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Abstract

From the strict mathematical viewpoint, it is impossible to fully achieve the goal of
digital image processing, which is to determine an unknown function of two dimensions from
a finite number of discrete measurements linearly related to it. However, the necessity
to display image data in a form that is visually useful to an observer supersedes such
mathematically correct admonitions. Engineering defines the technological limits of what
kind of image processing can be done and how the resulting image can be displayed. The
appeal and usefulness of the final image to the human eye pertains to aesthetics.
Effective image processing necessitates unification of mathematical theory, practical
implementation, and artistic display.

Introduction

Figure 1 shows the basic elements of any imaging scheme. The fundamental purpose of
imaging is to convey information about the object to the observer, usually a human being.
The measurements obtained at the input stage of imaging can assume various forms. They
might consist of spatially separated samples of the luminosity of visibly detectable
light, as in light photography. Or, as is most often the case in medical imaging, the
measurements might be of nonvisual quantities, such as x -ray intensity, the strength or
time delay of sonic pulses, or the intensity of radiation being emitted by the object. In
the newest form of medical imaging, that of nuclear magnetic resonance, the measurements
involve a complex arrangement of magnetic and radiofrequency fields and the quantities
being imaged are closely related to the density of the nuclei under study in combination
with the relaxation times of the nuclear spins. Between the measurements and the display
of the final image, some form of processing takes place. In photography or film -based
radiography, the processing consists in film development. We will be more concerned here
with digital image processing in which the measurements are manipulated by a digital
computer. In order to emphasize the unity of the processing and display stages of
imaging, we will assume the term "image processing" comprises both. It is typically
desired that the observer synthesize the displayed information in order to draw a
conclusion (make a diagnosis) about the object. Thus, the available information should be
presented to the observer in such a way that he can most readily interpret it. Presently,
the most efficient way to present the human observer with a vast amount of correlated
information is through his visual sense. Thus, we will assume the end product of image
processing is a visual image or picture. Indeed, those who practice image processing are
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Figure 1. It is the purpose of imaging to
provide an observer, usually a human being,
information about the object under study.
The information content is fundamentally lim-
ited by the measurements taken. Image proc-
essing, which naturally includes both the
processing and display stages of the imaging
chain, should convey as much of that informa-
tion as possible in a form useful to that
observer.
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fortunate to have something visible to show for their efforts. This is one of the most
appealing aspects of image processing. However, sight of the final image is too often
lost in the euphoria that accompanies the comprehension of the mathematics. While it is
hard to imagine, it may be possible in the future to transmit information to the brain in
an entirely different way, which could prove more effective than vision.

The foundation of image processing rests on mathematics. Mathematical theory assures
us that it is impossible to unambiguously determine an arbitrary function of two
dimensions from a finite number of discrete, noiseless measurements linearly related to
it. This impossibility is summarized under the concept of the null space of functions
associated with any measurement scheme.1'2 Thus, it would appear to follow that from a
finite number of measurements, no reasonable estimate of the original image can be
inferred.3 In view of all the successful applications of image processing existent, such a
conclusion is ridiculous, of course. Those who see only the mathematics ae blind to the
objective, the final image. In this paper we will discuss the roots of the above -stated
mathematical restrictions, how they are overcome to produce a useful image and some of the
factors that affect the usefulness of the image for human visual consumption. The
underlying principle is that the goal of image processing is the production of a useful
final image.

As we shall see, the displayed results relate fundamentally back to the initial
measurements. While the design of the measurement scheme should be considered in a
unified approach to any imaging problem, we will not discuss such design in any detail
here. In medical imaging, diagnosis is more often made on the basis of patterns discerned
in the images than on the basis of absolute image values. Thus, quantitative imaging will
not be addressed, even though it may be useful in other contexts. Many cif the examples
used to demonstrate the ideas presented are related to computed tomography (CT). This is
mostly because the author has had extensive experience in this field. however, the
unusual incongruity between the measurement geometry and the normal display geometry
inherent in CT makes it a provocative modality in which to learn image processing
concepts.

Mathematical Foundations

We consider an imaging situation in which it is desired to determine and display a
quantity f(x,y) that is a function of the two continuous variables x and y (usually
spatial coordinates). The quantity f may be some physical variable containing information
about the object under study. For simplicity, let us assume the measurements are linearly
related to f. The ith discrete measurement may be written as

gi = ff hi(x'y)f(x,y)dxdy (1)

