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Abstract. A standard approach to solving inversion problems that involve many pa-
rameters uses gradient-based optimization to find the parameters that best match the
data. We will discuss enabling techniques that facilitate application of this approach
to large-scale computational simulations, which are the only way to investigate many
complex physical phenomena. Such simulations may not seem to lend themselves to
calculation of the gradient with respect to numerous parameters. However, adjoint dif-
ferentiation allows one to efficiently compute the gradient of an objective function with
respect to all the variables of a simulation. When combined with advanced gradient-based
optimization algorithms, adjoint differentiation permits one to solve very large problems
of optimization or parameter estimation. These techniques will be illustrated through
the simulation of the time-dependent diffusion of infrared light through tissue, which has
been used to perform optical tomography. The techniques discussed have a wide range
of applicability to modeling including the optimization of models to achieve a desired
design goal.
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1. INTRODUCTION TO THE GENERAL PROBLEM

Frequently a physical situation can only be described fully by a computational
model. We wish to address the general problem of finding the values of the pa-
rameters in such a model that best match a given set of data. This problem in
often referred to as that of inversion. In data matching the objective function to be
minimized is often the negative logarithm of the likelihood of the data given their
predicted values, which yields the maximum likelihood (ML) solution. Alterna-
tive approaches include regularized versions of maximum likelihood and Bayesian
methods, in which the objective function is the minus-log-posterior, yielding the
maximum a posteriori (MAP) estimate.

We confine ourselves to objective functions that depend on the parameters in
a continuous and differentiable fashion. We do not necessarily avoid problems for
which the objective function possesses multiple minima. However, because the
techniques that we present make use of gradients in the optimization process, they
will work effectively only when one can easily find the basin of attraction for the
global minimum, for example, by multiscale or multiresolution optimization.
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Figure 1: Data flow diagram showing a sequence of transformations, represented
by the boxes A, B, and C connected by the arrows pointing to the right, starting
with the data structure x and ending with the scalar ϕ. The data flow for the
adjoint derivatives is indicated by the arrows pointed left.

The proposed method for solving the inverse problem is applicable to a wide
variety of problems in which the measurements for the process in question are
adequately described by a predictive forward computational model. We demon-
strate the method in the context of time-dependent diffusion. We demonstrate
the feasibility of reconstructing the diffusion constants within a region from time-
dependent light intensities measured for infrared light that diffuses through the
region [1]. Adjoint differentiation is already being used in ocean modeling [2, 3].
We believe it may be useful in dealing with a host of other advanced modeling
situations, including geophysical interpretation of seismic data and modeling of
the atmosphere, fluid flow, and shock-wave phenomena. It should be applicable
to optimization of engineering designs in complex situations, such as streamlining
of airplane foils and automobile bodies to reduce drag.

A number of other enabling techniques will be mentioned, including multi-
scale analysis to constrain and accelerate the optimization process, deformable
geometric models for describing the boundaries of objects, and the Markov Chain
Monte Carlo method of sampling the uncertainty distribution of the estimated
parameters.

2. ADJOINT DIFFERENTIATION

We wish to address problems that require minimizing a scalar function ϕ by varying
the many (103 to 106 or more) variables that comprise the parameters of the
object model. This optimization problem would be intractable without knowing
the gradient of ϕ, or sensitivities, with respect to the parameters on which it
depends. There exists a technique to calculate these crucial sensitivities, called
adjoint differentiation [4], that is apparently relatively unappreciated. Using the
adjoint differentiation technique, the calculation of all these derivatives can be
done in a computational time comparable to the forward calculation.

Suppose that a calculation proceeds as a sequence of transformations as shown
in Fig. 1. The independent variables in the data structures designated by the
vector x are transformed in block A to produce the dependent variables y. These
are transformed in blocks B and C to produce the dependent data structure z and
the final scalar ϕ, respectively.
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We call the sequence of transformations

x A→ y B→ z C→ ϕ ,

the forward calculation. We assume that the transformations are general, with
the only restriction being that they are differentiable. Each transformation is self-
contained; it requires only its input variables to calculate its output variables, e.g.,
module B uses only its input y to calculate its output z. Therefore, each trans-
formation should require nothing more than its input to implement the derivative
of its output variables with respect to its input variables. The data structures are
likewise general.

