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ABSTRACT. An optimal solution to the problem of making binary decisions about a local region 
of a reconstruction is provided by the Bayesian method. Decisions are made on the basis of the 
ratio of the posterior probabilities for the two alternative hypotheses. The full Bayesian procedure 
requires an integration of each posterior probability over all possible values of the image outside 
the local region being analyzed. In the present work, this full treatment is approximated by using 
the maximum value of the posterior probability obtained when the exterior region is varied with 
the interior fixed at each hypothesized functional form. A Monte Carlo procedure is employed to 
evaluate the benefit of this technique in a noisy four-view tomographic reconstruction situation for 
a detection task in which the signal is assumed to be exactly within a local region. 

1. Introduction 

When interpreting reconstructed images, it is often desired to make a decision about a 
small region of interest without regard to the rest of the image. A standard approach to 
this problem might be to reconstruct the full image from the available data and then make 
the decision on the basis of how closely the reconstruction resembled the suspected object 
in the region of interest. Such an approach is not guaranteed to yield an optimal decision. 

We desire a computational method that achieves the optimal performance of a binary 
decision task. Such an 'ideal observer' has been useful in the past to help define the ultimate 
precision with which one can interpret data of a given type (Hanson, 1980, 1983; Wagner 
et al., 1989; Burgess et al., 1984a, 1984b; Burgess, 1985). A fully Bayesian approach is 
proposed in which the decision is based on the posterior probability. Much of this work is 
based on the Bayesian concepts developed by Gull and Skilling and their colleagues (Gull, 
1989a, 1989b; Gull and Skilling, 1989; Skilling, 1989), albeit under the assumption of a 
Gaussian distribution for the prior probability rather than their preferred entropic form. 

Examples of this Bayesian decision procedure are presented for a computed tomo­
graphic situation in which a nonnegativity constraint on the image is incorporated. The 
performance of the comprehensive Bayesian procedure is compared to that of the tradi­
tional two-step approach using a Monte Carlo simulation of the entire imaging process, 
including the decision process (Hanson, 1988a, 1990a). The present work is an extension 
of the previous study by Hanson (1991 ). 
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2. The Bayesian Approach 

We briefly present the concepts of the Bayesian approach relevant to our problem. Much 
more complete discussions of the fundamentals can be found in other contributions to the 
proceedings of this workshop series. The essence of the Bayesian approach lies in the 
steadfast use of the posterior probability, which is assumed to summarize the full state of 
knowledge concerning a given situation. 

The posterior probability properly combines the likelihood, which is based on recently 
acquired measurements, with the prior probablity, which subsumes all information existing 
before the new data are acquired. 

Making a binary decision is the simplest possible type of hypothesis testing, because 
there are just two alternative models between which to choose. According to basic proba­
bility theory, binary decisions should be made on the basis of the ratio of the probabilities 
for each of the hypotheses (Van Trees, 1968; Whalen, 1971). In the context of Bayesian 
analysis, then, a binary decision should be based on the ratio of posterior probabilities. 
This decision strategy is altered when there are asymmetric cost functions, indicating a 
difference in the relative value of making correct versus incorrect decisions for each state of 
truth. 

When a continuum of possible outcomes exists, as in the estimation of one (or many) 
continuous parameters, the best possible choice of parameter values depends upon the type 
of cost function that is appropriate. It may be argued that for general analyses, the most 
appropriate rule is to find the parameters that maximize the posterior probability, which 
is called the maximum a posteriori (MAP) solution (Van Trees, 1968). 

In many problems there exist parameters that may be necessary to fully describe the 
solution, but whose values are of no interest. These unnecessary parameters can transform 
a simple hypothesis test into one of testing composite hypotheses. In such cases the proper 
approach is to integrate the probability density distribution over these unwanted variables. 
The result of this integration is called the marginal probability. irrelevant parameters 

2.1 POSTERIOR PROBABILITY 

We assume that there exists a scene that can be adequately represented by an orderly array 
of N pixels. 

