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Abstract

When the available CT projection data are incomplete, there exists a null space in the
space of possible reconstructions about which the data provide no information. Determin-
istic CT reconstructions are impotent in regard to this null space. Furthermore, it is
shown that consistency conditions based on projection moments do not provide the missing
projections. When the projection data consist of a set of parallel projections that do not
encompass a complete 180° rotation, the null space corresponds to a missing sector in the
Fourier transform of the original 2 -D function. The long -range streak artifacts created by
the missing sector can be reduced by attenuating the Fourier transform of the reconstruction
smoothly to zero at the sector boundary. It is shown that the Fourier transform of a re-
construction obtained under a maximum entropy constraint is nearly zero in the missing
sector. Hence, maximum entropy does not overcome the basic lack of information. It is sug-
gested that some portion of the null space might be filled in by use of a priori knowledge
of the type of image expected.

Introduction

The problem of CT reconstruction from a limited number of projections that do not en-
compass a complete 180° rotation continues to be an important one. There are a number of
applications in which only limited angular data are available. Examples in 2 -D include
gated heart studies' and suitcases travelling on conveyor belts.2 In 3 -D, limited data
arise in seven pinhole cameral and rotating slant -hole collimator`' studies in nuclear medi-
cine. Practicality or expense is usually the principal reason for having a limited number
of projections. Contrary to what several authors have stated, a reduced number of projec-
tions does not necessarily reduce patient dose since the detectability of lesions is re-
lated to the total number of detected quanta and hence the dose.5

In this paper we will first consider the limitations imposed upon deterministic recon-
struction algorithms by an incomplete angular range of projection measurements. The nature
of the types of artifacts produced by missing projections will be demonstrated and a method
for reducing their influence presented. The usefulness of consistency conditions and other
constraints in supplying missing projections will be discussed. A maximum entropy recon-
struction will be shown to suffer from the expected limitations. The use of a priori know-
ledge about the type of reconstruction expected will be considered in closing.

Properties of deterministic solutions

We consider real, two- dimensional functions of limited spatial extent f(x,y). The i'th
projection of this function is defined as

pi = cf hi(x,y)f(x,y)dxdy (1)

where h. is a nonnegative response function that defines how much the value of f at each
point contributes to the i'th projection. Typically hi has large values in a narrow strip
that crosses the support of f with small or zero values outside the strip. The index i
ranges over all of the projection measurements available. Typically the measurements are
assumed to be ordered so that if there are N measurements made for each view and M views,
the first view corresponds to i = 1,2,...N, the second view to i = N +1,...,2N, etc. It is
important to realize that out of the space of all acceptable functions f(x,y), the finite
set of response functions hi can only span a subspace called the measurement space M. There
will in general be a sub -space orthogonal to M called the null space N such that if f° be-
longs to N,

fj hi(x,y)f °(x,y)dxdy = 0 (2)

for all i. It is clear that if a solution f is found that satisfies the measurements, Eq. 1,
any function f° from the null space may be added to it and still satisfy the measurements.
The measurements provide no information in regard to how to specify any of the functions
belonging to N. In other words, the solution f is ambiguous with respect to the null space.
Ghosts that can appear from the null space of a finite set of projection measurements have
been studied by Louis.6
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Because the h. span the measurement space, it is always possible to represent a
deterministic soluion to Eq. 1 as

f(x,y) = 22 aihi(x,y) (3)
i

This is the same form introduced by Buonocore, Brody and Macovski7 for the purpose of fa-
cilitating faster reconstruction algorithms.8 It is important to realize that solutions
of the form of Eq. 3 do not admit any contribution from the null space. It is noted that
Eq. 3 amounts to the backprojection process applied to ai coefficients. Thus the filtered -
backprojection9 and ART10 algorithms result in reconstruction of this form.

where

Substitution of Eq. 3 into Eq. 1 yields

pi = gijai

gij = It hi(x,y)hj(x.y)dxdy ,

(4)

(5)

is called the gramian of the response functions. Equation 4 may be written in matrix nota-
tion as

P = GA (6)

and the solution for the ai's and hence f via Eq. 3 is

A = G-1P (7)

provided the gramian is nonsingular. This is the same as the fast minimum variance esti-
mator presented by Buonocore et al.8

It is interesting to consider the eigenvectors of the gramian G. This leads to an ex-
pansion for f in terms of orthogonal functions that are linear combinations of the h..'I1l2
Because G is positive- definite and symmetric, its eigenvalues are real and nonnegative. It
is easily shown that in the presence of noisy measurements, the coefficients in the expan-
sion become more difficult to determine as the corresponding eigenvalues decrease. The
condition number of G, defined as the ratio of the maximum eigenvalue to the minimum eigen-
value, indicates the degree to which the solution is ill- conditioned. When the condition
number becomes very large or infinite (G singular), solution may be had by adapting a con-
strained least- squares approachllor through the use of the pseudoinverse. The eigenvalue
map, where the gramian eigenvalues are ordered according to decreasing value, can provide
an estimate of the number of independent degrees of freedom contained in the measurements
(Eq. 1). In the case of a small number of widely- spaced projections, the number of degrees
of freedom will not be much smaller than the number of measurements since the reconstruc-
tion is underdetermined.

