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Abstract

If the standard filtered backprojection algorithm with a filter of the form g(f) _
Iflh(f) is applied to noisy projections, all of which have a noise power spectral density
(NPSD), Spro`1(f), then the resulting computed tomographic (CT) reconstruction has a two di-
mensional NPSD of the form, 3(f) "- flIh(f)I 2S proj(f). For proper reconstruction, h(f)
must approach a non -zero constant as f + O. Provided S ro (f) is cons ant, i.e. white pro-
jection noise, the CT noise at low frequencies is supprbssbd by the If' factor. This low
frequency suppression results in a long range negative spatial correlation of the CT noise.
If white noise is spatially averaged over a circle of diameter d, then the variance in the
averaged values will behave as 02 ti d -2. For CT noise the variance drops faster than d -2.
Simple signal -to -noise ratio considerations suggest that the dependence of minimum detect-
able contrast upon the diameter of the circle to be detected could be significantly differ-
ent in the presence of CT noise than in that of white noise. Simulated reconstructions of
a suitable detectability pattern demonstrate these differences may not exist unless the
image is spatially smoothed before observation. It is pointed out that the pixel width
used in the image display should be from 1/3 to 1/2 the width of the point spread function
in order to avoid discrete binning problems.

Introduction

The multitude of commercial computed tomographie (CT) scanners which have recently been
introduced for use in diagnostic radiology has given rise to a need to compare these differ-
ent machines in terms of image quality and dose to the patient. It is therefore desirable
to arrive at a figure of merit for a CT image which gives a measure of the diagnostic effi-
cacy of that image. This figure of merit may well be dependent upon the specific visual
task being performed. It is clearly important that the capabilities and deficiencies of
the human observer as well as the interface between man and machine, namely the viewing
system, be taken into account in formulating the figure of merit. Since the CT reconstruc-
tion is the result of computer processing, it is possible to use this processing to alter
the characteristics of the displayed images. This image processing may improve or degrade
the figure of merit.

It has been pointed out by Riederer, Pelc and Chesler(1)that if projection data contain-
ing uncorrelated noise are used to perform a CT reconstruction, the noise in the recon-
structed image possesses unusual correlations not found in ordinary radiographs. It is the
purpose of this paper to explore the effects that these correlations in ideal CT noise have
upon the performance of a simple visual task, namely the detection of circles of varying
size and contrast. If actual CT scanners produce images with similar noise characteristics,
the results presented here may aid in the specification of a figure of merit for CT images
in conjunction with this specific visual task.

1. Noise Power Spectra CT Noise

The noise in an image may be characterized by its power spectral density S, or alterna-
tively by its autocorrelation function, which is the Fourier transform of S. A brief deri-
vation of the noise power spectral density of CT reconstructions obtained by the filtered
backprojection algorithm follows. We will use an approach and nomenclature similar to that
used by Riederer, Pelc and Chesler(1 . S is defined as the mean square amplitude of the
Fourier transform of the image per unit area,

S(fx,fy) = 11< Iffdxdy r(x,y) e-
2fri(xfx + yfy)I 2\

A /J`

where r(x,y) is the reconstruction image containing only noise and the brackets indicate
the ensemble average over all images obtained under identical conditions.

The work presented here was performed under funding by the U.S. Energy Research and
Development Administration.
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x y A \\JJ I

A
where r(x,y) is the reconstruction image containing only noise and the brackets indicate 
the ensemble average over all images obtained under identical conditions.

The work presented here was performed under funding by the U.S. Energy Research and 
Development Administration.
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DETECTABILITY IN THE PRESENCE OF COMPUTED TOMOGRAPHIC RECONSTRUCTION NOISE

It will be assumed that all projections have the same one dimensional noise power
spectrum Sp(fx), and that the projections themselves are statistically independent. For
projections containing band -limited white noise,

opt,

P

If! 5 fN
S (f)

o ,
Ifi > fN

where w is the bin width in the projection sampling, fN is the Nyquist frequency, fN =
(2w) -1, and ape is the variance in the projection measurements. The normalization is such
that the total power is

fN

opt =
J

df S (f)

-fN

The filter used in the reconstruction is of the form,

g(f) = Iflh(f).