We are given M discrete measurements that are linearly related to the amplitudes of 
the original image. These measurements are assumed to be degraded by additive noise with 
a known covariance matrix Rn, which describes the correlations between noise fluctuations. 
The measurements, represented by a vector of length M, can be written as 

g = Hf+n, (1) 

where f is the original image vector of length N, n is the random noise vector, and H is 
the measurement matrix. In computed tomography the jth row of H describes the weight 
of the contribution of image pixels to the jth projection measurement. 

Because the probability is a function of continuous parameters, namely the N pixel 
values of the image and the M data values, it is actually a probability density, designated 
by a small p(). 

By Bayes' theorem the negative logarithm of the posterior probability is given by 

-log [p(flg)] oc </>(f,g) =-log [p(glf)]-log [p(f)], (2) 
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where the first term is the probability of the observed data for any particular image f, called 
the likelihood, and the second term is the prior probability of the image f. For additive 
Gaussian noise, the negative log(likelihood) is just half of chi-squared 

1 2 1 T 1( -log [p(glf)] = 2x = 2 (g- Hf) R~ g- Hf), (3) 

which is quadratic in the residuals. Instead of a Gaussian distribution assumed here, the 
Poisson distribution is often a better model for expected measurement fluctuations. The 
choice should be based on the statistical characteristics of the measurement noise, which 
we assume are known a priori. To simplify matters, we will make the standard assumption 
that the measurement noise is stationary and uncorrelated, so Rn = diag(a~), where 0"0 is 
the rms deviation of the noise. 

The prior-probability distribution should incorporate as much as possible the known 
statistical characteristics of the original image. original image so we envision an ensemble 
of images from which the original image f is assumed to belong. The prior-probability 
distribution describes the properties of that ensemble. We use a Gaussian distribution for 
the prior, whose negative logarithm may be written as 

(4) 

where f is the mean and Rr is the covariance matrix of the prior-probability distribution. 
As we have done before (Hanson and Myers, 1990c), we invoke the prior knowledge that the 
image f cannot possess any negative components and institute nonnegativity as a separate 
constraint. 

The Bayesian approach does not specify any particular choice of prior. Another choice 
for prior, ubiquitous at this workshop, is that of entropy. The entropic prior has been 
argued by Skilling (1989) to play a unique role for additive positive distributions. Whatever 
prior is used, its strength affects the amount the reconstruction is offset from the true image 
(Hanson, 1990b; Myers and Hanson, 1990). It is important to understand the characteristics 
of solutions obtained regardless of the prior chosen. It is recognized that the prior provides 
the regularization essential to solving ill-posed problems (N ashed, 1981; Titterington, 1985), 
which arise because H possesses a null-space (Hanson and Wecksung, 1983; Hanson, 1987). 

With the posterior probability specified, we have the means for deciding between two 
possible images f1 and f2, given set of measurements g. The decision should be based on 
the ratio of the posterior probabilities, or equivalently, the difference of their logarithms 

(5) 

where gk = Hfk and only the data-dependent terms are explicitly written out. The only 
part of this expression that depends on the data is the inner product between data vector 
g and the difference of the measurements predicted by f1 and f2 , that is, (g1 - g2 ). We 
note that this inner product represents the familiar cross correlation between the data and 
the difference between the alternative signals, which is called the matched filter (Van Trees, 
1968; Whalen, 1971). The constant in Eq. (5) depends solely on f, f1 , and f2 . It provides 
an offset to '¢21 indicating a prior preference for one of the two choices. 

As '¢n is linearly dependent on the data, it too has a Gaussian-shaped probability 
distribution for any particular image. When the image is one or the other of the two 
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hypothesized images, two distinct probability distributions of 1/;21 will result. A measure of 
the degree of distinguishability between the two hypotheses is the difference of their mean 
values divided by their rms width, which, from (3) and (5) is 

(6) 

where the subscript SKE indicates the signal is known exactly in the data. See (Van Trees, 
1968) for details. This situation provides the best possible discrimination since the full 
image is specified. Any lack of knowledge about f can only introduce more uncertainty into 
the interpretation. Note that as 0'0 ~ 0, d~KE ~ oo implying perfect discrimination. This 
derivation obviously ignores the potential ambiguities caused by artifacts in reconstructions 
that can occur because oflimited data and only includes uncertainties in the measurements. 