Nature of artifacts in parallel projection geometry

A great simplification in the visualization of the CT problem occurs in the case of
parallel projections, that is, when the response functions hi associated with each view are
parallel strips. This simplification arises because of the projection -slice theorem13
which states that the 1 -D Fourier transform of a parallel projection of f(x,y) is equal to
the 2 -D Fourier transform of f along a spoke through the zero - frequency origin oriented
perpendicularly to the projection direction. We will ignore the slight deviations from
this idealization that arise from the finite width and length of the hi as well as from the
discrete nature of the measurements. Then we may think of each projection as a measurement
of the Fourier transform of f(x,y) along the corresponding spoke. The measurement space
corresponds to the ensemble of spokes in the 2 -D spatial frequency plane associated with
the finite number of views. The null space corresponds to the remaining sectors. When the
available measurements do not include a given range of angles, there will be a corre-
sponding "missing sector" in Fourier space for which there is no information.

Because deterministic reconstruction algorithms use only the measurement space as a
basis, e.g., Eq. 3, the resulting reconstructions essentially assume zero modulus for the
Fourier transform of f in the missing sectors. In general, the original function will not
have zero modulus there, so the reconstruction will possess artifacts because of the
missing sector.
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The type of artifacts to be expected may be demonstrated by way of a simple tech-
nique.'`` Figure 1 shows a phantom that was used by Inouye.15 This image was filtered
using a filter that is unity everywhere except in a 45° sector in which its value is zero,
Fig. 2a. The result, Fig. 3a, shows the artifacts that would result from a deterministic
reconstruction from a large number of parallel projections encompassing 135° rotation. Two
effects are observed; a blurring in the direction perpendicular to the missing projection
directions, and a fan -shaped streak artifact emanating from these blurred regions that cov-
ers the sector of missing projections. These artifacts have been observed many times be-
fore.8,14,15,16 The annoying sharp -edged nature of the streaks may be eliminated by modi-
fying the response of the filter so that it is smoothly tapered to zero at the missing
sector boundary, Fig. 3b. This apodization also causes a slight increase in the blur al-
ready present in Fig. 3a. In Fig. 3c it is seen that the artifacts are greatly reduced if
the proper low- frequency components are included in the missing sector.

Consistency and other constraints

We have seen that deterministic reconstructions from projection with limited angular
coverage leads to objectionable artifacts because of the lack of contribution from the null
space so as to reduce the artifacts in the reconstruction. We will consider a number of
possible approaches.

One seemingly powerful approach to filling in missing views is the use of consistency
required of the projections.17 Consistency is normally based on the moments of the projec-
tions, the n'th moment of the j'th projected defined for parallel projections as

M = X1.113.

iej

where Xi is the distance of the center of h} from the center of rotation and the sum is
over only i's corresponding to the j'th projection. It is easy to show that

n n
Mn ff(x,y) (x cose, + y sine,) dxdy 22 bmncosm-nejsinnej

m=0

(8)

(9)

where 6 is the angle of the j'th projection. This relation is an approximation only be-
cause of the finite width of the response functions hi and the discrete nature of the pro-
jections. Given a set of M projections covering a certain limited range of angles, it is
natural to consider obtaining the bran coefficients up to n = M -1. M -1 moments are deter-
mined for all angles and the projections at missing angles may be estimated. It has been
shown by Peres18 in an explicit example that this method does not recover structure that
would only be seen by missing views. Reconstructions based on the same approach by Louis19
also show the expected artifacts. The reason for these failures can be seen if the recon-
struction estimate f (Eq. 3) is substituted into Eq. 9. The same angular dependence for Mn
is obtained even though f does not contain any contribution from the null space . Thus, we3
see that if f satisfies the projection measurements, Eq. 1, the above procedure simply
provides_projections at other angles that are consistent with the measurement space solu-
tion. No new information concerning the null space is obtained.