The derivatives of ϕ with respect to the ith component of x are obtained using
the chain rule,

∂ϕ

∂xi
=

∑
jk

∂ϕ

∂zk

∂zk

∂yj

∂yj

∂xi
. (1)

Even if the transformations are nonlinear, this expression amounts to a product
of matrices. The order of the summations can obviously be done in two different
ways. If the sum over j is done before the sum over k, the calculation proceeds
in the same direction as the forward model calculation. As the dimensions of x,
y, and z are assumed to be large, this sequence results in very large intermediate
matrices, which we would like to avoid.

On the other hand, if the sum on k is done before that on j, the sequence of
calculations is

I C′T
−→ ∂ϕ

∂z

T
B′T
−→ ∂ϕ

∂y

T
A′T
−→ ∂ϕ

∂x

T

,

where, for example, B′T effectively multiplies ∂ϕ
∂z by the transpose of the matrix

∂z
∂y . The symbol I at the beginning of the sequence represents the identity struc-
ture, indicating that the sensitivity calculation begins with the transpose of the
derivative of transformation C, that is, C′T. This sequence implies intermediate
data structures (e.g., ∂ϕ

∂y ) that mimic the normal data structures (e.g., y) im-
plying storage requirements identical to the forward calculation. If the forward
transformations are nonlinear, the forward data may be required for the adjoint
calculation. The backward flow of the adjoint derivatives is depicted in Fig. 1.

The significant conclusion is that with adjoint differentiation the derivatives of
a scalar quantity, ϕ in the above example, with respect to all the variables in the
model can be computed in a time comparable to the forward calculation.

We have coined the acronym Adjoint Differentiation In Code Technique (ADICT)
[5] to describe a particular approach to adjoint differentiation. The distinctive fea-
ture of ADICT is that a separate computer code is used to compute the adjoint
derivatives and that code is based on the simulation code with the explicit intent
to “differentiate” the forward calculation or numerical algorithm. For optimiza-
tion of a functional based on computation, it is desirable to have the gradient of
the computation, not of the physics equations that the computation is supposed to
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approximate [6, 7]. The ADICT principle can produce more accurate derivatives
[8].

For the Bayes Inference Engine (BIE) [5], we manually coded the adjoint code
for each transformation based on its forward code, or the specific algorithm it
employs. This task can sometimes be daunting, but one that can be learned.
For example, such manual coding was employed to obtain the adjoint differen-
tiation of a transformation from a surface, described in terms of triangles, to a
3D voxelated grid, which involves some fairly complex calculations [9]. In some
cases, it may be helpful to make use of known derivatives of functions of matrices
[10]. Object-oriented design and programming is tremendously advantageous for
linking calculations together to form a data-flow diagram made of autonomous
transformations, as in the BIE.

There are several compilers of FORTRAN code that “automatically” produce
differentiation code, including the well-known ADIFOR [11] and GRESS [12].
These compilers are based on computing the derivatives of the result of each line
of the simulation code during the forward calculation. In ADIFOR these deriva-
tives are propagated along with the forward calculation, which limits the number
of parameters for which it can compute derivatives in large problems. On the
other hand, GRESS stores these line-by-line derivatives for a subsequent adjoint
calculation, which makes it more useful for computing derivatives with respect to
all the parameters. However, this approach imposes heavy memory requirements
that make it unsuitable for lengthy simulations.