2.2 RECONSTRUCTION PROBLEM 

In the reconstruction problem, we seek to estimate all pixel values in the original scene. An 
appropriate Bayesian solution to this problem is the image that maximizes the posterior 
probability or, equivalently, minimizes the negative logarithm of the posterior probability. 
For the unconstrained MAP solution f, it is necessary that 

(7) 

However, under the constraint that the solution should be nonnegative, the derivative with 
respect to f; must be zero only when f; > 0; a negative derivative is permissible on the 
boundary f; = 0. In computed tomography (CT), the matrix operation HT 

is the familiar backprojection process. 
A consequence of the prior is to pull the reconstruction away from the actual value 

in the original image, an effect studied by Hanson (1990b) in unconstrained tomographic 
reconstructions. The extent of this biasing effect depends on the relative weights of the 
two terms in Eq. (2). As the prior contribution vanishes, the MAP result approaches the 
maximum likelihood (or least-square residual) solution. 

2.3 ANALYSIS OF A LOCAL REGION 

Instead of asking for an estimate of the original image, suppose that we ask a different 
question: which of two possible objects exists at a specific location in the image? The rest 
of the image suddenly becomes irrelevant. To address this question, we assume that within 
the image domain, a local region 'D is to be analyzed. Inside 'D the image f is assumed to 
be given by either f'Dl, and f7)2. Now the parameters in the problem are not the full set 
of image values f, but rather fe, the image values in the disjoint exterior region [and the 
two possible choices for 'D. With Bayes' law the posterior probability may be written as 
p(fe, f.Diclg) ex p(glfe, fvk)p(fe, fvk) ex p(glfe, fvk)p(f). In the last step we have chosen to 
avoid explicit specification of a prior on fvk, allowing it to be implicitly included in the 
general prior for f. 

As the new question regards only the region 'D, the image values fe outside 'D are 
irrelevant. Probability theory specifies that we integrate the posterior probabilities over 
the unwanted variables in the problem, namely over the image values outside 'D. If the 
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problem at hand is to decide between two possible subimages, fm or fm, the decision 
variable should be the ratio of the two marginal posterior probabilities (Van Trees, 1968; 
Whalen, 1971), or equivalently its logarithm 

[ JE p(fE, fmlg)df] 
'1/J =log J ( I ) , E p fE, fzn g df 

(8) 

where the integrals are to be carried out only over the external region [ and include 
all possible image values not disallowed by constraints. Within the context of Bayesian 
analysis, this decision variable logically follows from the statement of the problem. Hence, 
we assert that it should yield optimal decisions. The ideal observer uses Eq. (8) to make 
binary decisions regarding a local region. 

Under certain circumstances these integrals may be difficult to estimate accurately. 
However, when dealing with the Gaussian prior- and likelihood-probability density distri­
butions presented in Sec. 2.1, we expect the posterior-probability density p( fE, fvk I g) to 
decrease rapidly from a unique maximum. Using fEk to designate the image in the exterior 
region that maximizes the posterior probability for the subimage fvk, we are prompted to 
rewrite the above ratio as, 

7/J=log[p(~El,fmlg)Kl] , (9) 
p( f£2, fmlg) K2 

where the phase-space factor is 

[(k = , 1 { p(fE, fvklg)df, 
p(fEk, fvklg) JE 

(10) 

which accounts for the extent of the spread in f-space of the posterior-probability density 
distribution about its constrained peak value p(fEk, fvklg). 

Generally fEl f:- f£2, because a change in the model fv alters the projections, implying 
that a different exterior image will minimize the posterior probability. In many situations, 
however, replacing the local region of the MAP solution with either fm or fv2 may have 
little effect on the predicted projection values. Then, p(fE, fvklg) is independent of fvk 
and, to good approximation, fn = f£2 = f£, so both [(factors in Eq. (8) are the same and 

7/J=log [p(~E,fv1lg)]. (ll) 
p(fE,fmlg) 

In these situations, the decision variable can be given adequately by the change in the 
log(posterior probability) induced by replacing the MAP solution f in D with the two 
models, leaving the exterior region unchanged. 