Another approach to filling in the missing views is to exploit the analyticity of the
Fourier transform of f, F(u,v). This analyticity assures us that we may express F(u,v) as
an infinite power series in u and v. If this could be done in practice, it would be pos-
sible to determine F(u,v) throughout the u,v plane. Unfortunately, the series must be
terminated since only a finite number of measurements are available. Furthermore, the
measurements are always subject to noise, which experience has taught us is disastrous for
any interpolation or extrapolation scheme. Nonetheless, Inouye has attempted to interpo-
late the Fourier transforms of the projections of Fig. 1 taken over a limited angular range
to recover the missing views.15 His results for noiseless projection data are not very en-
couraging. However, he showed that reasonably accurate estimates of the missing Fourier
amplitudes could be obtained for low radial frequencies. Thus, it may be possible that if
the contributions at frequencies well within the missing sector are attenuated, as with the
filter in Fig. 2c, a reasonable result, similar to Fig. 3c, could be obtained.

Yet a third approach to obtaining a reasonable reconstruction in the face of missing
views is to place a global constraint on f. For example, if C(f) is some function of f, we
might require that f be chosen to minimize

IC(f)dxdy . (10)
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To do this we look for the minimum of the Lagrangian

./
C`f (x.Y))dxdy - 22 ai [pi - ./hi (x,Y)f(x.Y)dxdyJ

Setting the derivative of this with respect to xi to zero simply yields the measurement
equations, Eq. 1. More to the point, differentiation with respect to f leads to

C' (f) = 1: aihi (x.Y)
i

(12)

The importance of this is that it fixes the form of the reconstruction. The Xi are to be
determined so that the measurement equations are satisfied. One particular choice for C(f)
is the norm of f,1f12. It is immediately seen that Eq. 12 then becomes the same as Eq. 3.
The expansion of f in terms of the response functions is the minimum norm solution: No
contribution from the null space is forthcoming.

Many other reasonable choices for C(f) are possible. For example, because one of the
objectionable features of the artifacts in Fig. 3a are the streaks, it might be reasonable
to choose C(f) in such a way as to maximize the smoothness of the reconstruction. Thus
one might use the norm of the gradient of f,

Df

\ax)ay\2 + \)2 i

or the Laplacian,

a2f a2f
axe ay2

Another choice that leads to global smoothness is the entropy, C(f) = f lnf. From Eq. 12,
the maximum entropy solution has the form

ln f = 2] lihi -1 (13)
i

A maximum entropy reconstruction algorithm MENT based on this approach was derived by
Minerbo20 for the case where the hi are nonoverlapping strips. Then the reconstruction
takes the form of a product of factors, one factor for each projection measurement. This
follows from Eq. 13.

The MENT algorithm was used to obtain a reconstruction of the phantom shown in Fig. 1.
Twenty parallel projections of the phantom were taken with 9° spacing. Each projection
consisted of 101 samples across the width of the phantom. The reconstruction, Fig. 4, is
a reasonable approximation to the original image but with streak artifacts arising from the
sharp edges because of the limited number of views. Figure 5a shows the MENT reconstruc-
tion when only the first 15 views are used. The exclusion of the 45° range of angles re-
sults in artifacts similar to those in Fig. 3a. The modulus of the Fourier transform of
this image, Fig. 5b, shows that the MENT algorithm has little contribution in the missing
sector despite the fact that MENT is a nonlinear algorithm. However, the failure of MENT
to overcome the limitations of the measurement space is not surprising in light of Eq. 13,
which says that the logarithm of the MENT reconstruction is confined to the measurement
space.

Multiplicative ART (MART) is known to tend towards a maximum entropy solution.21 It
would presumably produce a reconstruction with deficiencies similar to those of MENT. MART
also suffers from errors produced by the "unnatural" square pixel representation in the ray
sum and multiplicative backprojection processes necessary for its implementation.20

A Priori Knowledge

Because the problem of reconstruction from a limited range of angles does not appear
to be solvable in terms of deterministic methods together with auxiliary constraints, we
are led to consider probabilistic methods. These are based on a priori knowledge of what
are the most probable distributions for f(x,y). For example, an informed observer would
probably judge Fig. 3a to be "wrong" on the basis of his past experience. Images just
don't look like that. Nevertheless, Fig. 3a is a bonafide image taken from the space of
all possible f(x,y). So rejection of this reconstruction might not be correct. We see
that a priori knowledge can be misleading.
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One type of a priori knowledge might be that the image is a collection of specific
shapes. For example, we might know that the image is a superposition of circular discs,
as Fig. 1. Then the reconstruction could be expanded in terms of those shapes and the vari-
able shape parameters and amplitudes determined from the projection measurements. Figure 1
could obviously be exactly reconstructed from two noiseless projections (since all the
circles are of different size). If the actual image does not conform to the assumed expan-
sion, however, severe artifacts will be generated. These artifacts would be reduced if a
correction based upon the residuals between the projections of the fitted distribution and
the actual measurements were applied. This correction reconstruction would clearly only
affect the measurement space contribution to the fitted distribution.