More promising for application to large simulation codes is a code-based ap-
proach created by Ralf Giering [13]. His compiler, dubbed TAMC for Tangent-
linear and Adjoint Model Compiler, effectively implements the underlying concepts
of ADICT to convert an input FORTRAN code into an enhanced forward code
and adjoint code. These codes are to be run consecutively to obtain the result of
the forward calculation and the derivatives with respect to the desired variables.
Its significant difference from GRESS is that the adjoint code effectively reverses
the forward calculations accumulating the derivatives as it goes, instead of calcu-
lating and storing the same derivatives during the forward calculation, as GRESS
does. This approach allows TAMC to avoid storing a vast number of derivatives
and thus opens up the possibility of handling really huge problems. Another issue
that TAMC handles is the storage of the state of the forward calculation, which is
typically needed for the adjoint derivative calculation. To keep these storage re-
quirements from becoming overwhelming, TAMC allows one to insert check points
in the forward calculation at which the state of calculation is stored. Then, during
the adjoint calculation, the forward simulation is automatically redone to reestab-
lish the intervening parameters that were not stored.

TAMC has successfully been used to generate adjoint differentiation code for
models that simulate ocean dynamics [2, 3], which is a really large problem! We
have also had success applying TAMC to 1D hydrodynamics codes [8].



INVERSION BASED ON SIMULATIONS 5

3. OPTIMIZATION

The ML or MAP solution is found by minimizing a scalar functional ϕ with re-
spect to all the model parameters. Given the possibly large number of parameters,
it is imperative to use the derivatives of ϕ with respect to all parameters. For-
tunately, there is a technique to efficiently calculate these gradients as described
in the previous section. The best-known approaches to gradient-based optimiza-
tion of functions of many parameters are steepest descent and conjugate gradient.
Another set of techniques that make use of the gradient are referred to as quasi-
Newton methods. The general idea is to build up an approximate expression for
the Hessian (the second-derivative matrix of ϕ with respect to all the variables),
or the inverse Hessian. Davidon pioneered the quasi-Newton movement with what
he called the variable metric method [14]. We have had good success using the
Davidon algorithm, although at times the conjugate-gradient algorithm converges
better.

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm was an outgrowth
of the Davidon algorithm, which had become known as DFP (Davidon-Fletcher-
Powell). The BFGS algorithm has the advantage over the DFP in that it does
not require accurate line minimizations along the quasi-Newton directions to build
up the approximate Hessian [15]. Thus, BFGS potentially reduces the number of
function evaluations required to complete an optimization procedure. In the kth
iteration of the optimization procedure, the change in the parameter vector from
its present value xk is based on the gradient gk = ∂ϕ

∂x |xk
and the present estimate of

the inverse Hessian1 Ck. The position of the minimum is estimated by the Newton
formula: x∗ = xk −αCkgk. Starting with α = 1, a line search is conducted to find
the value of α that minimimizes ϕ(x∗), which yields the new estimate xk+1 = x∗.
Then, designating the change in position by sk = xk+1−xk and the corresponding
change in the gradient by yk = gk+1−gk, the BFGS update formula for the inverse
Hessian is

Ck+1 = V T
k CkVk + ck sks

T
k , (2)

where Vk = I − ck yks
T
k and ck = (sT

k yk)−1.
Important to note for applications involving many variables is that the inverse

Hessian does not have to be stored as a matrix. Rather, whenever the product
of the inverse Hessian with a vector is desired, for example to estimate the next
step, the expansion (2) may be used. Therefore, only the parameter vector and
the gradient at each iteration of the optimization need to be stored.

More recently, there has appeared a limited-memory version of BFGS [16], as
well as the truncated Newton [17] algorithm, both of which have the advantage
that they do not require keeping the full sequence of optimization iterations. They
both seem to have strengths for different kinds of problems [18]. Although we have
not yet implemented either of these in the BIE, we think that the limited-memory
BFGS algorithm will be very useful for large optimization problems.

1We avoid the prevalent confusing designation of the inverse Hessian by H.
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4. DEMONSTRATION: TIME-DEPENDENT DIFFUSION

As an example of the success of the ADICT approach, we summarize our previous
paper [1], in which we investigated the diffusion of infrared light through tissue.
We solved the problem of inversion of time-resolved data to obtain the distribution
of diffusion coefficients through which the light passed. Suppose that the intensity
of diffused light at position (x, y) and time t is denoted by U(x, y, t) and the source
strength by R(x, y, t). Then the time evolution of U through a region described
by diffusion coefficients D(x, y) and absorption coefficients µa(x, y) is given by the
diffusion equation

∂U

∂t
=

∂

∂x

(
D

∂U

∂x

)
+

∂

∂y

(
D

∂U

∂y

)
− cµaU +R , (3)

where the spatial and temporal dependence of the parameters has been suppressed.
The quantity c is the speed of light.