For unconstrained solutions of Eq. (7), the [(factor is independent of fvk. because the 
shape of the Gaussian posterior-probability distribution is governed by the full curvature 
of¢>, namely R;;- 1 + R£1. Then the ](factors in Eq. (9) cancel and 

7/J=log [p(~n,fmlg)]. (12) 
p( f£2, fmlg) 

The argument of the logarithm is called the generalized posterior-probability ratio (Van 
Trees, 1968). Equation (12) may not be a good approximation to (8) for constrained 
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solutions, as the contribution to the ~hase-space K factor from the integral over each f; 
depends on the relation of the peak in fe; to the constraint boundary. Nonetheless, because 
of its simplicity, we use Eq. (12) and reserve for the future an investigation of a better 
approximation. 

To evaluate Eq. (12) for subimages ftn and f'P2, it is necessary to find the pair of 
exterior images, fe1 and fe2, that maximize the posterior-probability density. In other 
words, one must find the maximum a posteriori or MAP reconstruction in the exterior 
region with the image inside the local region fixed by the parameter values. To extend 
the binary decision problem to one in which the local region is described by a model 
whose parameters are to be estimated, it becomes necessary to simultaneously estimate the 
parameters and reconstruct the exterior region with the aim of minimizing the posterior 
probability (Hanson, 1991). 

We employ the iterative method described by Butler, Reeds, and Dawson {1981) to 
find the constrained MAP solutions. See (Hanson and Myers, 1991; Hanson, 1991) for more 
details. 

3. Methodology 

We demonstrate the use of the Bayesian approach to making decisions 
about a local region in a reconstructed image with a very simple example: detection 

of disks based on a very limited number of noisy projections. This binary discrimination 
task is employed because it is theoretically tractable, it is easy to perform the required 
decision-making procedure, and it is possible to summarize the results simply. 

3.1 MONTE CARLO METHOD TO EVALUATE TASK PERFORMANCE 

The overall method for evaluating a reconstruction algorithm used here has been described 
before (Hanson, 1988a, 1990a). In this method a task performance index for a specified 
imaging situation is numerically evaluated. The technique is based on a Monte Carlo 
simulation of the entire imaging process including random scene generation, data taking, 
reconstruction, and performance of the specified task. The accuracy of the task perfor­
mance is determined by comparison of the results with the known original scene using an 
appropriate figure of merit. Repetition of this process for many randomly generated scenes 
provides a statistically significant estimate of the performance index (Hanson, 1990a). 

3.2 SPECIFICATIONS OF DETECTION TESTS 

The imaging situation is chosen in an attempt to maximize the possible effect of re­
estimation of the exterior region implied by the full Bayesian treatment. The original scenes 
contain either one or two disks, all with amplitude 0.1 and diameter 8 pixels. The disks are 
randomly placed, but not overlapping, within the circle of reconstruction of diameter 64 
pixels. The background level is zero. Enough scenes are generated in the testing sequence 
to provide 100 disks with amplitude 0.1 and 100 null disks placed in the background region. 

The measurements consist of four parallel projections, each containing 64 samples, 
taken at 45° increments in view angle. Measurement noise is simulated by adding to each 
measurement a pseudorandom number taken from a Gaussian distribution with a standard 
deviation of 2. The peak projection value of each disk is 0.80. From Eq. (6), it is possible 
the calculate the signal-known-exactly dectectability, d'sKE = 1.89. This result defines the 
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upper limit to the dectectability index that should be achievable for the stated measurement 
situation. in To reduce aliasing artifacts in the reconstruction, the projection data used 
for reconstruction are presmoothed using a triangular convolution kernel with a FWHM 
of 3 sample spacings. As a result, the expected rms noise value in the smoothed data is 
reduced very nearly to 1.0. Thus for all cases studied we use the noise covariance matrix 
Rn = diag( a!) = (1.0 )2. With this assumption we are ignoring the correlations in the data 
caused by presmoothing. 