where h is the response function, or weighting function, that describes how much the
value o£ f at each point (x,y) contributes to the ith measurement. The objective of image
processing is to reconstruct or restore the function f from the given gi and present it to
the observer. The author has described in previous work2'1'4 the interpretation of the
functions f and h as vectors in a Hilbert space and the implied consequences concerning
the inversion of Eq. (1). Rather than repeat those incantations here, let us consider a
simpler, but less complete, approach. Suppose the measurements are actually projections
or line integrals, as in CT. Then each hi is a 2 -D 6- function; zero everywhere except on
the straight line of integration. Figure 2 shows the lines of integration that might be
available for a coarsely -sampled CT measurement scheme. Clearly, the functional values of
f in the regions between the lines do not contribute to the measurements. Because the
data carry no information about f in the regions between the lines, the values of f in
these regions cannot be reconstructed from the data. This inability to determine certain
aspects of f corresponds to the existence of a subspace in the Hilbert space of f known as
the null space. A similar manifestation of the null space is the situation in which one
is presented with a photograph of El Tovar Lodge. It would be impossible to infer what a
photograph taken at right angles to the first one would look like, unless one knew
beforehand that El Tovar is perched on the rim of the magnificent Grand Canyon. Now
suppose the measurements consist of strip integrals instead of line integrals, such that
each strip is centered on the formerly used line and is just wide enough to touch the
neighboring strip. Then the measurements suggested by Fig. 2 would completely cover the
area shown. The value of f at each point would contribute to one and only one strip
integral from each direction. It should not be surprising that in such a limited
measurement geometry, a significant null space still exists, even though the previous
argument falls down.
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Figure 2. The ray paths that correspond to
coarsely sampled projection measurements (2d
views, each containing 7 samples). If the
measurements truly consist of line integrals
along the lines shown, the regions that lie
between the lines do not contribute to the
available measurements and hence correspond
to the null space.

The presence of a null space is essentially a result of a many -to -one transformation,
which inherently cannot be inverted without ambiguities. A finite number of discrete
measurements of a function of continuous variables, as are used in digital image
processing, comprise an infinite -to -one transformation. Hence, the original function can
never be unambiguously recovered. Further, since all physical measurements are subject to
finite resolution, they always have a null space associated with them. Therefore, all
imaging systems have a null space corresponding to the lack of information at arbitrarily
high spatial frequencies. The existence of the null space associated with the
limited -data problem has been known for a long time.3,5 -15 However, its explicit effect in
practical reconstruction problems has not been well elucidated. A simple method of
generating the null -space part of an arbitrary object function corresponding to any CT
measurement geometry is presented in Ref. 1. The author has found the concepts of Hilbert
space and of the null space associated with measurements /transformations to be extremely
useful in approaching a variety of problems in image analysis. For example, the null
space accounts for the following: the renowned aliasing effect that accompanies discrete
sampling16; the artifacts attendant with the restoration of blurred images; the
limitations inherent in limited -angle tomographyl, and, in general, the infinity of
solutions to ill -posed problems.5

The measurements are blind to the null space; they provide no information about the
components of any original function f lying in the null space. That part of f not
contained in the null space can be determined from the measurements. The corresponding
subspace, which is orthogonal to the null space, is appropriately called the measurement
space. Since the measurement space is comprised of all functions that can be written as a
linear combination of the response functions, the expansion

f(x,y) = aihi(x,y) (2)
i

provides a means for constructing an estimate that is wholly contained in the measurement
space. This expansion is so instinctive that the response functions have been called
"natural pixels. "17 As an aside, the dimension of the measurement space can be found by
performing an eigenanalysis of the gramian matrix, the elements of which are the overlap
integrals between each pair of response functions. The number of nonzero eigenvalues
gives the dimensionality. This has been called the "number of degrees of freedom "18 of
the measurement geometry, and, in some sense, indicates the number of independent pieces
of information that the measurements possess. Of course, the distinction oetween a zero
eigenvalue and a very small one is only possible (and perhaps meaningful) in pure
mathematics. In applications where real, noisy data must be used, this distinction
fades. Thus the number of degrees of freedom may not be a precisely defined number in
practice. In fact, it is reasonable to soften the language of pure mathematics when
dealing with real problems and say, for example, that a particular subspace is "nearly"
complete, or that a matrix is "essentially" singular (non -singular, but with very small
singular values), etc.
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The ambiguities associated with the null space typically result in artifacts in
reconstructions. These artifacts depend upon how the null -space components of the
estimated function are handled.' In an attempt to make the inversion unique, which is a
predilection of mathematicians, it is common practice to require that out of the many
possible solutions, the particular one with minimum norm be chosen. iikis amounts to
demanding the null -space components of the solution have zero amplitude. The minimum -norm
criterion limits the reconstruction to have the form of the response- function expansion,
Eq. (2). As in the El Tovar example above, a better guess of the null -space components
can be made if there is prior knowledge available about the object under investigation.
The Bayesian approach, 1,4,19,20 which entails the use of such prior knowledge, can
sometimes reduce reconstruction artifacts when the prior knowledge is restrictive enough.
In such cases, the null -spaèe components of the reconstruction are replaced by a better
estimate than zero through the use of the prior information. The types of prior knowledge
that have been studied in conjunction with CT include non -negativity of f, Known region of
support of f, and structural information about object.1'4 Somewhat akin to the
minimum -norm condition in its action, the requirement of maximum entropy has been applied
to image inversion.21 -27 Maximum entropy also intrinsically imposes a nonnegativity
constraint on f, which may account for its improved performance over traditional
reconstruction methods.27 The maximum -entropy approach has been fervently espoused by
some1'27,29 as a fundamental principle. Others, while acknowledging the successful
results of maximum -entropy practitioners, have found difficulty accepting the fundamental
tenet that the value of the reconstruction at each location should be interpreted as a
probability.29 It is refreshing to hear one of the maximum entropists30 admit there is no
reason to prefer the maximum -entropy result over a host of other solutions; it is useful
because it works (produces visually pleasing results). Note that when nonlinear
constraints, such as nonnegativity or maximum entropy, are invoked, the concept of a
Hilbert space is strictly no longer applicable, since the definition of a Hilbert space
includes linearity. One must talk of the null set instead of the null space, etc.