We approach the computational problem in terms of discrete samples of U on a
spatial grid with locations specified as a subscript s and in time with a superscript
n. When the spatial position subscript is dropped, the resulting quantity is a col-
umn vector obtained by either row-ordering or column-ordering the corresponding
two-dimensional field (e.g., Un).

For simplicity we assume that the measurements are degraded by additive
uncorrelated Gaussian noise. The minus-log-likelihood of the observations Y , given
D and µa, is

ϕ = − logP (Y |D,µa) = 1
2
χ2 =

∑
s,n

(Y n
s − Ũn

s )
2

2σ2
s,n

, (4)

where σ2
s,n is the noise variance at spatial position s and time n and the tilde on

the U indicates only those positions at which the light intensities are measured.
The general strategy for estimating the parameters, D and µa is to minimize 1

2
χ2,

or if prior information is to be incorporated by means of a Bayesian formulation,
the minus-log-posterior, which is 1

2
χ2 plus the minus-log-prior.

To compute (4), given D and µa, we need to solve the diffusion equation
(3) forward in time to obtain the diffuse intensity Un

s for all time n and spatial
positions s. We will briefly summarize the approach to this calculation employed
in Ref. [1], which should be consulted for the details.

4.1. Solving the Forward Problem

The general approach taken to solve this forward problem is to use the finite-
difference method in which the spatial and temporal derivatives in Eq. (3) are
replaced by their finite-difference approximations. This substitution results in a
difference equation that needs to be solved forward in time. When solving the
difference equation for Un+1, the finite-difference approximations to the spatial
derivatives can be evaluated either at time index n + 1 or n. In the implicit
method2 for solving differential equations, the spatial derivatives are evaluated at

2The implicit method is presented here for clarity, although a slightly different method, the
Alternating-Directions Implicit (ADI) method, was used in Ref. [1] for calculational efficiency.
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Figure 2: Data flow diagram for the forward calculation of the diffusion problem.
The boxes labeled ∆T compute the update to the system for each time step based
on the spatial distribution of D and µa provided by the topmost box. The predicted
intensities are compared to the corresponding measurements Y to obtain ϕ = 1

2
χ2.

In the adjoint differentiation calculation, the data flow is reversed.

the time instance (n+1) when computing the diffuse intensity Un+1. The implicit
method is unconditionally stable for any value of ∆t.

Substituting in Eq. (3), the equation to be solved to obtain Un+1 from Un is,
in vector notation,

AUn+1 = Un + R̄n+1/2 , (5)

where A is a sparse matrix (because derivatives involve only local variables) whose
elements depend on the D and µa values. R̄n+1/2 denotes the integrated source
strength between time instances n and n+ 1.

The procedure for calculating the time-evolution of U is depicted in Fig. 2.
The transformations denoted by ∆T essentially involve solving Eq. (5) to move
forward by one time step. These calculations depend on the spatial distribution of
the diffusion constant D and absorption coefficient µa. The minus-log-likelihood
(1
2
χ2) is the accumulation of the sum of the squares of the differences between the

measurements Y n
s and their predicted values Ũn

s . Thus it gets a contribution from
each measurement time. The assumed time-independent distribution of D and µa

is used in each time step calculation.

4.2. Gradient Computation

We designate the unknown parameters by the column vector θ = [D µa]T . We
need the derivative or sensitivity of ϕ(θ) with respect to θ to facilitate the solution
of the inverse problem. The ADICT principle requires us to work backwards in
time differentiating the same discretized equations that are used to compute the
forward solution. We present a brief outline of the approach.

