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ABSTRACT. We have previously described how imaging systems and image reconstruction 
algorithms can be evaluated on the basis of how well binary-discrimination tasks can be performed 
by a machine algorithm that “views” the reconstructions [l, 21. The present work examines the 
performance of a family of algorithmic observers viewing tomographic images reconstructed using the 
Cambridge Maximum Entropy software, M E M S Y S  3. We investigate the effects on the performance 
of these observers due to varying the parameter QI, which controls the strength of the prior in the 
iterative reconstruction technique. Measurements on human observers performing the same task 
show that they perform comparably to the best machine observers in the region of highest machine 
scores, i.e., smallest values of oar. For increasing values of Q, both human and machine observer 
performance degrade. The falloff in human performance is more rapid than that of the machine 
observer, a behavior common to all such studies of the so-called psychometric function. 

1. Introduction 

It has been recognized for several decades that the assessment of medical images or medical 
imaging systems requires the specification of a task to be performed using the images. It 
has also been recognized that the study of task performance may be expensive and time 
consuming because of the need for “ground truth” against which to judge the performance of 
the task, and the need for a sufficient number of images and/or observers to obtain statistical 
significance in the results. These considerations have led to the study of task performance 
by machine or algorithmic observers. The question of the comparative performance of such 
machine observers relative to the performance of the human observer then naturally arises. 

In this work images are obtained from reconstructions derived from simulations of 
limited-angle two-dimensional tomography. The assessment of the images proceeds ac- 
cording to the paradigm presented by Hanson [l]: A large number of images are generated 
according to a Monte Carlo technique; a binary task is specified and performed by either a 
machine or a human observer; and the performance is scored according to either the method 
of the receiver operating characteristic (ROC) curve or the method of the two-alternative- 
forced-choice (2AFC) [3, 41. 



416 K.J. MYERS et al. 

Figure 1: a) Sample scene containing IO high-contrast disks and 10 low-contrast disks 
randomly placed on a zero background. 
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1 background. Ten of the disks are low-contrast (a 
and 16 are”high-contrast (amplitude = LO). They are all 8 pixels in diameter in an overall 
field of 128 pixels in diameter. An example taken from the ensemble is shown in Figure 
1. The task is the detection of the low-contrast disks. Here we have used just 8 equally 
spaced views, and parallel projections each containing 128 samples that include additive, 
zero-mean Gaussian noise with a standard deviation of 2, which is about twice the peak 
projection Clue of the low-contrast disks. The noise in the data is pre-smoothed prior to 
reconstruction by a triangular window with a FWHM of 3 pixels, reducing the rms noise 
level by a factor of 0.484. 

3, T econstruction Igorithm 
The reconstruction algorithm used here, named MEMSYS 3 [6], minimizes the expression 

B 2 -g( -as (I) 

where X2 is chi-squared, the exponent in the likelihood function that expresses the proba- 
bility of the data given the object scene under the assumption of Gaussian additive noise, 
and -QS is the exponent of the entropic prior probability distribution on the reconstruc- 
tion [5]. Minimizing chi-squared is equivalent to finding the maximum likelihood (ML) 
reconstruction. Minimizing -cuS is equivalent to maximizing the entropy S, which can be 
considered a measure of the degeneracy of the image; a uniformly gray image achieves the 
unconstrained maximum entropy. Minimizing the expression in Eq. B amounts to finding 
the “least committal image” consistent with the data. 

The factor a selects one possible member of an infinite family of entropic priors; the -- - - e d - -* -e _ _ e -. - 
smtier its value, the less one enforces tne prior distribution, and tne closer one approacnes 
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the ML solution. Several techniques for determining a have evolved over the last decade. 
Since many early authors picked cy so that chi-squared equaled the number of measurements, 
this has been referred to as “historic” maximum entropy. The more recent “classic” MaxEnt 
determines a from the data itself. The MEMSYS 3 software also allows the user to specify 
an arbitrary (“ad hoc”) value of the final or aimed for value of chi-squared. Reconstructions 
of the object scene shown in Figure 1 are given in Figure 2 for 4 values of QI. 

4. Algorithmic Decision Functions 
The machine decision functions are various approximations to decision functions that arise 
in the study of Bayesian statistical decision theory: 

(a) The difference in the log of the posterior probability for each hypothesis given the 
data, P(f I d* 

(b) Same as in (a), but using a quadratic approximation obtained by expanding the 
expression for the log posterior probability in a Taylor series about the maximum (the 
reconstruction) [6, 21. 

(c) The non-prewhitening matched filter (NPWMF) output, formed by summing all the 
pixels within the region of the expected signal [7, 81. 

