, the posterior probability summarizes the full state of knowledge concerning a given situation.
Given the data d, the posterior probability of parameters a for a particular model M is given by Bayes’ law

p(a|d,M) =
p(d|a,M) p(a|M)

p(d|M)
, (1)

where p(d|a,M), the probability of the observed data given a, is called the likelihood, p(a|M) is the prior probability
of a, and p(d|M) is called the evidence. The likelihood is the probability distribution of the fluctuations in the
measurements about their values predicted by the parameters. The prior probability p(a) encompasses the full prior
information about the parameter set a. The prior information might be experimentally based or subjective. The
evidence provides the normalization for the posterior, and is not important in most analyses. It is often convenient
to deal with the minus log posterior:

− log[p(a|d)] = Ψ(a) = Φ(a) + Π(a)− E , (2)

where Φ, Π, and E are the negative logarithms of the likelihood, the prior, and the evidence, respectively. Φ and
Π depend on the parameters, while E does not. We seek to find the parameter values that maximize the posterior,
called the maximum a posteriori (MAP) solution. Of course, the MAP estimate is found by minimizing Ψ with
respect to the parameters, yielding the estimated parameter values â. The condition for the MAP solution is ∂Ψ

∂ai
= 0

for all parameters ai, providing there are no constraints on the parameters themselves.

Under the assumption that the measurements are subject to additive, Gaussian noise, the minus log-likelihood is
half of the familiar chi-squared, Φ(a) = 1

2
χ2 = 1

2

∑
i σ

−2
i (di − d̂i)2, the sum of the squared residuals (the difference

between observed measurements and their values predicted by the the estimated parameters â) divided by the
variance of the noise, σ2.

The tool we have developed for implementing the Bayesian approach for analysis of 2D image data using geometric
models is called the Bayes Inference Engine (BIE). This versatile application allows one to develop complex geometric
models for the objects under study as well as complex models of the radiographic measurement process (see Fig. 1).
The BIE can be used to draw a data-flow diagram that produces a predicted image given a configuration of the
potentially complex object model, which could include geometric model(s) coupled to density variation models. The
predicted data is compared with the raw data to produce a minus log likelihood (the box with the Φ in it). Minus

146



Figure 1. The BIE allows a user to model objects and measurements on objects by constructing a visual data-flow
diagram. The box with a P in it specifies the model of the object, while the first 3 transforms to the right simulate
a simple radiographic measurement system to produce a prediction of the 2D image data. The prediction is to be
matched with a real 2D image by minimizing the minus log likelihood, Φ, w.r.t. anything connected to the right side
of the Optimizer.

log priors can be hooked up directly to components of the object model. The minus log likelihood and minus log
prior can be summed to produce a minus log posterior. Any of the three minus log probabilities can be minimized
if connected to the left side of an Optimizer. Models that are connected to the right side of the Optimizer are
manipulated in order to achieve the minimization. Various aspects of the BIE are described elsewhere.7,14–17

Since the predicted data comprise an image, at some point the geometric models have to be transformed into
images. This transformation is highly nonlinear over the scale of the image pixel size, and is the major source of
difficulty in the global optimization problem - finding the MAP solution (see Fig. 2).

3. EXPLICIT MODELS OF GEOMETRY

Explicit models of geometry have been used in Bayesian and non-Bayesian problem formulations. Snakes were
originally introduced to solve a non-Bayesian formulation of the 2D image segmentation problem.1 The optimization
algorithm therein1 relies on an interpretation of the derivative of the energy function (the function to be minimized) as
exerting a force on the parameters of the snake. Dynamic evolution equations are constructed using this interpretation
and then time-advanced until the snake reaches equilibrium, when the net force on the snake is zero everywhere and
the model has achieved a local minimum in energy.

A multi-scale approach is useful for finding the configuration of the snake that yields a global minimum in energy.
In the multi-scale approach suggested by Kass et. al.,1 the energy function is Gaussian-blurred, and the snake that
comes to equilibrium for that blurred energy function is obtained. Then, the snake that results from this coarse-scale
energy distribution is “re-equilibrated” using an energy distribution that is blurred slightly less than in the previous
iteration. This process can be continued until the blur is as small as the desired accuracy on the snake. Empirically,
it has been found that this type of multi-scale approach is useful in avoiding local minima in the global optimization
problem, and the explanation given for this desirable behavior is called scale-space continuation.18,19 In more recent
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Figure 2. Naive optimization of the polygonal vertices for a noiseless image segmentation problem results in very
poor behavior. The initial configuration on the left is a 100-sided polygon. Two global steps using gradient descent
results in the configuration in the middle, and the configuration on the right is the local minimum after a dozen
global steps. Resampling the polygon after every global step so that it is uniform in arclength reduces the number
of self-intersections, but results in excruciatingly slow convergence.

work,20,21 scale-space continuation is used to argue that the sequence of configurations share desirable relationships
that are useful in defining a hierarchical representation of the geometric model.