The sensitivity of ϕ with respect to Un is obtained by using the sensitivity of
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ϕ with respect to Un+1. Application of the chain rule yields

dϕ

dUn
=

[
dUn+1

dUn

]T
dϕ

dUn+1
+

∂ϕ

∂Un
, (6)

where ∂ϕ
∂Un denotes the change in ϕ when only Un is varied, keeping all other

variables constant, while dϕ
dUn denotes the total change in ϕ when Un is varied

along with all variables that depend on Un. Differentiating Eq. (4) with respect
to Un

s , we obtain
∂ϕ

∂Un
s

=
Y n

s − Ũn
s

σ2
s

, (7)

which provide the second term in (6). As indicated in Fig. 2, similar contribu-
tions are derived from 1

2
χ2 at each time step for which there is a measurement.

Differentiating the time-step update, Eq. (5), with respect to Un, we obtain

dUn+1

dUn
= A−1 . (8)

Using Eqs. (7) and (8), we obtain the sensitivity of ϕ with respect to Un

dϕ

dUn
= (A−1)T

dϕ

dUn+1
+

∂ϕ

∂Un
. (9)

In the diagram this result comes from each ∆T transformation and flows backwards
from Un+1 to Un.

Similar use of the chain rule yields the sensitivity of ϕ with respect to θ, which
result flows out of the top of the ∆T box in Fig. 2 and gets added to the total
derivative of ϕ with respect to the D vector.

4.3. Inversion

The problem of reconstructing the unknown parameters D and µa from the
measurements Y n

s is an ill-posed inverse problem. Some form of regularization is
necessary to make the solution well behaved. We accomplish this by employing an
image model in the reconstruction process that incorporates our a priori knowledge
regarding the unknown fields D and µa. Markov random fields (MRF) have been
extensively used in image processing applications. We model D as a generalized
Gaussian MRF (GGMRF) [19] with an energy function of the form

V

(
D

σD

)
=

∑
{s,r}∈N

bs−r

p

∣∣∣∣Ds −Dr

σD

∣∣∣∣
p

, (10)

where N is the set of all neighboring pixel pairs, b is the weight assigned to the
specific neighbors, and σD is the scale parameter of the model. The popular
choice of p = 2 in the signal-processing literature yields a quadratic cost function,
which tends to excessively penalize large deviations resulting in blurred edges. It
is possible to provide good edge preservation in the reconstructed image for p ≈ 1
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[20]. Furthermore, the form of the model facilitates the estimation of the strength
of this prior directly from the data [20]. In our formalism, the above energy
function is taken to the minus-log-prior, which is added to the minus-log-likelihood
(4) to obtain our objective function, the minus-log-posterior. Minimization of the
minus-log-posterior yields the MAP solution.

Our example consists of a simulation of time-resolved data for a 6.4-cm-square
section of tissue. Figure 3a shows as a 64×64 image the original diffusion coeffi-
cients, which range in value from 0.7 to 1.4 cm2ns−1. The absorption coefficients
are set to a constant value of 0.1 cm−1. The values of these coefficients, as well as
the physical dimensions of the problem, have been chosen to reflect the properties
of real tissue, since this modality is envisioned as potentially useful in medical
imaging. Although the above method can be used to estimate D and µa simul-
taneously, we will restrict ourselves to the simpler case of just estimating D and
assume that µa is known.

We assume that there are four pulsed sources placed at the midpoints of each
side of the square region. There are 52 detectors evenly spaced around the perime-
ter, which measure the time-dependent signal in response to each pulsed source.
Gaussian noise is added to the simulated signals with an rms value of 3% of the rms
signal value over the 1.0 ns observation time, corresponding to a signal-to-noise
ratio of 30 dB. The time step used is ∆t = 0.005 ns and the detector resolution is
0.02 ns. Figure 4 shows the type of measurements obtained for one source position.

