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ABSTRACT 

We have previously described how imaging systems and image reconstruction algorithms 
can be evaluated on the basis of how well bina~-~sc~nation tasks can be performed by 
a machine algorithm that “views” the reconstructions.1-3 Algorithms used in these 
investigations have been based on approximations to the ideal observer of Bayesian statistical 
decision theory. The present work exa ‘nes the performance of an extended family of such 
algorithmic viewing tomographic images reconstructed from a small number of 
views using ridge Maximum Entropy software, MEMSYS 3. We investigate the 
effects on the performance of these observers due to varying the parameter a; this parameter 
controls the stopping point of the iterative reconstruction technique .and effectively 
determines the smoothness of the reconstruction. Fo detection task considered here, 
performance is maximum at the lowest values of a stu these values are encountered as 
one moves toward the li t of maximum likelihood estimation while maintaining the 
positivity constraint intri A breakdown in the validity of a Gaussian 
approximation used r probability) was observed 
in this region. Measurements on e same task show that they 
perform comparably to the best machine observers in the region of highest machine scores, 
i.e s of a. For increasing values of a, both human and machine observer 
Pe de. The falloff in human performance is more rapid than that of the 
machine observer at the largest values of a (lowest performance) studied. This behavior is 
common to all such studies of the so-called psychometric function. 

1. INTRODUCTION 

It has been recognized for several decades that the assessment of medical images or 
medical imaging syste quires the specification of a task to ed using the 
images. Systems that in a certain or er for the task of e low-contrast 
lesions may rank differently for the task of detecting fine detailed structure. It has also been 
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recognized that the study of task performance may be expensive and time consuming because 
of the need for “ground t ch to judge the performance of the task, and the 
need for a suf&ient number of i ges to obtain statistical significance in the results. These 
considerations have led t performance by machine or algorithmic observers 
who love the work. The most highly regarded algorithmic observers are those based on the 
optimal observers of Bayesian statistical decision theo e.g., those based on the likelihood 
function.* The question of the co e of such opti observers--or 
attempts to approximate them in m s--vis-a-vis the pe rmance of the 
human observer then arises naturally. This paper addresses this question in the context of 
several of our investigations of reconstruction methods re orted earlier.lq3 

In this work the images are ed fr const~ctions deri from simulations of 
limited-angle two-dimensional to phy, hodology required applications ranging 
from single-photon emission CT (SPECT) in radionuclide imaging through tomography or 
tomosynthesis of coronary artery images i radiography. The reconstruction method used is 

maximum a teriori (MAP) method of * ge estimation5 where the prior 
stribution on reconstructed image is so-called entropic prior.6 The 

particular version of the reconstruction algorithm used here is due to the Cambridge school 
of Gull and Skilling and is named MEMSYS 3.’ The assessment of the images proceeds 

aradigm presented by nson:’ A large number of images are generated 
ary task is specified performed by either a 

rformance is scored ace to either the metho 
of the receiver operating characteristic (ROC) curve879 or the method of the two-alternative- 
forced-choice (2AFC).8 We shall now present some details of our present work in which we 
investigate the optimal use of the reconstruction t que, the detailed p rice--given 
a specified detection task--by a number of algori K observers derive statistical 
decision theory, and the performance of human observers given the same task. 

As in previous work, the object cl s consists of a set of 10 scenes, each 
randomly placed, non-overlapping di on a zero backwood. Ten of the 
contrast (amplitude = 0.1) and 10 are high-contrast (amplitude = 1.0). They 
in diameter in an overall field of 128 pixels in diameter. An example t 
ensemble is shown in Figure la. The task is the detection of the low-contrast disks. The 
high-contrast disks are placed in the object to challenge the effects of limited-angle sampling 

give rise to object-dependent ly spaced 
80”, and parallel projections ive, zero- 

mean Gaussian noise with a standard de n equal to two. The noise in the data is pre- 
smoothed prior to reconstruction by a trian ar window with a FWHM of 3 pixels, reducing 
the rms noise level by a factor of 0.484. 
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3. THE CTION ALGOR 