(2)

(3)

For proper normalization of the reconstruction h(f) approaches unity as f nears zero. The
noise power spectrum of the filtered projection is

Sf(f) = If121h(f)12Sp(f). (4)

When a single filtered projection is backprojected across the image in, say, the y direc-
tion, the resulting image does not vary with y. This leads to a 6- function in f when
S(fx,fy), Eq. 1, is calculated for one projection. The fx dependence of S is thé same as
for the projection

S(1)(fx,fy) ifx121h(fx)12Sp(fx) S(fy) (1 projection). (5)

Figure la shows the contribution to the two dimensional noise power spectrum of one projec-
tion containing white noise for h(f) = 1. The 6-function is broadened due to the finite
width of the reconstruction region. S(1) is merely a parabola along the spoke containing
the fx axis.
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Figure lb

Noise power spectral density distributions in two dimensional frequency space; (a) for a
single input projection at 0° and (b) for a complete reconstruction from 300 projections.
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10

Ifl

where w is t h e ^ b i n width in the p r o J e c t i o n s amp ling, f jj is the Ny q ui s t frequency, f N =
(2w)~ , and Op 2 i s the var i anc e in the pro j e c t i o n me a s ur e ments. The no rma11z ati o n is such
that the total power is

df Sp (f) (2)

The filter used in the reconstruction is of the form,

g(f) = |f|h(f). (3)

For p r o p e r nor ma 1 i z at 1 on of the r e c on struct! on h ( f ) ap p r o a c he s unity as f ne ar s z e r o . 
no i s e p o we r s p e c t r urn o f t h e f i 1 1 e re d pro j e c t i on i s

The

s f (f) = |f[ h(f)| 2 sp (f).

When a single filtered projection is backprojected across the image in, say, the y direc­ 
tion, the resulting image does not vary with y. This leads to a 6-function in fv when 
S(fx ,fy), Eq. 1, i s c a1c u1at e d fo r one p roj ec 11o n. The fx dependence of S 1s the s ame a s 
for the projection

,f ' 2 Sp (fx ) 5(fy ) (1 projection). (5)

Figure la shows the contribution to the two dimensional noise power spectrum of one projec­ 
tion containing white noise for h(f) = 1. The 6-functlon is broadened due to the finite 
width of the reconstruction region. s(l) is merely a parabola along the spoke containing 
the f axis.

Figure la Figure Ib

Noise power spectral density distributions in two dirnei sional frequency space; (a) for a 
single input projection at 0° and (b) for a complete reconstruction from 300 projections.

SPIE Vol. 127 Optical Instrumentation in Medicine VI (1977) / 305

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/27/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



HANSON

Let us consider what happens when m projections taken at equally spaced angles are in-
cluded in the reconstruction. If the projections are statistically independent, it can be
seen from Eq. 1 that S for the full reconstruction is simply the sum of S 1 for all projec-
tions. Since S(1) for the projection taken at an angle O to the x -axis lies along a spoke
through f = 0 at an angle O to the fx -axis, S is the sum of m such spokes. The result for
S, with the proper normalization is

S(f) = fri(m)2Ifl21h(f)I2Sp(f)

= flh(f)1 2S(f) (6)

where f is the spoke density at the radial frequency f and m arises from the normalization
factor for the filtered backprojection algorithm.