Figure 3b shows the MAP reconstruction for p = 1.1 obtained using 70 iter-
ations of the conjugate gradient algorithm (taking about nine hours on an HP
9000/755). The reconstruction is remarkably good considering that effectively
only four views (in the nomenclature of computed tomography) are used. This
result confirms the value of incorporating ADICT into a simulation code to solve
this inversion problem in which roughly 4000 parameters are determined from
approximately 10000 measurements (54 detectors × 50 time samples × 4 source
positions).

Inversion of these diffusion data is a truly difficult nonlinear problem. This task
is much more complicated than inversion from x-ray radiographic measurements
because the paths that the photons take depend on the distribution of diffusion
coefficients that are being determined.

5. OTHER ENABLING TECHNIQUES

There are several other techniques that complement adjoint differentiation and
optimization and help complete the suite of tools needed to conduct inference
using large-scale simulations.

5.1. Multiscale optimization

When optimizing nonlinear models it is possible to encounter objective func-
tions with multiple local minima, which can introduce difficulties for gradient-
based algorithms. However, for many kinds of problems, the desired minimum
can be found either by knowledgeably choosing a good starting point or by using a
multiresolution approach, that is, by first finding the minimum at coarse resolution
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(a) (b)

Figure 3: The original distribution of diffusion coefficients (a) and their recon-
structed values (b) derived from time-dependent measurements made around the
periphery in response to short pulses introduced at the middle of each of the four
sides.

Figure 4: The simulated time-dependent measurements for a selected set of detec-
tors presented as a function of time after a short pulse of light is introduced into
the midpoint of the top edge of Fig. 3a. The first signal is from a detector located
close to the source. The two signals that peak around 0.8 ns are from detectors
positioned at the midpoint of the two sides and the late signal from the bottom
side.
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and then working toward finer resolutions [21, 22]. If this approach does not work
for a particular problem, to find the global minimum it may be necessary to resort
to stochastic optimization algorithms (simulated annealing or genetic algorithm),
which are notoriously inefficient compared to gradient-based approaches. It might
be possible to combine the best of both approaches through a hybrid algorithm in
which the starting point of a gradient-based algorithm is chosen stochastically.

5.2. Deformable Geometric Models

It is often desirable to use a high-level model to describe an object or situation
of interest. As an example, we have found it very useful to employ a deformable
geometric model to represent the boundary of an object that we wish to reconstruct
from projection data [21, 23]. In three dimensions, such a model consists of a
surface, which might be represented by a grid of triangles [9, 24], as an example. An
even higher-level model would use spline-based patches, which would result in fewer
parameters, but not necessarily much less computation time. High-level models are
often invoked to help regularize or control the inversion problem in the belief that
it should be easier to solve a problem involving fewer variables. However, we have
come to realize that it may be more desirable to use a very flexible description
involving many parameters. The flexibility of such a model can be controlled
through the use of a prior or graded constraint function, which effectively reduces
the number of degrees of freedom of that model. Such constraints often take the
form of an integral of the square of a derivative of some quantity, which basically
acts to smooth that quantity. The advantage of this general approach is that it
allows one to choose the prior that is most appropriate for the problem and even
locally turn off the control when that is demanded by the data or circumstance
[25].

5.3. Intermediate Elemental Representation

In constructing the Bayes Inference Engine [5], we have uncovered another basic
tool for model building. In order to easily accommodate a variety of deformable
geometric models in conjunction with a variety of potential measurement scenarios,
we decided to employ an intermediate elemental representation for the object of
interest. Every high-level model is converted to the elemental representation before
the measurement process can be accomplished. For a physical object the elemental
representation is a discretized density image (array of pixels) in two dimensions
or a voxelated array in three dimension. This approach permits implementation
of a new high-level object model without the necessity of writing a new code to
calculate the result of each type of measurement.

Beyond its calculational advantage, we have come to recognize the underlying
value of the elemental representation as a basic modeling tool. Its importance
lies in the fact that when one uses and sees only a high-level model, deficiencies
in matching the data can only be displayed in terms of the gradients of ϕ with
respect to the model parameters. It can be difficult to recognize which aspects of
the model do not accommodate the data. However, by displaying the gradients
in the elemental representation, it can become evident how the high-level model
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needs to be changed, and possibly augmented, to better match the data [25].