The maximum-entropy algorithm investigated here is a member of a family of 
ques for image estimation or reconstructionP In effect the algorithm minimizes the 

x2/2 - as 

where x2 is &i-squared, the exponent in the likelihood function that expresses the probability 
of the data given the object scene under the assumption of Gaussian additive noise.* The 
term -aS derives from the exponent of the entropic prior probability distribution on the 
reconstruction.6 Minimizing &i-squared is equivalent to finding the maximum likelihood 
(ML) reconstruction. Minimizing the term -aS is equivalent to maximizing the entropy S, 
which for practical purposes can be considered a measure of the degeneracy of the image, i.e., 
the number of ways the image could be formed with the same total energy, light intensity, 
silver halide grains, etc.“; a uniformly gray image achieves the unconstrained maximum 
entropy. Minimizing the overall sum is an attempt to find the “least committal image” 
consistent with the data (see Ref. 11 for this more axiomatic approach). The factor a selects 
one possible member of an infinite of entropic priors; the smaller its value, the less one 
enforces the prior distribution, an e closer one approaches the ML solution. Several 
techniques for determining a have evolved over the last decade. 

So-called “ad hoc” versions of maximum entropy were based on aiming for a solution that 
yielded a value of &i-squared equal to some value selected or “fixed’ by the user. It was 
argued that “feasible” sets of solutions are those for which chi-squared is less than or equal 
to N, the number of independent measurements in the data set. This approach was 
motivated by the fact that the statistically expected value of a &i-squared distributed random 
variable with N degrees of freedom is N, and the reconstruction is then constrained to be, on 
average, within one standard deviation of the data (assuming Gaussian-distributed noise). 
Since many early authors set their aim at a value of &i-squared equal to N, this has been 
referred to as “historic” maximum entropy. (This discussion has followed Ref. 7.) 

The more recent “Classic” MaxEnt determines a, and thereby also the final value of x2, 
from the data itself. Some motivation for this approach is provided in one version that is 
terminated when x2 + G = N, where G is a measure of the goodness of the data.7 
expression has been interpreted to indicate that only G “good” parameter measurement 
expected to contribute to the reduction of the data misfit (x2) that occurs when a model is 
fitted to noisy data.‘>12 This is analogous to the result obtained when a calculation of a 
sample mean (or M sample parameters) reduces the degrees of freedom of the residual chi- 
squared random variable by one (or M). In the limit of G = N, &i-squared may be driven to 
zero, the the ML distribution, which is also the limiting case when a approaches 
zero. The S 3 software also allows the user to specify an arbitrary (“ad hoc”) value 
of the final or aimed for value of &i-squared. In all cases, a is initialized at a very large 
value and is gradually reduced until the desired value of &i-squared is reached. In effect, 
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the algorithm is terminated by a “stopping rule,” which renders the image smoother than that 
0 re e ML solution where e algo pletion” (a = 0). 

Fig. la Fig. lb 

Figure 1. a) S -contrast 10 low-contrast disks 
randomly placed on a zero background. b) Reconstruction of scene la with a=0.2. 

A reconst~ction of t e object scene shown in Fi e la, using us 3 wit &a 
equal to 0.2, is given in Figure lb. The high contrast disks are easily detected. Detectability 
of the low contrast disks has been adjusted to fall in a range such that the task is neither too 
trivial nor nearly i 
measured with a 

reconst~c~on when the est 
classification is not adressed. 

the maximum 
mized in terms of 

rd for the task to be 
age. In more tee question of optimal 

C DECISION FICTIONS 

nctions are various pro~mations to 
decision theory. 
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(a) The exact expression for the log of the posterior probability of each hypothesis 
given the data, p(f lg). This function--consisting of the pro e pre-whitened likelihood 
p(gtf) and the exact expression for the entropy prior -is evaluated under the two 
hypotheses (disk present and disk absent). The differe tween the two evaluations at 
each location is the decision variable for that test region. 