In order to demonstrate that Equation 6 indeed gives the proper form, the noise power
spectrum was calculated for a simulated noisy reconstruction. The 256 x 256 image was re-
constructed from 300 projections, each containing 256 bins. The projection data consisted
of Gaussian distributed white noise. The pure ramp filter (h(f) = 1) was used in the re-
construction p o edure. S was estimated using the two dimensional extension of the method
given by Welch 2) One observes in Fig. lb that the resulting two dimensional noise power
spectrum starts at a low value at zero frequency (center of plane), gradually increases up
to the Nyquist frequency fN (edges of plane) and finally falls off to zero beyond fN. Fig-
ure 2 shows the average radial dependence of the estimate of S(f) for two reconstruction
filters. The dashed lines are the predictions based on Equation 6. The wiggles in the
power spectra arise from the finite amount of data included in the estimate. The power
estimate procedure involves averaging over portions of frequency space in order to reduce
these wiggles. As a consequence, the power spectra in the region near zero frequency are
filled in and the power spectra fall off before the Nyquist frequency.

The noise variance in the CT reconstruction may be found using Equation 6,

1.0

CO

c2 = ff dfxdfy S(fx,fy)

27 fN

= m f df df f21h(f)12S(f)

o o

I 1 1 I
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Figure 2

0.75 I.0

The dependence of the noise power spectral
density upon Ifl shown with the solid curves
for two choices of the projection filter
function g(f). The dashed lines show the
expected dependence given by Equation 6.
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The solid curves show the relationship be-
tween the r.m.s. noise in CT reconstruc-
tions and the area for square averaging re-
gions for two projection filter functions
g(f). The dashed curve indicates the ef-
fect of using a pyramidal averaging func-
tion for the ramp filter.
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If the projection noise is white, this becomes

where

0
2

a2 = p K2
mw2 noise

2 fN
2

Knoise 3 J
dff21h(f)I2

4f
N

It is assumed that the pixel width in the reconstruction is the same as the bin width in
the projection w. Knoise as defined by Equation 8 provides a convenient means of comparing
the noise propagation characteristics of different reconstruction algorithms. For the fil-
tered backprojection algorithm, Knoise depends solely on h(f). For h = 1, Knoise = _
0.907. For h = sinc2(fff ), Knoise 0.568'

N
2. Spatial AveraginK

The effect of spatial averaging on the reconstructed image may be readily included in
the foregoing formulism. Spatial averaging is essentially obtained by performing a convo-
lution of the image with the averaging function. Convolution in real space is equivalent
to filtering in frequency space, where the effective filter is the Fourier transform of the
convolution function. Since the power spectral density is altered by the square of the ap-
plied filter, the noise variance is given by

02
= ff dfxdfy S(fx,fy)IH(fx,fy)I2 (10)

where H is the effective filter applied to the reconstructed image. Maintaining the defini-
tion of Knoise, we have

CO

Knoise gf 3J J dfxdfy IfIIh(f)I2IH(fx, fy)I2
N

where the integration is over the circle bounded by the Nyquist frequency fN. Caution must
be exercised when computing H since the spatial averaging is done with a finite number of
pixel elements. Hence, H must be obtained by using the two dimensional discrete rather
than the continuous Fourier transform of the averaging function.

Figure 3 shows the effect of averaging over square regions on the r.m.s. noise for two
reconstruction filters. These curves were obtained by performing the averaging on the sti-
mulated 256 x 256 reconstructions described above, instead of using the foregoing formulism.
For circular averaging areas, very similar results are obtained. The data in Fig. 3 are
presented in such a way that white noise would produce a horizontal straight line on such a
plot. The slope of the two solid lines is approximately -0.30 for 7/TET greater than 4
pixels. From Equation 11 it can be seen that for h = 1, Knoi e ' (AREA)-3/2 if H fell off
somewhat faster than f2. Then the slope in Fig. 3 would be -1/2. The failure of the square
averaging to produce this slope arises from the weak falloff of the corresponding H. The
dashed line in Fig. 3 shows the effect of using a pyramidal weighting function. Its slope
above 5 pixels, -0.50, is as predicted since the corresponding H falls off faster than that
for square averaging. In the latter example, the area of averaging is defined as the ratio
of the variance of the unfiltered image to the variance of the filtered image for an image
containing only white noise.