5.4. Markov Chain Monte Carlo

One aspect of complex models that does not typically receive enough attention
is the assessment of uncertainties in the parameters estimated from measurements.
The probable reason for this neglect is that uncertainties are perceived to be dif-
ficult to estimate when there are numerous parameters. In a likelihood formula-
tion the parameter uncertainties are described by the likelihood function. In a
Bayesian formulation, they are described by the posterior probability distribution.
The problem of assessing uncertainties amounts to characterizing the likelihood or
the posterior. The Markov Chain Monte Carlo (MCMC) technique provides an
effective means to characterize a probability distribution [26, 27, 28, 23]. MCMC
generates a sequence of random samples of an arbitrary probability distribution.
The only requirement of the basic algorithm is that one be able to evaluate the
relative value of the probability density function for any set of parameter values,
which in our context simply means doing the forward calculation to obtain φ plus
the minus-log-prior.

This technique seems to be an essential tool to deal with the issue of uncertain-
ties in estimated parameters. One valuable use of MCMC is to visualize the degree
of model variation allowed by the uncertainties, which only requires that one has
a way of displaying the model [29, 23]. Most useful is the ability to characterize
the uncertainty in the model in whatever way one wishes, e.g., in terms of the
variance in the parameters or of quantities derived from the model. In uncertainty
assessment, it is crucially important to include the effects of correlations among
the uncertainties, which MCMC does.

6. DISCUSSION

We have presented some useful tools that permit one to efficiently estimate param-
eters of a complicated forward model from measurements. The use of a forward
model is important because many aspects of a model that describes a physical
system and measurement scenario may not easily be directly inverted. This gen-
eral approach allows one to construct complete models to fully account for the
observations.

The primary technique in the toolkit is adjoint differentiation implemented ac-
cording to the ADICT principle, which yields derivatives of a functional (objective
function) based on a forward computational code with respect to all the param-
eters in the computational model. The derivatives of the computed functional
are desirable when minimizing that functional. In the particular approach that
we suggest, adjoint differentiation is accomplished through code rather than by
storing derivative matrices. The resulting calculational time for the derivatives is
comparable to that of the forward model calculation. ADICT can, in principle,
be implemented for any code that is differentiable. Adjoint differentiation is being
applied to some large simulation codes, e.g., to calculate the dynamics of the ocean
and atmosphere.

ADICT permits the use of gradient-based optimization algorithms. We have
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had success with a quasi-Newton method of optimization and we therefore sug-
gest using the limited-memory BFGS algorithm [16] for problems involving many
parameters of mixed type. An important message that we wish to get across is
that analysts should not necessarily be afraid of using models that contain large
numbers of variables. With reasonable constraints on the models, one can easily
accommodate many parameters. Our experience indicates that the penalties as-
sociated with using many parameters, either in terms of computational speed or
ill posedness, are often not as severe as one might imagine.

Work is continuing on many fronts. The photon-diffusion work presented in
Sect. 4. is progressing in several directions [30]. For example, we have demon-
strated that it is feasible to reconstruction both D and µa from the kind of data
used in this paper. Also, the diffusion simulation code has been extended to
obtain three-dimensional reconstructions. These new results will be presented
elsewhere [31]. Other work presently underway includes reconstruction of time-
evolving 3D objects [24], improving the efficiency of the basic MCMC algorithm
[32], and implementation of adjoint differentiation in a 2D hydrodynamics code
[33, 7]. The current status of our developments may be found on the web:
http://home.lanl.gov/kmh/publications.html.

If one is going to rely on a simulation code to interpret data and make predic-
tions, one needs to make certain that the simulation adequately matches real world
behavior. This process is called validation [34]. While much needs to be learned
about validation and how to go about it, we believe that the techniques presented
here will play an important role in the methodology that evolves. Because the
understanding of the uncertainties in predictions is a key component in validation,
the MCMC or adjoint sensitivity techniques could become central elements in the
validation process.
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