The use of snakes as originally proposed1 is not easily formulated as a Bayesian estimation problem, since the
force that derives from the image data, which one would like to interpret as the gradient of a minus log likelihood
w.r.t. the snake model, is difficult to interpret as coming from a “goodness-of-fit” of the image predicted by the snake
model. The snake alone can not easily be used to predict a complete image in which the snake is just the boundary
that separates “inside” from “outside”, because there is no explicit model for the values of the inside and outside in
the snake approach. Thus, snakes seem to be more of a feature-detecting model than an image-fitting model. On
the other hand, the force that derives from the snake model itself is easily interpreted as a regularizing prior. In
fact, when snakes are extended to surfaces for the purpose of fitting 3D scattered surface data,4 the energy function
that depends on the data is chi-squared, and the optimization problem is identical to a Bayesian MAP estimation
problem.

The snake approach appears to be easy-to-use and flexible, since no model of image variations inside or outside
the snake is required of the data analyst, and many energy functions have already been proposed to solve a variety
of problems in image segmentation. However, snakes are inappropriate if one has a good deal of information about
what the image variations should be inside and outside the snake. For example, the knowledge that the image should
be near value a inside the snake and near value b outside the snake is powerful information, and can be incorporated
easily in a Bayesian approach. Even knowledge that the image must be smooth inside the snake and smooth outside,
but can have a discontinuity along the snake boundary can easily be incorporated into a Bayesian approach with
simple quadratic log priors on the image variation inside and outside. Finally, if one wants to ask probabilistic
questions about the solution, e.g. what is the probability that the area contained by the geometry is between A1

and A2, a Bayesian approach is necessary.

Explicit models of geometry have been used in a Bayesian formulation of the limited-view tomography prob-
lem,5,22,23 where a 2D slice of a 3D object is reconstructed using two views, as well as in image segmentation and
recognition using deformable models.2
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Figure 3. The transformation of a polygon into an image is nonlinear over the scale of the image pixel width. The
polygon is filled to the left of the two line segments seen in the above 3x3 subsamples of the output image. The
center pixel (in the left image) has a value of 1

2
times the value of the polygon interior, but as the vertex in the center

is pushed 1.5 pixels to the left, the center pixel value (in the right image) goes to zero and stays zero for further
movement of the vertex to the left.

4. MULTI-SCALE AS A GENERAL-PURPOSE GLOBAL OPTIMIZATION STRATEGY

As mentioned in Section 2., in a Bayesian formulation of an image analysis problem that utilizes a geometric model,
the geometric model has to be transformed into an image at some point. For the following discussion, assume that
the geometry is defined by a set of vertices P = {Pk = (xk, yk)}N

k=1 that are connected by straight-line segments, and
that the image is defined by a set of pixel values, I = {Iij}M

i,j=1. More complicated geometric models are discussed
in the next section. The discrete image I is shorthand for a representation of the continuous image I(x, y) that has
value Iij in the region ui−1 ≤ x ≤ ui, vj−1 ≤ y ≤ vj , where {ui}M

0 and {vj}M
0 are uniformly distributed over intervals

in �. The transformation P → I(P) is accomplished by computing, for each pixel (i, j), the area of intersection of the
polygon described by P and the pixel with which the image value Iij is associated. If Iij is viewed as a function of P,
then this function is highly nonlinear over the scale of the pixel spacing, because, as a vertex in P passes through the
interior of the pixel (i, j), the value Ii,j might go from zero to close to one while the vertex that is passing through
only moves the width of the pixel (see Fig. 3). This nonlinearity is the major source of difficulty in solving the global
optimization problem - finding the MAP solution (see Fig. 2).

The transformation P → I(P) described above is a special case of taking the projection of P onto the image
with continuous coordinates, I(x, y), blurring I(x, y) with a function G(x, y;σ), and then sampling it on a discrete,
uniform lattice. The intermediate continuous image I(x, y) has values I(x, y) = 1 if (x, y) ∈ RP and I(x, y) = 0
otherwise, where RP is the region covered by the linear polygon P. Thus, the transform P → I(P) is just a case
of blurring I(x, y) with a rectangular function that has the same width and height as one of the pixels and discrete
sampling at the centers of the pixel boxes. The 2D Gaussian, G(x, y;σ) = 1

2πσ2 exp(x2+y2

σ2 ) could be used as the
blurring function instead.