Riederer, Pelc and Chesler(1) have already noted that for CT reconstructions the r.m.s.
noise is reduced faster when averaging is performed over square regions than when it is per-
formed over thin rectangular regions of the same area. From Fig. 3 we observe further that
the details of the weighting used in averaging over a square or circular region influence
the magnitude of the noise reduction.

It should be pointed out that the images displayed by commercial CT scanners may not have
precisely the same noise characteristics as described above. Indeed, Boyd, Korobkin and
Moss -(3) have shown that when the noise from two commercial scanners are averaged and dis-
played as is done in our Fig. 3, the results are somewhat different than presented here.
Aside from the choice of the filter used in the reconstruction algorithm, the noise present
in the measured projection data may not be white.
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noise 8f\T JJ x Y x Y
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3. The Detection Task

We wish to consider the effect that the unusual characteristics of CT noise might have
upon the simple visual task of detecting the presence of circular objects in a CT image.
The concept of signal -t99 oise ratio (SNR) has been applied to this type of visual detection
task by Rose, ,5)Schade`6) and others 7). The SNR for a circle of diameter d and contrast
C present in a displayed image may be written as

SNR = -g-

a
d

(12)

where ad is the r.m.s. deviation of the mean noise when averaged over a circular region of
diameter d. It has been found experimentally that under optimum viewing condition human
observers can detect squares in the presence of ite noise with 50% certainty at a constant
SNR value k over a large range of square sizes.( °) The value of k ranges from 2 to 5.c7)
For squares whose angular subtense at the eye becomes greater than about 8 mrad the SNR
threshold starts to increase with angular subtense. The required SNR also increases when
the angular subtense falls below )0he sampling aperture of the eye, which is about 1 mrad
under good lighting conditions.17)In the optimum operating region of the eye where the
detection threshold SNR is a constant, we see that for white noise,

CIVT
SNR = k =

a
(13)

where CT is the threshold contrast at which the circle of Area A can be detected with some
specific probability, and a2 is the noise variance per unit area (or pixel).

Figure 3 shows that for CT noise, ad,i is not a co stant, but, for large A, as A increas-
es this product decreases potentially as fast as A-1/4 or d -1/2. If the human observer can
detect the presence of circles at a constant SNR, as he can f white noise background, in
the presence of CT noise we would expect that the quantity CT A would gradually decrease
as A increases beyond 3 or 4 pixels. a

4. The Detectability Pattern

A detectability pattern has been developed which permits the testing of human observer
response over a wide dynamic range of object sizes with relatively few images. The result-
ing detectability pattern is shown in Fig. 4. In this pattern the diameter of the circles
increases by the factor 7Y from 1 pixel diameter in the bottom row to 11.3 pixels diameter
in the top row. For each column the product of the circle contrast times the circle dia-
meter remains constant. This product increases by the factor VT from one column to the
next. The spacing between each row and column is 20 pixels. All circles are centered on a
pixel. When white noise is superimposed upon this pattern, from Equation 13 it follows that
the SNR remains constant for each column except for binning problems. The advantage of this

pattern over the traditional Berger pattern(9)
is that the full range of circle diameters is
maintained at each SNR for white noise. This
pattern is also useful in demonstrating the
general dependence of detectability upon
circle diameter with a single image.
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Figure 4

The detectability pattern. The diameter of
the circles depicted start at one pixel width
in the bottom row and increase by a factor of

from one row to the next. In each column
the product of contrast times diameter remains
constant. In going from one column to the
next (to the left) this product decreases by
7.
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specific probability, and a 2 Is the noise variance per unit area (or pixel).