(b) The log of th e posterior probability function, as in (a), but using a quadratic 
approximation obtained by expanding the expression for t log posterior probability in a 
Taylor series about the maximum (the reconstruction).377 ecall that quadratic in the log 
probability density is equivalent to Gaussian in the probability density.) Again, this 
calculation is done under two hypotheses (disk present and disk absent) and the difference 
forms the test statistic. 

(c) The non-prewhitening matched filter (NPWMF) output, d by summing all the 
pixels within the region of the ted disk signal. 13p1* This wo the likelihood of the 
signal in the case of Gaussi stributed pixel values. However, the pixels in the 
reconstruction have some unknown (but non-Gaussian) distribution for a given object, and 
therefore this decision variable would be expected to be sub-optimal. 

(d) The non-prewhitening matched filter, modified to include the background in an 
annular region centered on the location of the cted signal. The decision function is the 
difference between the activity in the central region and the estimated activity in the 
surrounding background. We shall refer to this as the disk contrast. 

(e) The mean-squared-difference between e reconstruction and 
This difference is calculated for each of the expe d objects (disk pres 
the difference between the two calculations forms the test statistic. 

For each of the decision functions liste e following describes the e&ion-making 
procedure for the algorithmic observer. The decision function is applied to 100 subregions (16 
pixels in diameter) in the reconstructions that contain background plus a disk (known and 

by the investigator to form the ction output is 
The decision function is also constructions that 
y background (known and extr d by the investigator to form the Ho test images) 
ision function output is recor 

The decision function outputs are hist ammed separately for the 
known backgroun own technique of v 
function threshold for g “lesion present,” the receiver operating characteristic (ROC) 
curve may be gene easured and the summary 
measure d, is derived fr This measure will be the figure of 
merit used for evaluatin 

5. THE HUMAN OBSE 

The human observers used the same 100 realizations of the signal-plus-background 
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the same 100 realizations of the 

observers. These images w 
from the fo er class, and one 
the signal-present image is selected randomly. This is the usual two-alternative-forced-choice 

The choices of the 
correct score culated. This percent 

Figure 2. Local regions extracted fro -contrast 
disk; b) Sample region centered on a low-contrast disk. e) Sample noise-only test region. 
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The human observers viewed the images on a KAMTEK model 9460.16 Originally the 
display was calibrated to obtain a dynamic range of about 100 using an SMPTE test 
pattern17; then the viewers were allowed to fine tune the one panel knob available to them 

rtable with the contrast and ghtness. The h~an-obse~er 
ted in a darkene ation to the light 
of about 700 pra ta collection be 

this is not a large number for such purposes, the observers’ performance remained stable 
after the actice sessions. A typical set of disk-prosent/hacqk~ound-alone 
images is e 2 (“disk present on the left” would be 
example). ed images is shown an example of a hi 
indicates the region in which the low-contrast disk is expected to be found. 

ic 
Mean Square Diff 

Disk Contrast 

---. Full Posterior 
\ .- 

Gauss-approx 

e detectability fi as a fiction of the p eter a for eat 
machine or algorithmic observers described in Section 4. Arrows indicate the values of a 
corresponding to the “historic” and the “classic” maximum entropy solutions. 
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6. RESULTS FOR ALGORI IC OBSERVERS 

We shall present ults as a function of the MaxEnt parameter a. This parameter 
was allowed to range low value of 0.05 to a high value of 20. In Figure 3, the figure 
of merit d, is ed for each of the algorithmic observers listed above. Generally the figure 
of merit is s e at a high value in the neighborhood of 2.0 at small values of a 
(approximating the ML solution) and falls off at gh values of a (corresponding to extreme 
smoothing in the reconstruction). Arrows indic the values of alpha corresponding to the 
so-called historic and classic MaxEnt solutions. As can be seen from the figure, the classic 
reconstructions have a smaller value of a than the historic ones. The classic reconstructions 
also resulted in values of x2 that are reduced compared to those obtained with the historic 
run. For the historic run, x2=1024; the classic run gave 2=473. All of the decision variables 
except the Gaussian approximation to the posterior pr nction perform better using 
the classic MaxEnt reconstructions over the historic s tion. 

