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ABSTRACT. A new class of prior models is proposed for Bayesian image analysis. This class of 
priors provides an inherent geometrical flexibility, which is achieved through a transformation of the 
coordinate system of the prior distribution or model into that of the object under analysis. Thus 
prior morphological information about the object being reconstructed may be adapted to various 
degrees to match the available measurements. An example of tomographic reconstruction illustrates 
the potential of this approach. 

1. Introduction 
One often encounters problems in the image analysis of objects that are ill-posed because of a 
lack of data. Bayesian methods help select the best of many possible solutions on the basis of 
the characteristics of the object that are known a priori. The prior knowledge concerning the 
object is incorporated in terms of prior probability distributions on the appropriate physical 
parameters. We wish to develop a method to take into account an object’s approximate 
shape, when it is known beforehand. The model for the object being analyzed is allowed 
to alter its geometry to accommodate the data by warping the coordinate system of the 
prior model onto the coordinate system of the actual object. Thus the character of the 
edges of the model, as well as its morphology, are preserved. The proposed extension to the 
standard MAP technique overcomes its static definition of the prior providing flexibility in 
geometry and other characteristics. For a fuller description of the use of this flexible model, 
see [I, 21. 

The power of this new approach to prior models is illustrated with an example of com- 
puted tomographic reconstruction in which the coordinate transformations are restricted 
to low-order polynomials. 

2. Basic Formulation 
We are given M discrete measurements that are linearly related to the amplitudes of the 
original image vector f of length N, degraded by additive noise: g = Hf + n, 

where n is the random noise vector, and H is the measurement matrix. From Bayes’ 
i law the negative logarithm of the posterior probability density is given by 

- w.PVIdl = 4(f) = A(f) + VI 7 (1) 
where the first term comes from the likelihood and the second term from the prior 

probability. For simplicity, a Gaussian distribution is chosen for the prior probability, 
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which is characterized by the known quantities f, the ensemble mean, and Q, the ensemble 
covariance matrix. The negative logarithm of the prior probability on d, the deviation from 
the model d = f - ?, may be written as 

lw) - +dTRild, - (a> 

Assuming additive Gaussian noise with a known covariance matrix Rn, the negative 
log(likelihood) is just one half chi-squared 

- logb(gId,a)] = A(d,a) = ix2 = ;[g - H(d + f)lTR;;l[g - H(d + f>] 7 (3) 

which is quadratic in the residuals. 
The full Bayesian solution is characterized by the posterior probability p(flg). How- 

ever, to represent the result with a single image, an appropriate choice is the image that 
maximizes the a posteriori probability, called the MAP estimate [3], which equivalently 
minimizes 4. The choice of the relative weights of the log-likelihood (3) and the log-prior 
(2) is critical, as it &ects how well the information contained in the data is transferred to 
the observer of the image [4]. 

minimum of 4(f), that is, at the MAP solution &4(f) = 0. 
The problem with the preceding standard Bayesian formulation is that the model for 

the prior is usually considered to be geometrically fixed [5, 61. To build flexibility into 
the prior, we consider f to be a function of several parameters, represented by the vector 
a, that is, f(a). The parameters in vector a control the position, size, and shape of the 
prior distribution in a manner yet to be specified. Under the assumption that a and d are 
statistically independent, the prior on these new parameters II(a) is simply added to II(d). 
We take d and a to be the independent variables in the problem. 

In reconstruction, we seek to estimate all pixel values in the original scene, that is f. 
If there is no interest in the actual values of the parameters a and d, probability theory 
says we must marginalize over these nuisance parameters. As the integration over so many 
parameters is computation&y very difficult, the solution for f is calculated from the a and 
d that minimize 4, for which V& = 0 and V& = 0, provided the solution is not otherwise 
constrained. The MAP solution can be found by the method of steepest descent or some 
better method such as that of conjugate gradients. It is unlikely that one can guarantee 
that the uniqueness of the solution for 4. We must rely on a knowledgeable choice of initial 
parameters to guide the solution to a meaningful result. 

3. Elastic Sheet Analogy 
Suppose that the prior on the image amplitude, specified in terms of f and Rd in the 
present case, is given as a function of the spatial coordinates (z’, y’). Geometrical flexibility 
of the prior is accomplished by transforming the (x, y) coordinates of the final image f to 
the original (21, y’) coordinates: 

x1 = x+u(x,y); Y’=Y+v(x,Y), (4) 
where u and v are the displacements of x and y. The warp could equally well be accom- 
plished by means of the inverse transformation, that is, from (x’, y’) to (a, y). The choice is 
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mostly a matter of computational convenience and depends on the specific situation. Ob- 
viously this coordinate mapping can be arbitrary. However, it should be restricted in some 
way to reflect the realistic range of possibilities for the warped shape of the prior model. 