Figure 3 shows that for CT noise, o^/A" is not a constant, but, for large A, as A increas­ 
es this product decreases potentially as fast as A~l/^ or d~l' . If the human observer can 
detect the presence of circles at a constant SNR, as he can fan white noise background, In 
the presence of CT noise we would expect that the quantity C T /A would gradually decrease 
as /A Increases beyond 3 or 4 pixels. a

4. The Petectability Pattern

A detectablllty pattern has been developed which permits the testing of human observer 
response over a wide dynamic range of object sizes with relatively few images. The result­ 
ing detectablllty pattern Is shown in Fig. 4. In this pattern the diameter of the circles 
increases by the factor iT2 from 1 pixel diameter In the bottom row to 11.3 pixels diameter 
In the top row. For each column the product of the circle contrast times the circle dia­ 
meter remains constant. This product increases by the factor /2~ from one column to the 
next. The spacing between each row and column is 20 pixels. All circles are centered on a 
pixel. When white noise is superimposed upon this pattern, from Equation 13 it follows that 
the SNR remains constant for each column except for binning problems. The advantage of this

pattern over the traditional Berger pattern^) 
Is that the full range of circle diameters is 
maintained at each SNR for white noise. This 

ll pattern is also useful In demonstrating the 
Ij general dependence of detectablllty upon 
S circle diameter with a single Image.

Figure 4

The detectablllty pattern. The diameter of 
the circles depicted start at one pixel width 
in the bottom row and increase by a factor of 
/~2" from one row to the next. In each column 
the product of contrast times diameter remains 
constant. In going from one column to the 
next (to the left) this product decreases by
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DETECTABILITY IN THE PRESENCE OF COMPUTED TOMOGRAPHIC RECONSTRUCTION NOISE

5. Detectability Tests

Detectability tests were performed with the above described detectability pattern super-
imposed upon two types of noise, white and CT. In the white noise case, the pattern was
simply binned in the 256 x 256 pixel display, i.e. the density in each pixel was propor-
tional to the integral of the pattern over the area of that pixel. Thus, it is as if the
pattern were reproduced with very high spatial resolution but subject to binning within the
discrete pixel display. The white noise was generated by adding a Gaussian distributed
random number to each pixel. For the CT noise pictures, CT reconstructions were computed
from 300 projections taken of the detectability pattern to which white noise had been added.
Thus, in the CT pictures the resolution of the test pattern was degraded by the finite
sampling width of the projection and the reconstruction process. The pure ramp filter
(h = 1) was used in the reconstruction. In order to determine what effect spatial averaging
might have on detectability, the images were filtered using a Hanning filter of the form

H(f) =
2 (1 + cos 2rf ) f s

2N

0
f

, f > N
2

(14)

which is equal to 1/2 at fN /4 and is zero beyond fN /2. For the CT images this filtering was
incorporated in the projection filter h whereas for the white noise images it was applied
directly to the two dimensional image. The contrast of the filtered images was doubled
over that of the unfiltered images. All test pictures were transferred from computer to
35 mm film using a video display unit. The 35 mm film image was printed on glossy photo-
graphic paper to a 10 cm x 10 cm size. Figures 5 and 6 show the unfiltered and filtered
versions of the white and CT noise pictures used in these tests.

The human observers viewed the glossy prints from a distance of 30 to 40 cm under good
lighting conditions. The angular subtense of 1 pixel was between 1.0 and 1.3 mrad. Thus
the range of circle diameters 1 to 11.3 pixels, was mostly within the optimum operating re-
gion of the eye (Section 3), the largest circle being marginally larger than 8 mrad in sub -
tense. The observers viewed one row of circles of the same diameter at a time. A mask was
used to block out all but a strip of 25 pixels width. Numbers on the mask identified the
columns of the pattern. The observer was asked to identify the last column in which he was
"reasonably certain" he could see the circle. No attempt was made to correct for "false -
positive" responses. Thus the results given here have a slightly ill- defined absolute nor-
malization. However, they do provide a good relative measure of the threshold contrast be-
tween the various types of pictures used in the tests. It should be noted that) since the
position of the circle is known by the observer, the "problem of the search" is avoided
here.