The Observer

The human observer is the final link in the imaging chain. Because the objective of
image processing is to present the observer with a displayed image that will allow him to
draw maximal information about the object, it is important to understand some of the
characteristics of the human observer. Ignoring color and motion, some of the aspects of
the human eye -brain system worth considering are the following:

a) visual acuity (resolution)
b) threshold for detection of low- contrast signals
c) influence of display brightness
d) influence of surround brightness
e) Mach -band phenomenon and other illusions
f) tolerance for visual noise
g) ability to synthesize correlated patterns
h) ability to assess statistical reliability
i) ability to use prior information in interpretation

These observer characteristics range from the obvious to the more subtle. Those appearing
at the top of the list probably spring to everyone's mind. It is obviously essential that
the displayed image be large enough, have enough contrast and brightness, and be presented
in a suitably lit environment.31'32 The effect of random image noise on the ability of
human observers to detect simple, low- contrast signals against a constant background has
recently been studied extensively by Burgess et al.33,34 They find humans can "noise
average" nearly as well as a mathematically ideal observer. Furthermore, the human can do
well over a wide range of display contrasts.35 However, when visual noise becomes too
severe, observer performance suffers. Although little is known about the influence of the
Mach -band effect upon the interpretation of images, it may be non -negligible. It is worth
remembering that although seeing may be believing, it may not represent the truth.

The last three items listed above deal with the higher level processing that the human
brain can obviously perform. The radiologist is distinguished from the proverbial
"trained observer" by his ability to use prior knowledge. Through his training, the
radiologist has learned how to relate what he sees in radiographs to what he knows about
anatomy, together with other information about the patient, to reach a diagnosis. It
seems we are a long way from fully understanding these high -level capabilities of human
vision. However, they are fundamental to the successful use of the displayed image. The
effective coupling to these high -level functions has resulted in some of the biggest
achievements in image processing. Computed tomography provides a splendid example. Its
success critically hinges on the display of the reconstruction as a proper cross section
of human anatomy, which is so easy to interpret that a layman can often see what is wrong.
In contrast, the straightforward display of projection data would be impossible for any
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human to interpret except for the simplest of objects. See the later example (Fig. 3).
The human observer does not seem to be able to efficiently synthesize information over
widely spaced regions of an image or, even harder, over different images. The human also
cannot effectively deal with complex coded images such as those produced by coded
apertures. Although it may not be possible to understand the complex functioning of the
human observer in terms of formulae, it behooves the image processor to develop an
intuitive understanding of what humans can and cannot see in images. They must develop a
sense of the aesthetic in much the same way as artists must. They cannot judge their own
results without this understanding. Although some mention is made of the limitations of
human vision in the standard textbooks on image processing,16'36 -39 the importance of
meeting the needs of the human observer is not emphasized. Obviously, mathematics is more
fun. Perhaps the aesthetic aspects of useful images cannot be learned from a textbook,
but can only be assimilated through experience, in much the same way as the radiologist
needs years of residency to complete his education.

If it were possible to develop a complete mathematical model of human vision, it might
be feasible to "optimize" the display of processed images. Unfortunately, such a model
still eludes us. Many different kinds of models of human vision have been proposed.
Overington39 has used knowledge about the physiological structure of the eye to correctly
predict the contrast sensitivity curve for human observers. It does not seem as though
this kind of model can help us design display techniques, because the influence of image
noise is not included. Similarly, Cohen, et aí.31 developed an empirical model to explain
their contrast sensitivity measurements, including the effects of surround brightness.
Baxter et al.40 have proposed a visual model based in part upon the light adaptation of
retinal photoreceptors, which takes into account the surround brightness through occular
light scatter. The human contrast sensitivity has been incorporated by Hunt41 into a
constrained least- squares restoration technique. However, its sole effect is to provide
another means of regularizing the solution by attenuating the reconstruction at high
spatial frequencies, which, it is argued, humans cannot detect anyway. If the results
were visually pleasing, it would probably be more because of coincidence than because the
contrast sensitivity curve was employed. The effect of random image noise on observer
performance has been the subject of the studies by Burgess, et al.33'34 Human observers
were found to be able to perform the given detection tasks almost as well as the ideal
observer.42 This has led to the suggestion33'34143 that a variation of the ideal observer
may be used as a model for the human. While it seems likely that the human contains some
elements of the ideal Bayesian estimator that are operative under ideal display
conditions, a number of deficiencies in the human observer must be addressed. These
include the inability to detect minute contrast differences and the degradation incurred
when the surround brightness is much different than the display brightness. There is room
for more observer experimentation because only the simplest detection tasks have been
addressed so far. As the specified observer tasks become more complex, the use of
information at higher spatial frequencies is required to perform optimally. 44'45 This may
hinder the ability of the human to approach the mathematical ideal.