The partial derivative ∂Iij

∂xk
has two components, one from perturbing the line segment Pk → Pk+1 and one from

perturbing the line segment Pk−1 → Pk (note: let P0 = PN and PN+1 = P1). Let’s consider the component that
comes from perturbing Pk → Pk+1, and assume that a positive perturbation of xk increases the area of P (see Fig. 4).
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Figure 4. The numerical derivative of the image w.r.t. the x part of the middle vertex of the polygon for a 3x3
subsample of the image. On the left hand side the numerical derivative is only nonzero for the center column of 3
pixels, whereas on the right side, the numerical derivative is nonzero for four of the 9 pixels. The polygon shown is
the 4-sided polygon < Pk → Pk+1 → Pk + δPk → Pk−1 >.

Then this contribution to ∂Iij

∂xk
is the limit as δx tends to zero of 1

δx times the integral of G(x− ui+1+ui

2 , y− vj+1+vj

2 ;σ)
over the area defined by the triangle < Pk → Pk+1 → Pk + δPk >, where δPk = (δx, 0). Note that the area of
< Pk → Pk+1 → Pk + δPk > is 1

2
|yk+1 − yk|δx, so that, in the limit, the partial derivative is determined by a

linearly-weighted integral of G(x − ui+1+ui

2 , y − vj+1+vj

2 ;σ) along the line segment Pk → Pk+1. The contribution
due to the perturbation of the line segment Pk−1 → Pk is a weighted line integral of the same shifted blur function
over the line segment Pk−1 → Pk, with a maximum weight that depends on 1

2
|yk − yk−1|. This derivation holds for

any blur function at any pixel sampling point and for any vertex. Obviously, if the blur function has infinite extent,
then the derivative of every image point with respect to the x and y components of every polygonal vertex may be
nonzero. A similar derivation exists for ∂Iij

∂yk
, but the maximum value of the weight will depend on the differences of

the x components of the vertices instead of the y components, as in the above derivation.

For a Gaussian blur function, if σ is large compared to the length of the line segments Pk−1 → Pk, then the
weighted integral of G(x− ui+1+ui

2 , y− vj+1+vj

2 ;σ) over the line segment Pk−1 → Pk will approximately be weighted
“samples” of G(x− ui+1+ui

2 , y − vj+1+vj

2 ;σ) at (x, y) = (xk−1, yk−1) or (x, y) = (xk, yk), depending on which vertex
the derivative is being calculated with respect to, and with the weight determined by the total weighted integral
value (1

2
|yk+1 − yk| in the example above). Thus,

∂Iij

∂xk
≈ ± 1

2
(|yk − yk+1|+ |yk − yk−1|)G(xk − ui+1 + ui

2
, yk − vj+1 + vj

2
;σ) (3)

∂Iij

∂yk
≈ ± 1

2
(|xk − xk+1|+ |xk − xk−1|)G(xk − ui+1 + ui

2
, yk − vj+1 + vj

2
;σ) (4)

If σ is also large compared to the components of a perturbation δPk of the kth vertex of the polygon Po, then the
image that results from the perturbed polygon I(Po + δP) is just I(P) + I(P′), where P′ is the four-sided polygon
< Pk → Pk+1 → Pk + δPk → Pk−1 >, and δPk = (δx, δy) is the perturbation in the kth vertex. The area of P′ is
1
2
(|yk − yk+1| + |yk − yk−1|)δx + 1

2
(|xk − xk+1| + |xk − xk−1|)δy so that, if the size of P′ is small compared to σ, a
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Taylor series expansion of I(P) about the point Po can be used to construct an accurate linear approximation to
the nonlinear transform P → I(P) near Po. The error in such an approximation (the higher order derivatives of I(P)
w.r.t. P) can be bounded by the spatial derivatives of the blur function G(x, y;σ). Thus, the Taylor series expansion
is good for small perturbations to a single vertex of Po. It is trivial to extend the analysis to a perturbation of
Po that involves all of the vertices. In fact, the restriction that the length of the segments Pk → Pk+1 be small in
relation to σ can be relaxed. Note that the spatial derivatives of a rectangular blurring function are zero everywhere
except at the edge of the blur, where even the first derivative is infinite, making it a suspicious choice for blurring
function if the goal is to eliminate bothersome nonlinear discontinuities in the forward transform.