In the present series of detectability tests each type of picture was produced with 3
different noise levels superimposed upon the same detectability pattern. The r.m.s. noise
levels were in the relationship 0.84:1:1.41. The noise patterns in the 3 images were var-
ied by selecting different portions of the random number generator in order to average over
random clumps of noise which might enhance or degrade a given circle. The reflective den-
sity in the background of the test pictures was maintained at about 0.4 density units. The
r.m.s. density per pixel for the middle noise level was 0.13 and 0.046 for the unfiltered
and filtered white noise pictures, respectively, and 0.19 and 0.040 for the unfiltered and
filtered CT noise pictures. The tests were performed with 6 observers. Each observer was
presented with 12 pictures (3 each of CT and white noise, both filtered and unfiltered).
Thus, the threshold contrast for each circle diameter for each type of picture was deter-
mined from 18 observations. The internal consistency among the observers was found to be
reasonably good: the r.m.s. deviation for the same circle diameter and same type of pic-
ture was 0.8 column numbers N, where N- -2.9 In CTT/T. If statistical averaging is perform-
ed, we might expect an error of uN = 0.8//-17 = 0.1y or an error in CT/Á of 6.8 %.

It will be noted that the r.m.s. noise in the unfiltered CT images was about 1.5 times
that in the unfiltered white noise image. There was some concern on the part of the author
that at the rather large levels of noise present in the images, the detection response of
the human observers might be non -linear. This would tend to bias the comparison between
the response to CT noise and that to white noise. However, when the average detection
thresholds for the high and low noise samples were compared, it was found that the ratio of
CT/T for these two samples was 1.63 per white noise and 1.61 for CT noise. The ratio of
t;=ie r.m.s. noise for these two samples was 1.68. Since CT/T scales with the r.m.s. noise
we conclude that the noise levels used here are within the linear response region of the eye.
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1\T 2H(f) =
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filtered CT noise pictures. The tests were performed with 6 observers. Each observer was 
presented with 12 pictures (3 each of CT and white noise, both filtered and unfiltered). 
Thus, the threshold contrast for each circle diameter for each type of picture was deter­ 
mined from 18 observations. The internal consistency among the observers was found to be 
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It will be noted that the r.m.s. noise in the unfiltered CT images was about 1.5 times 
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that at the rather large levels of noise present in the images, the detection response of 
the human observers might be non-linear. This would tend to bias the comparison between 
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Figure 5a

White noise superimposed upon the detecta-
bility pattern of Figure 4.

Figure 6a

HANSON

k:

Figure 5b

k

4

A CT reconstruction of the pattern shown in
Fig. 4 with white noise added to the projec-
tions. The rms noise in this figure is ap-
proximately the same as in Fig. 5a.
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Figure 6b

Filtered versions of Figures 5a and b using a Hanning filter whose half value is at 1/4 the
Nyquist frequency. The image contrast is increased by a factor of two.

6. Results

The results of the detectability tests described in the preceding section are summarized
in Fig. 7. The ordinate variable is (CT/T) /a, where CT is the threshold contrast, A is the
area of the circle ( pixel2) and a is the r.m.s. noise in the unfiltered images. The same a
is used for the filtered images to allow a comparison of the threshold contrasts between
the filtered and unfiltered images.

For unfiltered white noise the ordinate of Fig. 7 is the same as the SNR (Eq. 13) except
for problems caused by the discrete binning into pixels. For example, a circle of 2 pixels
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Figure 5a

White noise superimposed upon the detecta- 
bility pattern of Figure 4.

Figure 5b

A CT reconstruction of the pattern shown, in 
Fig. 4 with white noise added to the projec­ 
tions. The rms noise in this figure is ap­ 
proximately the same as in Fig. 5a.
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Figure 6a Figure 6b

Filtered versions of Figures 5a and b using a Hanning filter whose half value is at 1/4 the
Nyqulst frequency. The image contrast is increased by a factor of two.

6. Results

The results of the detectability tests described in the preceding section are summarized 
in Fig. 7- The ordinate variable is (CT/I)/a, where CT is the threshold contrast, A is the 
area of the circle (pixel^) and a is the r.m.s. noise In the unfiltered images. The same a 
is used for the filtered images to allow a comparison of the threshold contrasts between 
the filtered and unfiltered images.