The Displayed Image

The display of the final image should be fashioned to efficiently couple to the
eye -brain system of the observer. It is necessary to overcome the mathematical dictum
that it is impossible to completely determine an unknown 2 -D function from discrete data.
In practice, the display of processed image data is usually made possible by limiting the
spatial resolution of the displayed image. This is consistent with the limited visual
resolution of the human eye. There is no need to display information at higher spatial
frequencies than the observer can see. In spite of the limitation in spatial resolution,
for a given set of available data there may still exist a null space and its associated
ambiguities. A unique solution may require a further restriction, such as that of minimum
norm, as discussed above. There are a number of ways in which the resolution of the
display can be limited. Perhaps the simplest is to display the image with a large, but
finite number of pixels, sufficient to provide the desired resolution. When the available
data have not been sampled with fine enough resolution to allow such an approach, it may
be desirable to interpolate between the available samples in order to display a
decent -sized image.46 Such interpolation of a coarsely sampled image does not increase the
number of degrees of freedom of the result.47 It simply offers a more pleasing display of
the available data. Alternatively, some reconstruction algorithms, based upon analytic
methods, such as filtered backprojection,48 allow the resolution to be adjusted by
selection of the cut -off frequency of a low -pass filter. Other algorithms naturally lead
to estimates of the final result that are continuous functions of the spatial
variables.17'49'50 The resolution of the final result can be chosen in many of these also.
We will discuss these in conjunction with the examples below.

A number of engineering aspects concerning the physical display system should be
considered. Whatever the display system, CRT or film, it is desirable to select the size
of the image and the number of pixels to make sure the display meets or exceeds the visual
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human to interpret except for the simplest of objects. See the later example (Fig. 3). 
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If it were possible to develop a complete mathematical model of human vision, it might 
be feasible to "optimize" the display of processed images. Unfortunately, such a model 
still eludes us. Many different kinds of models of human vision have been proposed. 
Overington 39 has used knowledge about the physiological structure of the eye to correctly 
predict the contrast sensitivity curve for human observers. It does not seem as though 
this kind of model can help us design display techniques, because the influence of image 
noise is not included. Similarly, Cohen, et al. 31 developed an empirical model to explain 
their contrast sensitivity measurements, including the effects of surround brightness. 
Baxter et al. 1* 0 have proposed a visual model based in part upon the light adaptation of 
retinal photoreceptors, which takes into account the surround brightness through occular 
light scatter. The human contrast sensitivity has been incorporated by Hunt 1* 1 into a 
constrained least-squares restoration technique. However, its sole effect is to provide 
another means of regularizing the solution by attenuating the reconstruction at high 
spatial frequencies, which, it is argued, humans cannot detect anyway. If the results 
were visually pleasing, it would probably be more because of coincidence than because the 
contrast sensitivity curve was employed. The effect of random image noise on observer 
performance has been the subject of the studies by Burgess, et al. 33 ' 34 Human observers 
were found to be able to perform the given detection tasks almost as well as the ideal 
observer. 1* 2 This has led to the suggestion 33 ' 31*' 1* 3 that a variation of the ideal observer 
may be used as a model for the human. While it seems likely that the human contains some 
elements of the ideal Bayesian estimator that are operative under ideal display 
conditions, a number of deficiencies in the human observer must be addressed. These 
include the inability to detect minute contrast differences and the degradation incurred 
when the surround brightness is much different than the display brightness. There is room 
for more observer experimentation because only the simplest detection tasks have been 
addressed so far. As the specified observer tasks become more complex, the use of 
information at higher spatial frequencies is required to perform optimally.****' 45 This may 
hinder the ability of the human to approach the mathematical ideal.

The Displayed Image

The display of the final image should be fashioned to efficiently couple to the 
eye-brain system of the observer. It is necessary to overcome the mathematical dictum 
that it is impossible to completely determine an unknown 2-D function from discrete data. 
In practice, the display of processed image data is usually made possible by limiting the 
spatial resolution of the displayed image. This is consistent with the limited visual 
resolution of the human eye. There is no need to display information at higher spatial 
frequencies than the observer can see. In spite of the limitation in spatial resolution, 
for a given set of available data there may still exist a null space and its associated 
ambiguities. A unique solution may require a further restriction, such as that of minimum 
norm, as discussed above. There are a number of ways in which the resolution of the 
display can be limited. Perhaps the simplest is to display the image with a large, but 
finite number of pixels, sufficient to provide the desired resolution. When the available 
data have not been sampled with fine enough resolution to allow such an approach, it may 
be desirable to interpolate between the available samples in order to display a 
decent-sized image.** 6 Such interpolation of a coarsely sampled image does not increase the 
number of degrees of freedom of the result. 1* 7 It simply offers a more pleasing display of 
the available data. Alternatively, some reconstruction algorithms, based upon analytic 
methods, such as filtered backprojection, ** 8 allow the resolution to be adjusted by 
selection of the cut-off frequency of a low-pass filter. Other algorithms naturally lead 
to estimates of the final result that are continuous functions of the spatial 
variables. 17 ' l* 9 ' 50 The resolution of the final result can be chosen in many of these also. 
We will discuss these in conjunction with the examples below.