The multi-scale method we propose, then, requires an initial configuration of the geometric model that is close to
the global optimum, and a measure of how large the error in the initial configuration is. A sequence of optimization
steps is performed at increasing resolutions (decreasing σ), starting with a value of σ that forces the inital optimizaton
problem to be nearly quadratic over a range of perturbations to the geometric model that are the size of the error in
the initial configuration. At each step, the geometric model will be closer to the global minimum, and thus the region
of plausible perturbations will shrink, allowing a smaller value for σ. For the case in which the local optimization
problems are exactly quadratic, and under some conditions on the the Jacobian of the image w.r.t. the geometric
model, a unique minimum in each sub-problem is guaranteed, and convergence to the unique global minimum is
assured.

5. EXAMPLES

The multi-scale approach outlined above is applicable to many Bayesian estimation problems in which geometric
models of images play a crucial role. The approach is an appealing alternative to stochastic relaxation strategies,
which, although guaranteed to converge to the global minimum, do so at considerable cost in computation time.6,24

The derivation in Section 4 showed that multi-scale analysis can be used to linearize the nonlinear transform of
a geometric model into an image, over perturbations to the geometry that are much smaller than the scale of the
blurring function. This derivation was for the simplest type of geometric model – vertices connected by straight-line
segments, which will now be referred to as a simple polygon. More complicated polygonal models are easily handled,
however. A very large class of 2D curves can be approximated arbitrarily well by piecewise Bezier polygons.25 The
building block for these types of polygons are Bezier curve patches. A Bezier curve patch is a parameterized curve
(x(t), y(t)), where x(t) and y(t) are described as weighted sums of Bernstein polynomials:

x(t) =
N∑

n=0

xnB
N
n (t) (5)

y(t) =
N∑

n=0

ynB
N
n (t) (6)

and
BN

n (t) =
N !

(N − n)!n!
tn(1− t)N−n (7)

The “control points”, (xn, yn), allow for one Bezier patch to be linked to another by ensuring that the end control
points of one patch, (x(1)

N , y
(1)
N ), are identical in value to the beginning control points of another, (x(2)

0 , y
(2)
0 ). Geometric

continuity across patch boundaries can be accomodated easily with linear constraints on the control points of the
adjacent patches. One nice attribute of piecewise Bezier polygons is that they can be easily and efficiently transformed
into simple polygons by sampling uniformly in the underlying 1D parameter space, t. This transformation is linear in
the control points B. That is, if B is a vector containing all of the control points for all of the patches and B → P(B)
is the transformation of a piecewise Bezier polygon into a simple polygon using a fine uniform sampling in t, then
there is a matrix H such that P = HB. Note that the resultant simple polygon will not be sampled uniformly
in arclength. A uniform arclength sampling (or any sampling strategy that depends on the control points) will, in
general, be a nonlinear transformation of the control points, B.

Since using a piecewise Bezier polygon only introduces a linear transformation into the data-flow diagram, any
non-linearity of the final image model (as a function of the control points of the piecewise Bezier polygon) can come
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Figure 5. A simple Bayesian segmentation problem using a geometric model that is 32 piecewise cubic patches
with C2 continuity at every patch boundary. Image data and original configuration of geometric model shown on
left. Local minimum attained by naive application of conjugate gradient to geometric model shown in middle (in
black) with overlaying grayscale zoomed on interesting “defect” in image data. Local minimum is due to high value
of a noisy image pixel in defect that stops model from penetrating in. Global minimum attained using multi-scale
approach shown on right (in black). The first-derivative discontinuous geometric model used to generate the noise-
free part of image data is shown in the middle and right (in white). Noise is additive Gaussian with σ equal to 0.1
times the interior value of the geometric model.

only from the non-linearity of the transformation of the simple polygon into an image, treated in Section 4. If
perturbations to the piecewise Bezier’s control points are restricted in size so that the resultant simple polygon’s
vertices are perturbed by only a small amount relative to the blurring function’s σ, then the entire forward model
I(P(B)) is approximately linear in the perturbations to B. Therefore, the quadratic nature of the sub-optimization
problems will not be compromised and we should expect convergence to the global minimum. In Fig. 5, we see
a comparison of the multi-scale strategy. using cubic B-splines with 2nd-order differential continuity across patch
boundaries, versus a traditional strategy for a simple Bayesian segmentation problem. The approach outlined in this
article is thus applicable to Bayesian segmentation using snake-like models of the geometry, and may be a desirable
alternative to snakes when prior information about the image values inside and outside the boundary is available.

The segmentation problem displayed in Fig. 5 involves the simplest measurement model that one can have, since
the model for the measurements of the true image is just the predicted image plus noise. In a real image segmentation
problem, though, raw data will have been manipulated into “image data” (which we are calling the measurements
for the segmentation problem) by directly inverting the measurement system, so that the segmentation algorithm
operates on a previous estimator of the image values.