For unfiltered white noise the ordinate of Fig. 7 is the same as the SNR (Eq. 13) except 
for problems caused by the discrete binning into pixels. For example, a circle of 2 pixels
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DETECTABILITY IN THE PRESENCE OF COMPUTED TOMOGRAPHIC RECONSTRUCTION NOISE

diameter centered on a pixel is spread out over 9 pixels in the display. The SNR depends
upon the number of pixels included in the averaging. The optimum SNR occurs in this case
for 5 pixels, the center pixels and the 4 nearest neighbors. For point plotted in Fig. 5,
(CT A) /o = 7.86, the optimum SNR is in fact 5.6. When the unfiltered white noise results
are expressed in terms of optimum SNR, it is found that the threshold SNR is constant at
5.5 to within 8% over the whole range of diameters. This is in agreement with earlier ex-
periments summarized in Section 3. This discussion points to the need to have enough pixels
within the area of the object to be detected to avoid discrete binning difficulties. Other-
wise , the random placement of the object on the sampling array could lead to large fluctua-
tions in the detection threshold. If the visual task involved the detection of small ob-
jects whose size was principally determined by the spatial resolution of the system, then it
would be desirable to have at least 2 to 3 pixels within the width of the spatial resolution
function.

The open circles in Fig. 7 show the effect on detectability when the white noise images
are filtered as described in Section 5. The threshold contrast increases dramatically for
the smaller circles since they are spread out over a larger area. The noise is reduced by
the filtering but not as much as the signal. The net result is that the SNR drops for a
given circle area which leads to a larger CT required for detection. For circles with dia-
meters greater than the FWHM of the resolution function, 4.7 pixels, the threshold contrast
is essentially the same as for the unfiltered images. Thus the eye apparently can perform
the spatial averaging of the white noise needed to detect these larger circles just as well
as the computer.

For unfiltered CT noise the ordinate of Fig. 7 is not the same as the SNR. First, the
method used to construct the CT images leads to a spatial resolution function which is
broader than one pixel. This gives rise to the increase in CT Á as the circle diameter de-
creases below 3 pixels, just as in the case of the filtered white noise. Second, ad A is
not a constant for CT noise but behaves as shown in Fig. 3. Figure 7 shows that (CT Á) /a
levels off above 3 pixels diameter at a value comparable to that for the white noise. How-
ever, the threshold SNR in this region varies from 6.9 at 4 pixels diameter to 10.0 at 11.3
pixels, well above that required in the presence of white noise.

When the CT images are filtered (open squares in Fig. 7) a dramatic improvement is ob-
tained for the detection of the larger circles. The average threshold contrast for 5.66
and 8 pixel diameters is decreased by a factor of 0.64. This is very close to the reduction
of the r.m.s. CT noise over that of white noise, namely 0.59. It would appear from these
data that the eye cannot perform the equivalent of algebraic averaging of CT noise as it can
for white noise. Rather, it seems to process the noise as if it were white without taking
advantage of the long -range negative correlations present in CT noise. When the averaging
is done by the computer, the eye does much better in the detection of large circles. It is
interesting to note that filtering the CT images increases detection capability even for the
smaller diameter circles down to 2 pixels diameter, in contrast to what happens when white
noise images are filtered. This is probably a result of the increased reduction in the
r.m.s. noise for CT noise over that for white noise.

The results of the present study provoke a series of questions which can only be answered
through further investigation. What would be the effect of using filters which cut off at

different frequencies? Would the detection

20 threshold for large circles be improved by
s I filtering when the observers are radiologists

150 "4D - with experience in reading CT images? If the\ eye is used to perform the spatial averaging,\ either by viewing the image from afar or
O through a minification lens, can it do as wellN

8- Np - as computer averaging in the improvement of
7- \ o - the detection threshold? Does the noise
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Figure 7