A number of engineering aspects concerning the physical display system should be 
considered. Whatever the display system, CRT or film, it is desirable to select the size 
of the image and the number of pixels to make sure the display meets or exceeds the visual
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resolution of the observer. For medium -size CRT screens, the number of pixels needed is
in the neighborhood of 10002 to 20002. The display should not flicker, indicating an
advantage to noninterlaced over interlaced CTRs and rapid refresh rates (50 or 60 Hertz).
Although there seems to be a lack of concern in the medical- imaging community, or even a
preference to the contrary, it is reasonable to require that the raster lines abut one
another rather than allow interline gaps. This permits the display of a constant function
as a constant luminance field, instead of a picket fence. The display should not
introduce any graininess or noise itself. This has been a problem in scme film /CRT
hardcopy systems. The number of gray levels should be sufficient to present a visibly
continuous gray -scale. The author feels approximately 256 gray levels is the minimum
number required to avoid the contouring effect of too few levels. Also, one should be
wary of discontinuous gray -scales that can occur in switching to the next leading binary
bit of the video digital -to- analog converter (DAC). In most cases, it seems the use of
pseudo -color to display monochrome images can only hinder interpretation. However, color
may be useful in the production of eye- catching presentations (for nondiagnostic, but
equally important promotional use), the display of quantitative reconstruction values, or
the representation of additional degrees of freedom present in the data. In the following
examples, the gray -scale images were displayed on a Comtal Vision One /20 with 5122 pixels
and 256 gray levels. The hardcopies were obtained using a LogE /Dunn Instruments, Model
635 camera.

The remaining figures provide examples of some of the important factors in the display
of the final image. Figures 3a -f show various ways of displaying the same coarsely
sampled projection measurements of the original object, Fig. 3g. Typical computer graphic
displays, Fig. 3a and 3b, do not provide the eye with as much information atout the raw
projection data as a gray -scale display, Fig. 3c, in which one can even "see" evidence of
the trajectories of the small circles in the object. However, Fig. 3c is not easy to
interpret because compact features in the original object are smeared out along sinusoidal
paths. The tomographic reconstructions, Figs. 3d -f, of the original image from these
projection data provide an even better visual presentation of the object. Thus, a

rearrangement of the available data by means of the reconstruction procedure yields an
image that can be interpreted much more readily by the human observer. This demonstrates
one of the reasons for the huge success of CT as a medical diagnostic tool. As described
in Ref. 50, Fig. 3d is reconstructed using the iterative ART algorithm. The projections
of the reconstructed image are obtained by performing the 2 -D strip integral over the
image under the common assumption that it is composed of piecewise- constant, square
regions, called pixels. When the result is displayed in the same way as it is calculated,
as square pixels, the blocky appearance is very disconcerting to the eye. A common remedy
to this is the use of bilinear interpolation to display the same result, as shown in
Fig. 3e. This is somewhat more agreeable to the eye but still possesses visible artifacts
arising from the discontinuities in slope inherent in bilinear interpolation. In a more
unified approach to reconstruction, it is assumed that the final image is a linear
combination of basis functions.49,50 Such an expansion defines the reconstruction function
everywhere. The displayed image is precisely the same as the calculated reconstruction
because no interpolation is necessary. When basis functions based upon cubic B- splines
are used instead of square pixels, Fig. 3f results. This reconstruction does not possess
the undesirable display artifacts of the previous two and provides a reasonable visual
indication of which of the four large central objects are squares and which are circles.
This is expected to be a difficult discrimination task given the coarse sampling of the
projections, as it is known to rely heavily on information at high spatial
frequencies.44,45 Figure 3 demonstrates that the way in which the available data are
displayed can greatly influence the amount of information that can be extracted from them.
The reason for this has to do with how well each display mode interfaces to the high -level
processing of the human brain. CT reconstruction works well because it prcduces a display
with the same morphology as the object, which the eye is accustomed to interpreting.

The choice of the spacing and width of the basis functions used to represent the
reconstruction directly influence its spatial resolution. Figure 4 shows higher
resolution versions of Figure 3e when the measurements consist of line or strip integrals.
The improvement in resolution achieved by using a 128 x 128 basis -function grid instead of
a 32 x 32 grid permits the result to more closely approximate the measurement -space
solution discussed earlier. For the line -integral measurements, the measurement -space
solution ideally consists of a linear combination of lines, each with infinitesimal width.
Even the approximation to this minimum -norm solution, Fig. 4a, is not visually appealing.
The result for strip integrals, Fig. 4b, is better, mostly because the measurements at
each angle completely cover the reconstruction region. It would seem to follow that
measurements should be designed to achieve full coverage of the region to be

reconstructed. It is also concluded that it is best to limit the resolution of the
displayed image, as in Fig. 3f, to avoid the appearance of spatial frequencies at which
there can be no information in the data, because of the discrete sampling theorem in this
case. This is where the strictures of mathematics must be abandoned in favor of producing
an aesthetically pleasing image. In limiting the resolution, it is desirable to avoid the
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resolution of the observer. For medium-size CRT screens, the number of pixels needed is 
in the neighborhood of 1000 2 to 2000 2 . The display should not flicker, indicating an 
advantage to noninterlaced over interlaced CTRs and rapid refresh rates (50 or 60 Hertz). 
Although there seems to be a lack of concern in the medical-imaging community, or even a 
preference to the contrary, it is reasonable to require that the raster lines abut one 
another rather than allow interline gaps. This permits the display of a constant function 
as a constant luminance field, instead of a picket fence. The display should not 
introduce any graininess or noise itself. This has been a problem in seme film/CRT 
hardcopy systems. The number of gray levels should be sufficient to present a visibly 
continuous gray-scale. The author feels approximately 256 gray levels is the minimum 
number required to avoid the contouring effect of too few levels. Also, one should be 
wary of discontinuous gray-scales that can occur in switching to the next leading binary 
bit of the video digital-to-analog converter (DAC). In most cases, it seems the use of 
pseudo-color to display monochrome images can only hinder interpretation. However, color 
may be useful in the production of eye-catching presentations (for nondiacnostic, but 
equally important promotional use), the display of quantitative reconstruction values, or 
the representation of additional degrees of freedom present in the data. In the following 
examples, the gray-scale images were displayed on a Comtal Vision One/20 with 512 2 pixels 
and 256 gray levels. The hardcopies were obtained using a LogE/Dunn Instruments, Model 
635 camera.