The warp should meet the following general requirements. The coordinate transfor- 
mation should be one-to-one in the domains of interest, which implies the transformation 
is invertible. Without any previously known preference for orientation or position, the 
transformation should be isotropic and stationary (homogeneous). The formulation for 
the warp should be independent of the rectilinear coordinate system in which it is stated. 
Neighborhood relationships should be maintained so the transformation should be contin- 
uous. Homogeneous translations and rotations should be unimportant. We will propose a 
mechanism to control the warp that meets all these criteria. 

It is natural to draw an analogy between a 2D warp and the distortion of a sheet of 
elastic material that is constrained to lie in a plane. Then the constraints placed on the 
warp are analogous to the elastic properties of the material being distorted. In material 
mechanics the strain corresponds to the first derivative of the mapping. For example, g 
specifies the amount of linear expansion in the x-direction producing normal tensile strain. 
For deformations in linear materials obeying Hooke’s law, the stress induced in the material 
is proportional to the strain. So the strain energy density, found by integrating the stress 
with respect to the strain, is proportional to the square of the strain. 

We would like to generalize this notion of strain energy density for application to coordi- 
nate transformations. We employ tensor notation to achieve independence of the rectilinear 
coordinate system and allow easy extension to 3D. The displacement vector comprised of 
u and v is designated u;. The subscripts run over the coordinate indices, i.e. 1 N x,2 N y. 
The strain is expressed as a symmetric tensor e;j = 3( u;,j + uj,i), where the comma denotes 
a derivative with respect to the appropriate coordinate. 

plane. Exceptions relevant to 3D will be given in parentheses. Therefore, i = 1,2(3) 
and similarly for j. 

Thus, the strains are 

dU 6%) 
ell = - , e22 = - , e12 = e21 = 

dX dY 
+(fg+S) l  

The first two quantities are the normal strain in the x- and y-directions and the last one is 
the usual expression for shear strain. 

For small strains the general expression for the strain energy density in a linear isotropic 
medium is [7] 

w = $l(e;;)2 + /lX;je;j 
(6) 

- - ;qe11 + e22)" -tP(& t e:, -a$,), 

where A and ,V are the Lame constants of elasticity. As usual, repeated subscripts within 
an expression imply summation over them. As p controls the change in angles induced by 
the transformation, it the called the modulus of rigidity or shear modulus. We note that 
by construction the expression for w is invariant under rotation or translation of the (x, y) 
coordinate system. 

I ” 

1: 

i 

~  / 

~ 

1’ 1 

ii 
I 
/ ~  
’ I 

I ’ I 
1 ‘I 

I ’ 

I 

I 



402 K.M. HANSON 

The quantity e;; = 6 is called the area dilation, or volume dilation in 3D. It is linearly 
related to the Jacobian of the transformation from (x, y) to (x’, y’), which is the determinant 

where 6ij is the usual Kronecker delta. The Jacobian gives the ratio of the change in area 
of a differential element produced by the transformation. For small strains, J = l-t-8. 
For the transformation to be invertible (one-to-one), it is necessary that the Jacobian be 
nonzero. 

The Lame constants are a property of the material. Their relation to Young’s modulus 
E and Poisson’s ratio V, more typically used in engineering, is given by 

E P(3X w-4 x - - 
x+/J y u=2(x l  

Both X and p are nonnegative for real materials, which assures w > 0. Poisson’s ratio - 
specifies the relative amount of contraction in the direction perpendicular to an applied 
tension. In 2D the upper limit of v = 
limit in 3D is 3. 

1 is attained by incompressible materials. Its upper 

4. Prior on the Warp 
We propose to use a Gibbs’ distribution [S] for the prior probability on the warp, which is 
proportional to exp(-IV), h w ere 
deformations by 

IV is the total strain energy of the warp, given for small 

w= J wdr, (9) 

where dr = dx dy is the differential area in (x, y). Then the negative log-prior on the warp 
is simply W. The role of the Lame constants in Eq. (6) is then clearly identified as that of 
specifying the strength of the log-prior on the warp relative to the log-prior probability on 
the amplitude and relative to the log-likelihood. While the above expressions hold only for 
small strains, valid evaluation for large strains may be achieved by numerically integrating 
(6) and w 

It should be emphasized that the elastic constants for the conceptual physical model 
of the warp are not related to those of the material from which the object being studied 
is actually composed. Indeed, the choices for the Lame constants are not restricted by 
the usual constraints regulating physical systems [7]. Instead, their selection should reflect 
the range of reasonable configurations the prior distribution can assume for the class of 
objects being imaged. Poisson’s ratio might be set to zero, if a stretch in one direction is 
not expected to influence what happens in the other direction. Even ‘unphysical’ values 
are legitimate. For example, v = -1, would correspond to a similarity transformation, 
which maintains shapes, because that would indicate that an expansion in one direction is 
most likely accompanied by an equal expansion in the orthogonal direction. Also note that, 
because material is not actually being distorted in this warping process, it is not necessary 
to scale the amplitude of the prior by the Jacobian of the transformation to conserve mass. 
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If it were deemed desirable to maintain angles in the warping, as in conformal mapping, 
then no shear would be allowed, even locally. This constraint could be enforced by requiring 
the shear (er2) to be zero, which would implicitly place constraints on the parameters of 
the warp. Alternatively, conformality can be achieved by making p very large compared to 
x PI 