It can be seen from re 3 that the decision variable ba on the quadratic 
approximation to the log pos probability fails catastropically for all values of 01. At 
small values of a, the majority of the image values are extremely small, even within the 
region of a low-contrast disk (see Figure 2). Near the limit of the reconstruction values going 
to zero, the positivity constraint inherent in the entropy prior causes the distribution of image 
values to be extremely non-Gaussian, and the Gaussian approximation falls apart. 

7. RESULTS FOR HUMAN OBSERVERS 

The results for two human observers are presented in Figure 4. They are seen to follow 
the better machine observer results to within the error bars at the best performance levels 
(lower values of alpha) and to fall off somewhat faster than the best machine results at the 
lower performance levels ( er values of alpha). The perform ce of human observers 
typically lags behind that o ayesian-based observers at the lowe erformance levels due, 
presumably, to the increase in uncertainty in his or her prior i n induced by the 
highly degenerated versions of the signal, and this also de s or her internal 
consistency. 

8. DISCUSSION 

In this work we see an extension of trends seen in our earlier work; namely, that the task 
performance of algorithmic observers is indeed a function of the prior probabil arameter 
alpha. The most obvious feature of the machine observer results, other than based on 
the Gaussian approximation, is the stability of performance over a significant range as the 
value of a tends to lower values. We do not yet know how closely the maximum likelihood 
limit may be a ntaining the pos ty constraint inherent to the entropy prior-- 
before numeri will be encounter Another obvious feature is the progression 
toward inferior performance as a is allowed to increase to higher values, effectively moving 
further away from the maxim likelihood solution. The performance curves for three out 
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of four of the robust algorithmic observers cluster at a level significantly higher than the 
performance curve for the machine observer referred to above as the disk contrast. The 
reason for the lower performance of the latter observer is not yet understood. 

The close correspondence between the robust algorithmic observers and the human 
observer performance indicates that the degree of sharpness/smoothing represented by the 
variation over alpha is significant when the images are to be used for visual tasks. In fact, 
this correspondence indicates that the machine observers that we have been using in this and 
previous work are indeed relevant w en the images are inten ed for human use. That is to 
say, the image assessment paradigm that we have been developing does in fact efficiently 
serve the purpose for which it was designed. 

chin 

RFW 

KJM 

Figure 4. The detectability fi erit as a function of the parameter a for two human 
observers (circles and squares), shown bracketed by the envelope of the detectability for the 
machine observers from Figure 3 (neglecting the Gaussian approximation to the posterior 
Pro ility). 
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9. F 

It remains to be seen whether, for the detection task considered here, there is an optimal 
value of a closer to the ML limit. If not, this work would indicate that, for both algorithmic 
(excluding the Gaussian approximation to the log posterior probability) and human observers, 
the ML solution--with the positivity constraint inherent to the entropy prior--was optimal. 
Different conclusions might be drawn from the study of more detailed detection and 
discrimination tasks. 

An outstanding question still remains to be seriously investigated by our community. 
How does one optimize an image estimation algorithm when the estimation step is to be 
followed by an image classification step. We are systematically studying this problem. It 
would be very gratifying if a general approach could be developed, At present, most 
optimizers of image reconstruction routines use a figure of merit related to the residual 
variance or rms pixel noise. Although such figures of merit can be related to certain 
detectability measures used here (at least for linear reconstruction schemes),” the 
relationship is neither direct nor necessarily monotonic. A more co te understanding of 
the steps that lead from estimation or reconstruction through a mat e or human observer 
to a final detection or classification de is required in order to optimize the procedure for 
the performance of the task for which image was acquired. 
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