Another type of a priori knowledge might be that the reconstruction is a sample from a
well- defined ensemble of images. Reconstruction could then be based upon optimization of
an ensemble statistic, for example, maximum a posteriori probability.22 Alternatively, a
finite Karhunen -Loeve expansion 23 could be performed as the first step of the procedure out-
lined in the preceding paragraph. These approaches might work well in situations where the
images can be typified by a small number of parameters, e.g., seven pinhole images of the
heart,3 but would be difficult to apply to complex images, e.g., x -ray CT scans of the head.

A priori knowledge may exist about the permissible range of values for the function
f(x,y). The positivity constraint, f(x,y) >> 0 is well known, but its usefulness in medical
applications is doubtful. An interesting variation is when f(x,y) is known to have a given
region of support, i.e., f(x,y) = O outside of a given region. In such a case, it has been
shown that a modified Gerchberg -Papoulis algorithm can significantly reduce the artifacts
created by a limited range of viewing angles.16,23 -26 This technique definitely produces a
contribution from the null space and hence is worth pursuing. It has yet to be shown how
well the technique works in realistic situations where the measurements are subject to noise,
and the region of support is large. Furthermore, the artifacts created by the assumption
that f(x,y) is zero where it may actually not be, need to be explored
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Figures

Figure 1. The phantom used in these studies.
Taken from Inouye, this phantom has
been smoothed slightly to avoid
aliasing problems.
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Figures

F i gu r e 1. The phantom used in the s e st ud ie s. 
Taken from Inouye, this phantom has 
been smoothed slightly to avoid
a1i a s i ng prob1ems.

SPIE Vol. 347 Application of Optical Instrumentation in Medicine X (1982) / 171

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/27/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



Figure

(a) (b) (c)

2. Display of the 2 -D filters used to show the effect of CT reconstruction from
parallel projections over a 135° angular range. Black corresponds to a filter
value of unity; white to zero. In (a) the filter drops abruptly to zero at
the missing sector boundary, whereas in (b) it is tapered to zero over a 15°
wide sector. A small contribution in the missing sector at low frequencies is
included in (c).

Figure

(a) (b) (c)

3. The results of applying the filters in Fig. 2 to the phantom of Fig. 1.
Tapering the response at the sector boundary, (b), is seen to dramatically
reduce the long -range streak artifacts at the expense of a slight increase in
the blur in the direction perpendicular to the missing projections. The in-
clusion of low frequencies in the missing Fourier sector, (c), greatly im-
proves the result.
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Figure 2. Display of the 2-D filters used to show the effect of CT reconstruction from
parallel projections over a 135° angular range. Black corresponds to a filter 
value of unity; white to zero. In (a) the filter drops abruptly to zero at 
the missing sector boundary, whereas in (b) it is tapered to zero over a 15° 
wide sector. A small contribution in the missing sector at low frequencies is 
included in (c).

(a) (b) (c)

Figure 3. The results of applying the filters in Fig. 2 to the phantom of Fig. 1.
Tapering the response at the sector boundary, (b), is seen to dramatically
reduce the long-range streak artifacts at the expense, of a slight increase, in 
the blur in the direction perpendicular to the missing projections. The in­ 
clusion of low frequencies in the missing Fourier sector, (c) ,, greatly .im­ 
proves the result.
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Figure 4. Reconstruction of the phantom from 20 equally
spaced parallel projections covering 1800 using
a maximum entropy algorithm MENT.

(a) (b)

Figure 5. (a) Reconstruction of the phantom from 15 views
covering 135° using MENT. (b) The logarithm of
the modulus of the 2 -D Fourier transform
(4 decades) of (a) shows nearly zero response in
the missing sector.
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Figure 4. Reconstruction of the phantom from 20 equally
spaced parallel projections covering 180° using
a maximum entropy algorithm MENT.

(a) (b)

Figure 5. (a) Reconstruction of the phantom from 15 views 
covering 135° using MENT. (b) The logarithm of 
the modulus of the 2-D Fourier transform 
(4 decades) of (a) shows nearly zero response in 
the missing sector.
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