Summary of the observer detectability tests
carried out using figures such as Fig. 5 and 6.
CT is the contrast of the circles at the
threshold of detectability. A is the circle
area and a is the r.m.s. noise in the unfil-
tered images. It should be noted that the
behavior of the unfiltered curves for dia-
meters less than 3 pixels is strongly influ-
enced by the detailed method of image forma-
tion as discussed in the text.
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diameter centered on a pixel is spread out over 9 pixels in the display. The SNR depends 
upon the number of pixels included in the averaging. The optimum SNR occurs in this case 
for 5_ pixels, the center pixels and the 4 nearest neighbors. For point plotted in Fig. 5* 
(CT/A)/a = 7.86, the optimum SNR is in fact 5.6. When the unfiltered white noise results 
are expressed in terms of optimum SNR, it is found that the threshold SNR is constant at 
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wise , the random placement of the object on the sampling array could lead to large fluctua­ 
tions in the detection threshold. If the visual task involved the detection of small ob­ 
jects whose size was principally determined by the spatial resolution of the system, then it 
would be desirable to have at least 2 to 3 pixels within the width of the spatial resolution 
function.

The open circles in Fig. 7 show the effect on detectability when the white noise images 
are filtered as described in Section 5. The threshold contrast increases dramatically for 
the smaller circles since they are spread out over a larger area. The noise is reduced by 
the filtering but not as much as the signal. The net result is that the SNR drops for a 
given circle area which leads to a larger CT required for detection. For circles with dia­ 
meters greater than the FWHM of the resolution function, 4.7 pixels, the threshold contrast 
is essentially the same as for the unfiltered images. Thus the eye apparently can perform 
the spatial averaging of the white noise needed to detect these larger circles just as well 
as the computer.

For unfiltered CT noise the ordinate of Fig. 7 is not the same as the SNR. First, the 
method used to construct the CT images leads to a spatial resolution function which is 
broader than one pixel. This gives rise to the increase in Crp/A as the circle diameter de­ 
creases below 3 pixels, just as in the case of the filtered white noise. Second, a^/A is 
not a constant for CT noise but behaves as shown in Fig. 3. Figure 7 shows that (Cm/A)/a 
levels off above 3 pixels diameter at a value comparable to that for the white noise. How­ 
ever, the threshold SNR in this region varies from 6.9 at 4 pixels diameter to 10.0 at 11.3 
pixels, well above that required in the presence of white noise.

When the CT images are filtered (open squares in Fig. 7) a dramatic improvement is ob­ 
tained for the detection of the larger circles. The average threshold contrast for 5.66 
and 8 pixel diameters is decreased by a factor of 0.64. This is very close to the reduction 
of the r.m.s. CT noise over that of white noise, namely 0.59- It would appear from these 
data that the eye cannot perform the equivalent of algebraic averaging of CT noise as it can 
for white noise. Rather, it seems to process the noise as if it were white without taking 
advantage of the long-range negative correlations present in CT noise. When the averaging 
is done by the computer, the eye does much better in the detection of large circles. It is 
interesting to note that filtering the CT images Increases detection capability even for the 
smaller diameter circles down to 2 pixels diameter, in contrast to what happens when white 
noise images are filtered. This is probably a result of the increased reduction in the 
r.m.s. noise for CT noise over that for white noise.

The results of the present study provoke a series of questions which can only be answered 
through further investigation. What would be the effect of using filters which cut off at
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present in commercial CT scanner images possess characteristics similar to those presented
here for "ideal" CT noise?

7. Summary

The noise power spectrum of CT reconstruction noise has been derived. From this spec-
trum, the effect on the r.m.s. noise of spatial averaging or, equivalently, a CT image
filtering is readily determined. The results of observer tests involving the detection of
various sized circles indicates that spatial averaging substantially improves the detecta-
bility of large circles in the presence of CT noise. The implication is that the observer's
eye cannot take into account the long -range negative correlations that exist in ideal CT
noise. Further, in order to avoid large statistical fluctuations in the threshold contrast
arising from the discrete binning of images into pixels, it is necessary to have at least
2 to 3 pixels within the width of the desired object (including spatial resolution).
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