Note that, because (6) is based on a linear stress-strain relationship, there is nothing that 
precludes the Jacobian from going to zero. By assuming that the stress Q  is proportional 
to a relative change in length of a differential element, that is CT oc E/( 1-t E), where 6 is the 
strain, the strain energy density would be proportional to e - log(1 + E), which avoids the 
dreaded condition e = -1. This expression is obviously related to the Burg entropy. 

The constraint given in Eq. (9) is expressed in a general form that does not imply 
a representation for the warp. Wherever representation is used, the parameters involved 
correspond to the vector a in Sec. 2. Ultimate control over local distortion can be had 
through the use of a finite-element representation to describe the mapping [lo]. Such an 
approach, taken by Brackbill and Saltzman [9], seems particularly well suited to the present 
method, because images are typically represented by pixels that give the image values on 
Cartesian grids. Of course, the finite elements used to represent the image need not coincide 
with the pixel representation. However, such a representation for the warp would preserve 
line elements located between pixels, and thus would be useful in maintaining a prior defined 
on those line elements [8]. 

Some simplification is achieved if we express the coordinate transformation (4) as a 
polynomial expansion 

u= c amnxmyn ; 2, = C bmnxmYn 7 (10) 
mn mn 

where the coefficients am, and bmn are represented as elements in the parameter vector 
a introduced in Sec. 2. Use of (10) results in expressions for the strains that are likewise 
polynomials with coefficients that are quadratic in the amn and bmn parameters. Then the 
total strain energies W  will also be quadratic in these warp parameters, consistent with a 
Gaussian prior probability distribution. Although the polynomial expansion for the warp 
is convenient, it suffers from a few fundamental difficulties. First, it does not provide much 
local flexibility without including high orders. Second, the mapping will inevitably cease 
to be invertible at some values of (x, y), when nonzero second- or higher-order terms are 
included. 

5. The Knockwurst Example 
In this example we assume that we are given five sets of parallel projections of the sausage- 
shaped object shown in Fig. 1. The projections contain 128 samples each and are taken at 
36” increments in angle. Note that an assumption of right-left symmetry makes two of the 
five views redundant so these reconstructions are effectively based on only three distinct 
views! 

The tomographic reconstructions are shown in Fig. 1. The 128 x 128 reconstruction 
obtained with the unconstrained Algebraic Reconstruction Technique (ART) [ll] is pre- 
dictably very poor. To exaggerate the extent to which flexibility can be incorporated in 
the reconstruction process, we use a circle of unit amplitude for f, the mean of the prior 
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, 

Figure 1: 

The ART reconstruction (lower-left) obtained from five noiseless, parallel views taken at angular 
increments of 36’ poorly reproduces the original sausage-shaped object (upper-left). The M A P  
reconstruction (lower-right) obtained from the same data is based on the circular prior distribution 
(upper-right) subject t o a polynomial warp of third order. 

probability distribution on amplitude. The important aspects that we wish to include in the 
reconstruction are the expected sharp boundary of the object and its constant amplitude. 
To permit a fair degree of flexibility, a third-order polynomial coordinate transformation is 
employed. The assumed right-left symmetry reduces the number of warp coefficients from 
20 to 11. In the present example, the full expression given by (6) and (9) is replaced by the 
sum of the squared values of the a,, and b,,. The coefficients in this sum are chosen to 
be very small to allow maximum warping. The resulting 32 x 32 MAP reconstruction (LR) 
reasonably matches the original, given that the available data consist of only three distinct 
views. 

6. Discussion 

The choice of the strength of the priors on the warp parameters is critical in determining the 
shape of the solution. One way to determine the Lame constants is through the posterior 
probability, in the same way as Gull suggests for finding the strength of the entropic prior 
[12]. A better method would be to base the choice on bona fide prior knowledge about the 
objects being imaged. More detailed prior information might even allow specification of 
the elastic constants as a function of position. 

The linear-material approach taken here may be extended in many ways. The assump- 
tion of stress being proportional to relative change in dimension, mentioned in Sec. 4, leads 
to an energy density of entropic form. Other possibilities include endowing the fictitious 
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material being warped with nonlinear, ductile, or even elasto-viscous behavior. The flexible 
structures may be 1D (or 2D in a 3D problem) as it may be most appropriate to warp lines 
or surfaces. 

The notion of introducing geometrical flexibility into the priors used in Bayesian analysis 
clearly extends to all types of image analysis. Flexible models have been used for several 
years in computer vision [13, 141 and to match MRI brain images to generic shapes from a 
brain atlas [15, 161. 
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