Other Bayesian estimation problems operate on data that are not so transparently related to the “measurements”.
For example, a common image restoration problem is de-blurring. In this case, the measurement system is usually
modelled as a convolution of the image model I with some filter, denoted by the transform I → H(I). The predicted
image, as a function of, say a piecewise Bezier geometric model, can be written as H(I(P(B))). Once again, if I(P) has
been linearized over some size of perturbations to P, and only perturbations to B that lead to smaller perturbations
in P than those required by this linearization, we have a sub-optimization problem that is approximately quadratic
in the geometric model B. We should again expect global convergence using multi-scale analysis.

Another example of the use of multi-scale analysis is Bayesian image reconstruction. In this case, the measure-
ments are related to the image model (which can be a slice of a 3D volumetric object model, e.g.) through line
integrals. If the line integral through the image are computed at every angle and every displacement, the transform
is called the Radon transform.26 If line integrals at only a small number of angles is computed, then the problem of
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reconstructing the image from these data is called limited-view tomography.5,22,23 If the image is parameterized as
circularly symmetric about some center point (so a 1D function ρ(r) and the center of symmetry completely describe
the image) and the set of line integrals at a complete set of displacements are computed, the transform is called
the Abel transform.27,28 All of these transforms are linear, and all have been implemented in the BIE. See these
proceedings5 for an application of the multi-scale approach to the limited-view tomography problem.

The real data that the BIE was developed to analyze are flash radiographs of dynamically evolving, cylindrically-
symmetric, 3D objects.28 The most important component of the measurement system is the “3D” Abel transform.
That is, given a single-material object with a 3D volumetric density profile, ρ(x, y, z) = ρ′(

√
x2 + y2, z), compute

the Abel transform of ρ′(r, z) for every z. This results in the intermediate image model, ρL(x, z), that is equal to line
integrals of the object’s density. A photon of energy E, produced by the radiographic machine, which travels from
the source to the point (x, z) on the detector, will penetrate the object with probability exp−

µ
ρ (E)(ρL), where µ

ρ (E)
is the material’s mass attenuation coefficient at energy E. Since the machine actually produces a flux of photons at
a wide variety of energies, the number of photons that arrive at detector point (x, z) will be a weighted integral over
energy of the probability defined above, to produce another intermediate image model b(x, z). Since the photons
at the source do not originate from a single point, there will be a blur of b(x, z) (to produce c(x, z)) to model this.
When photons hit the detector, they will scatter before depositing energy. This process can be modelled by yet
another blur of the image model c(x, z), yielding image model d(x, z). Finally, the detector may be preferentially
sensitive to photons of certain energies and the response may saturate if too many photons impact the detector.
These transforms can be modelled as nonlinear point transforms of the image d(x, z). There are other effects that
need to be modelled as part of the measurement process, e.g. registration, scattered radiation, intensity of the source
as a function of angle, collimation, photon-beam divergence, etc. Fig. 6 shows the canvas of the BIE for a real
data problem. This data analysis problem is a complex mixture of segmentation (determine the boundaries of the
material), restoration (determine the density distribution with a resolution that is much better than that allowed by
the source and detector blur), reconstruction (determine a density distribution from line integrals), and registration
(errors in calibration of detector location, rotation and shift relative to the object and source).

6. CONCLUSIONS

We have outlined a multi-scale approach to global optimization in this article that is a general-purpose strategy for
problems utilizing geometric models of image data. We have shown that the approach can be interpreted as linearizing
a highly nonlinear forward model of the image data. Since linear models result in quadratic log likelihoods when the
noise is additive Gaussian, the optimization problem at any single scale is close to quadratic if the adjustments to
the geometric model are small in relation to the blur. This allows us to be confident that a unique solution exists
at any single scale in an appropriate region around the configuration of the current initial geometry for that scale.
Scale-space continuation is invoked to argue that the unique sequence converges to the unique global minimum,
under mild conditions on the closeness of the initial guess, the size of the initial scale, and the rate at which the
scale is decreased. Some user input is required at the start of the global optimization session to define an initial
configuration that is close to the global minimum and to provide a measure of that closeness. The BIE facilitates this
interaction with linked graphical and textual geometry editors. The approach proposed in this article is different from
a similar approach, used in the context of image segmentation, called snakes. In our approach, it is the geometric
model of the image that is blurred with successively fine resolution, rather than, as with snakes, the energy function
derived from the image data. This difference allows us to use our approach as a general-purpose tool for solving
Bayesian estimation problems that utilize explicit models of geometric content in image data, including segmentation,
reconstruction, and restoration.
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