The remaining figures provide examples of some of the important factors in the display 
of the final image. Figures 3a-f show various ways of displaying the same coarsely 
sampled projection measurements of the original object, Fig. 3g. Typical computer graphic 
displays, Fig. 3a and 3b, do not provide the eye with as much information about the raw 
projection data as a gray-scale display, Fig. 3c, in which one can even "see" evidence of 
the trajectories of the small circles in the object. However, Fig. 3c is not easy to 
interpret because compact features in the original object are smeared out along sinusoidal 
paths. The tomographic reconstructions, Figs. 3d-f, of the original image from these 
projection data provide an even better visual presentation of the object. Thus, a 
rearrangement of the available data by means of the reconstruction procedure yields an 
image that can be interpreted much more readily by the human observer. This demonstrates 
one of the reasons for the huge success of CT as a medical diagnostic tool. As described 
in Ref. 50, Fig. 3d is reconstructed using the iterative ART algorithm. The projections 
of the reconstructed image are obtained by performing the 2-D strip integral over the 
image under the common assumption that it is composed of piecewise-constant, square 
regions, called pixels. When the result is displayed in the same way as it is calculated, 
as square pixels, the blocky appearance is very disconcerting to the eye. A common remedy 
to this is the use of bilinear interpolation to display the same result, as shown in 
Fig. 3e. This is somewhat more agreeable to the eye but still possesses visible artifacts 
arising from the discontinuities in slope inherent in bilinear interpolation. In a more 
unified approach to reconstruction, it is assumed that the final image is a linear 
combination of basis functions. 49 ' 50 Such an expansion defines the reconstruction function 
everywhere. The displayed image is precisely the same as the calculated reconstruction 
because no interpolation is necessary. When basis functions based upon cubic B-splines 
are used instead of square pixels, Fig. 3f results. This reconstruction does not possess 
the undesirable display artifacts of the previous two and provides a reasonable visual 
indication of which of the four large central objects are squares and which are circles. 
This is expected to be a difficult discrimination task given the coarse sampling of the 
projections, as it is known to rely heavily on information at high spatial 
f requencies. 41+ ' ** 5 Figure 3 demonstrates that the way in which the available data are 
displayed can greatly influence the amount of information that can be extracted from them. 
The reason for this has to do with how well each display mode interfaces to the high-level 
processing of the human brain. CT reconstruction works well because it produces a display 
with the same morphology as the object, which the eye is accustomed to interpreting.

The choice of the spacing and width of the basis functions used to represent the 
reconstruction directly influence its spatial resolution. Figure 4 shows higher 
resolution versions of Figure 3e when the measurements consist of line or strip integrals. 
The improvement in resolution achieved by using a 128 x 128 basis-function grid instead of 
a 32 x 32 grid permits the result to more closely approximate the measurement-space 
solution discussed earlier. For the line-integral measurements, the measurement-space 
solution ideally consists of a linear combination of lines, each with infinitesimal width. 
Even the approximation to this minimum-norm solution, Fig. 4a, is not visually appealing. 
The result for strip integrals, Fig. 4b, is better, mostly because the measurements at 
each angle completely cover the reconstruction region. It would seem to follow that 
measurements should be designed to achieve full coverage of the region to be 
reconstructed. It is also concluded that it is best to limit the resolution of the 
displayed image, as in Fig. 3f, to avoid the appearance of spatial frequencies at which 
there can be no information in the data, because of the discrete sampling theorem in this 
case. This is where the strictures of mathematics must be abandoned in favor of producing 
an aesthetically pleasing image. In limiting the resolution, it is desirable to avoid the
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Figure 3. Examples of various methods of displaying coarsely sampled projection data (60

views, 32 samples /view), taken from Ref. 50, in order of improving visual usefulness:
a) contour plot of projection data, b) isometric projection (or 3 -D relief) of same,

c) continuous tone (gray -scale) display of same, d) 32 x 32 pixel reconstruction of

original scene from the data using square pixels, e) the same reconstruction displayed
using bilinear interpolation, f) 32 x 32 grid reconstruction from the same data using
B- spline basis functions, and g) image of original object. The usual graphical displays
a) and b) do not show the eye the rich structure contained in the projection data as well

as the continuous -tone rendition c) does. Note the disconcerting effects produced by
basis functions that either are discontinuous d) or have discontinuous derivatives e).