(d) The non-prewhitening matched filter, modified to include the background in an 
annular region centered on the location of the expected signal. The decision function, 
referred to as the disk contrast, is the difference between the activity in the central disk 
region and the estimated activity in the surrounding disk. 

(e) The difference in the mean-squared-difference between the reconstruction and the 
expected object calculated under each of the hypotheses (disk present and absent). 

To determine each machine observer’s figure of merit, the decision function is applied to 
100 subregions (16 pixels in diameter) in the reconstructions that contain background plus a 
disk. The decision function is also applied to 100 regions in the reconstructions that contain 
only background. The decision function outputs are histogrammed separately for the known 
signal and the known background locations and the receiver operating characteristic (ROC) 
curve is then generated [3]. The figure of merit, d,, is derived from the area under the ROC 
curve via an inverse error function. 

5. The Human Observer 
The human observers used the same 100 realizations of the signal-plus-background images 
and background-alone images. Each 16-pixel diameter test region was centered in a 16 x 16 
square, then bilinearly interpolated twice to form 64 x 64 pixel images for display. These 
images were presented to the observer in pairs in the usual two-alternative-forced-choice 
(2AFC) paradigm [3]. Th e o server’s percentage correct in a 2AFC experiment corresponds b 
to the area under the curve in the ROC paradigm when the same images are used. Thus, 
the detectability figure of merit for the human observers is derived via an inverse error 
function from the percent correct, and can be compared directly to the machine d,. 
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Figure 2: Reconstructions of the object scene in Figure I for values of ch equal to a)O.OQ 
b)O.2, c)1.8, d)20. 

6, esults 
In Figure 3, d, is plotted for each of the algorithmic observers. We see that the performance 
of the algorithmic observers is a function of the parameter a. Generally the figure of merit 
is stable at small values of a and falls off at high values of CL Arrows indicate the values 
of a corresponding to the historic and classic MaxEnt solutions. As can be seen from the 
figure, the classic reconstructions have a smaller value of CI (and hence X2) than the historic 
ones. For the historic run, ~x=Ol.8 and X2=1024; the classic run gave ~~=0.2 and x2=473. 
All of the decision variables except the Gaussian approximation to the posterior probability 
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Figure 3: The detectability d, as a function of the parameter a for each of the machine or 
algorithmic observers. 

function perform better using the classic MaxEnt reconstructions over using the historic 
solution. It can be seen from Figure 3 that the decision variable based on the quadratic 
approximation to the log posterior probability fails catastrophically for small values of a. 

The results for two human observers are presented in Figure 4. 
They are seen to follow the best machine observer results to within the error bars for 
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Figure 4: Detectability as a function of a for two human observers (circles and squares), 
bracketed by the envelope of the machine observer performance functions from Figure 3 
(neglecting the Gaussian approximation to the posterior probability). The mean-squared 
error (MSE) between the original scene and the reconstructions is also given as a function 
of a!. 
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lower values of a, and to fall off somewhat faster than the machine results as CI increases. 
The close correspondence between the performance of the algorithmic observers and the 
human observers indicates that the degree of sharpness/smoothing represented by the vari- 
ation over a is significant when the images are to be used for visual tasks, and that the 
machine observers we have studied are indeed relevant when the images are intended for 
human use. Also shown in Figure 4 is the mean-squared-error between the original scene 
and the reconstructions obtained for each value of a. It is clear from the figure that MSE 
is a poor predictor of performance for any of the machine or human observers. 

7. Future Issues 
This work indicates that, for algorithmic (excluding the Gaussian approximation to the 
log posterior probability) and human observers and a simple disk detection task, high 
detectability is found for values of a from about 0.2 all the way down to the ML limit- 
with the positivity constraint inherent to the entropy prior. Different conclusions might be 
drawn from the study of more detailed detection and discrimination tasks. 

A general question for investigation is: How does one optimize an image reconstruction 
algorithm when that estimation step is to be followed by an image classification step? At 
present, most optimizers of image reconstruction routines use a figure of merit related to the 
MSE or rms pixel noise. Although such figures of merit can be related to certain detectabil- 
ity measures used here (at least for linear reconstruction schemes) [9], the relationship is 
neither direct nor necessarily monotonic. And, for this iterative reconstruction method, we 
have found that MSE does not predict human or machine detection performance. A more 
complete understanding of the steps that lead from estimation or reconstruction, through 
a machine or human observer, to a final detection or classification decision is required in 
order to optimize the procedure for the performance of the task for which the image was 
acquired. 
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