The reconstruction f) comes the closest to providing the eye with the necessary

information to ascertain whether the larger, central objects (four sample- spacings wide)

are circles or squares.
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Fiqure 3. Examples of various methods of displaying coarsely sampled projection data (60 
views, 32 samples/view), taken from Ref. 50, in order of improving visual usefulness: 
a) contour plot of projection data, b) isometric projection (or 3-D relief) of same, 
c) continuous tone (gray-scale) display of same, d) 32 x 32 pixel reconstruction of 
original scene from the data using square pixels, e) the same reconstruction displayed 
using bilinear interpolation, f) 32 x 32 grid reconstruction from the same data using 
B-spline basis functions, and g) image of original object. The usual graphical displays 
a) and b) do not show the eye the rich structure contained in the projection data as well 
as the continuous-tone rendition c) does. Note the disconcerting effects produced by 
basis functions that either are discontinuous d) or have discontinuous derivatives e). 
The reconstruction f) comes the closest to providing the eye with the necessary 
information to ascertain whether the larger, central objects (four sample-spacings wide) 
are circles or squares.
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Figure 4. Reconstructions from same data as in Figure 3 on a 128 x 128 grid using spline
basis functions under the assumption that the measurements are a) line integrals and b)
strip integrals. The use of the finer grid allows the reconstruction to approach themath-
ematical pure, measurement -space solution, which may not be visually appealing.

consequences of aliasing50, namely Moiré effects16 and ringing at edges, the Gibbs'
phenomenon.36

Figure 5 shows the improvement in displaying a blurred photograph that can be achieved
through image processing. The blur, which was produced by camera motion during the
exposure, renders the photographic image very difficult, even impossible tc read. Through
an enhancement of the recorded information at the appropriate spatial frequencies, the
reconstructed image is easily interpreted. This result is obtained using a linear version
of the maximum a posteriori probability (MAP) restoration technique19,51 in which the
blurred image is chosen for t, the ensemble average of f. The similar, well -known Wiener
filter would produce a comparable result. Image processing succeeds here because the
eye -brain system cannot accomplish the deblurring needed to interpret the information
present in the photograph. Incidentally, the recurring artifacts in Fig. 5b arise from
the periodic nature of the zeros in 'the modulation transfer function (MTF) of the blur
function and are a result of the null space associated with the blur. Figure 6 presents
another example in which a reodering of the available information facilitates better human
interpretation. In this case, the radiograph is known to be of an axially symmetric

NT!
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Figure 5. In a typical example of the cower of digital image processing, linearMAP resto-
ration of a photograph a) that is subjected to linear -motion blur, produces an eminently
readable result b).
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Figure 4. Reconstructions from same data as in Figure 3 on a 128 x 128 grid using spline 
basis functions under the assumption that the measurements are a) line intecrrals and b) 
strip integrals. The use of the finer grid allows the reconstruction to approach the math 
ematical pure, measurement-space solution, which may not be visually appealing.

consequences of aliasing 50 , namely Moire* effects 16 and ringing at edges, the Gibbs 1 
phenomenon. ^ 6

Figure 5 shows the improvement in displaying a blurred photograph that can be achieved 
through image processing. The blur, which was produced by camera motion during the 
exposure, renders the photographic image very difficult, even impossible tc read. Through 
an enhancement of the recorded information at the appropriate spatial freguencies, the 
reconstructed image is easily interpreted. This result is obtained using a linear version 
of the maximum a posteriori probability (MAP) restoration technique * 9 ' 51 in which the 
blurred image is chosen for F, the ensemble average of f. The similar, well-known Wiener 
filter would produce a comparable result. Image processing succeeds here because the 
eye-brain system cannot accomplish the deblurring needed to interpret the information 
present in the photograph. Incidentally, the recurring artifacts in Fig. 5b arise from 
the periodic nature of the zeros in *the modulation transfer function (MTF) of the blur 
function and are a result of the null space associated with the blur. Figure 6 presents 
another example in which a reodering of the available information facilitates better human 
interpretation. In this case, the radiograph is known to be of an axially symmetric
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ration of a photograph a) that is subjected to linear-motion blur, produces an eminently 
readable result b).
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Figure 6. The grooves machined into an axially symmetric object, although not all observ-
able in a) the original radiograph, become visible in b) its tomographic reconstruction
(Abel inversion). 2 After reconstruction, interpretation is limited by the noise in the
original radiograph, which indicates that the maximum amount of information contained in the
radiograph is being extracted.

object. Tomographic reconstruction under the assumption of this symmetryS2 (Abel
inversion) yields Fig. 6b. The inner -most grooves in the object cannot be seen in the
original radiograph. Their luminosity contrast in directly reading the radiograph is
roughly 3.0% on the end face and 1.5% on the inside cone. These grooves are fairly
visible in the reconstruction because their contrast is now substantial. Only the noise
in the displayed image might hinder their detection. Since this noise originates in the
original radiograph, this mode of display is truly approaching the goal of image
processing, which is the complete extraction of the information contained in the
measurements. These last two examples point out the need to conserve the information
inherent in the data through the entire image processing procedure. The early imaging
stages should be subjected to particular scrutiny for loss of information. Since the
objective of the processing is to overcome the limitations of the observer in viewing the
original data, it is unwise to judge the adequacy of the data or of the digitization of
input images, as with microdensitometers, on the basis of direct viewing of the
unprocessed data.

Image Quality

The term "image quality" is a treacherous one because it seems to mean different things
to different people. It is reasonable that image quality should be dependent upon the
specified visual task to be performed. What is a good image for one task may not be good
for a different task. This diminishes the usefulness of universal figures of merit, which
are so often proposed. While the simplicity of these measures of image quality is
appealing, they are an oversimplification. In an attempt to define useful and calculable
measures of image quality, it has often been assumed that the noise in the image is the
limiting factor in interpretation.42853 -56 Although this may be true of the ideal
observer, it is clearly not the case for human observers when the display is inadequate,
as illustrated in Figs. 3 -6. Nevertheless, such an approach has many redeeming values.
It is possible to characterize the information content of an image55,56 through the
straightforward measurement of the optical transfer function36 (OTF, similar to MTF, but
includes scaling of output relative to input) of the imaging system and the noise power
spectral density (NPS) in the image. This approach is general because the information
content of an image is given as a function of frequency (number of noise -equivalent quanta
NEQ(f)). Once the task is specified, it is possible to determine how accurately it can be
performed by integrating the NEQ spectrum with the appropriate weighting function.42,44
The usual and simple engineering definitions of rms noise and signal -to -noise ratio SNR,
are woefully inadequate. We learn that SNR is only meaningful when associated with a
given task. The SNR may be considered to be a function of spatial frequency. Then the
total SNR2 is just the integral of SNR2(f) over all frequencies. It follows that typical
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original radiograph, which indicates that the maximum amount of information contained in the 
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inversion) yields Fig. 6b. The inner-most grooves in the object cannot be seen in the 
original radiograph. Their luminosity contrast in directly reading the radiograph is 
roughly 3.0% on the end face and 1.5% on the inside cone. These grooves are fairly 
visible in the reconstruction because their contrast is now substantial. Only the noise 
in the displayed image might hinder their detection. Since this noise originates in the 
original radiograph, this mode of display is truly approaching the goal of image 
processing, which is the complete extraction of the information contained in the 
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objective of the processing is to overcome the limitations of the observer in viewing the 
original data, it is unwise to judge the adequacy of the data or of the digitization of 
input images, as with microdensitometers, on the basis of direct viewing of the 
unprocessed data.

Image Quality

The term "image quality" is a treacherous one because it seems to mean different things 
to different people. It is reasonable that image quality should be dependent upon the 
specified visual task to be performed. What is a good image for one task may not be good 
for a different task. This diminishes the usefulness of universal figures of merit, which 
are so often proposed. While the simplicity of these measures of image quality is 
appealing, they are an oversimplification. In an attempt to define useful and calculable 
measures of image quality, it has often been assumed that the noise in the image is the 
limiting factor in interpretation . *+ 2 ' 5 3 ~ 5 6 Although this may be true of the ideal 
observer, it is clearly not the case for human observers when the display is inadequate, 
as illustrated in Figs. 3-6. Nevertheless, such an approach has many redeeming values. 
It is possible to characterize the information content of an image 55 ' 56 through the 
straightforward measurement of the optical transfer function 36 (OTF, similar to MTF, but 
includes scaling of output relative to input) of the imaging system and the noise power 
spectral density (NFS) in the image. This approach is general because the information 
content of an image is given as a function of frequency (number of noise-equivalent quanta 
NEQ(f)). Once the task is specified, it is possible to determine how accurately it can be 
performed by integrating the NEQ spectrum with the appropriate weighting function. 42 '^ 
The usual and simple engineering definitions of rms noise and signal-to-noise ratio SNR, 
are woefully inadequate. We learn that SNR is only meaningful when associated with a 
given task. The SNR may be considered to be a function of spatial frequency. Then the 
total SNR2 is just the integral of SNR2 (f) over all frequencies. It follows that typical
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filtering operations can only decrease the SNR associated with a specific task because
they may discard image information (SNR). Note that because of its unpredictable nature,
noise cannot be reduced or eliminated, as is often stated, without affecting the desired
signal also. Another advantage of this approach is that the statistical efficiency of
transferring information through each step of the imaging chain may be determined. If the
statistical efficiency of all the intermediate stages is close to 100 %, as it is in CT
reconstruction57, the image quality can be calculated at the measurement stage. This can
make the calculation much easier.58 In this way image quality can be related fundamentally
to the initial measurements.

There is obviously a close connection between image quality, defined in terms of task
performance, and the model for the human observer. As such a model emerges, it will
become clearer how to properly assess image quality. It will be difficult, but necessary,
to quantify the more complex, high -level capabilities of the human observer. Only then
will we be able to "understand" why the CT reconstruction in Fig. 3f has better image
quality for human interpretation than the display of the projection data, Fig. 3c, even
though both contain the same information.

Discussion

We have pursued the consequences of the tenet that the aim of image processing is to
help' the human observer visually interpret image data. Of prime importance is the final
displayed image, as that is what the observer looks at. Mathematics plays a fundamental
role in guiding image processing, but at times one must transcend mathematics in order to
obtain a result. Attention must be paid to the engineering and aesthetic aspects of the
display. Without a comprehensive model of the human observer, the selection of the
preferred display mode is based more on artistic than scientific grounds. After all the
technology, the "eye" is the judge.

In this paper, we have restricted ourselves mainly to image processing. Of course,
what has been said about image processing is applicable to imaging as a whole. In fact,
it is best to approach any imaging task in a systematic way instead of a piece at a time,
as is done so often. Image processing cannot overcome a deficit of information in the
measurements. Thus, the requirements of the final image should guide the design of the
measurement schema, as it should each step of the imaging chain. An important aspect of a
systems approach to diagnosis is the selection of the kind of measurements to take. The
radiologist should obviously choose the imaging modality, or combination of modalities,59
that are most relevant to answering the questions at hand.
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