For the Gaussian prior probability distribution we employ the ensemble mean f; = 
0.0031 = constant, which is the average value of the scenes containing two disks. We 
assume the ensemble covariance matrix is diagonal with Rr = diag( ai) and explore the 
effect of choosing different values of O"f. 

The stated task is to detect the presence of the disks under the assumption that the 
signal and background are known exactly (SKE) only in a 2D local region. As the rest of 
the image is unspecified, the the measurements are not SKE, as assumed in the derivation 
of Eq. (6). The various strategies for making this binary decision are presented in the next 
section. A useful measure to summarize the performance of binary decisions is the detection 
index dA, which is based on the area under the Receiver Operating Characteristic (ROC) 
curve. The ROC curve is obtained in the usual way (Hanson, 1990a) from the histograms 
in the decision variable for the signal-known-present and the signal-known-absent tests. 
Once the ROC curve is generated and its area A determined, then dA is found using 
dA = 2 erfc- 1 {2(1 - A)}, where erfc-1 is the inverse complement of the error function. 
There are good reasons for not using the detect ability index d 1, which is based on the first 
and second moments of the histograms of the decision variable (Wagner et al., 1990). For 
a fixed number of binary tests, the relative statistical error in dA is smallest when dA is 
about 2.2 (Hanson, 1990a). The imaging situation should be arranged to keep dA roughly 
between 1 and 3.5 to optimize the statistical value of the testing procedure. 

3.3 DECISION STRATEGIES 

For the simple binary discrimination tests performed here, only two parameters are needed 
to describe the model for the local region - the background level and the disk amplitude 
relative to the background. The background is assumed to be constant. The position and 
diameter of the disk are assumed to be known. The edge of the disk is linearly ramped over 
2 pixels in radius to roughly match the blur caused by the reconstruction process. The local 
region of analysis is assumed to be circular with a diameter of 14 pixels and centered on 
the test position. When the disk is assumed present, the amplitude is set to 0.1 and when 
assumed absent, 0. The background level is 0 for both tests. Because of this choice for the 
model, it should be understood that all references to the amplitude of the disk implicitly 
mean relative to the surrounding background, that is, the disk contrast. 

In all the decision strategies except method E, a decision variable 
is evaluated for each of the two hypotheses, and the difference between the two values 

is used to make the decision whether a disk is present or not. 
The following decision strategies are employed in this study: 

Method A) In the simplest possible approach, one uses the projection data directly. The 
decision is based on the difference in x2 for the two hypotheses. Explicitly, Eq. (5) is 
evaluated under both hypothesized subimages for the local region of analysis JJ. The image 
values outside the analysis region are implicitly assumed to be zero. If the background 
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Fig. 1. This composite image shows the process used to make the binary decision regarding the 
presence of a disk . The original scene (upper left) is reconstructed from four projections using 
constrained maximum a posteriori reconstruction (upper right) with ensemble standard devia­
tion ar = 1. To test the possible presence of a disk, that disk is placed into the reconstruction 
(lower left). Then the image outside the local region of the disk is 're-reconstructed' to obtain 
the image (lower right) that maximizes the posterior probability with the disk present. This 
procedure is repeated with the same region replaced by the background value (zero) . The 
difference in the logarithms of the two resulting posterior probabilities is used as the decision 
variable. 

is truly zero and only one disk is present in the scene, this decision variable operates at 
the statistical limit attainable in the absence of prior information as defined by Eq. (6). 
However, it is obviously deficient for complex scenes as it ignores the contributions to the 
projections arising from features outside the local region. 
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Method B) By Bayesian reckoning, the best possible decision variable for local analysis 
is given by Eq. (8). For this method we use the approximation given by the generalized 
posterior-probability ratio Eq. (12), which implies that for each choice of image for D, the 
exterior region is reconstructed to maximize p( fe, fvk I g). In actual practice, this second 
reconstruction step follows a preliminary constrained MAP reconstruction of the whole 
image as pictorially described in Fig. 1. 
Method C) This method uses Eq. (11) for the decision variable based on the posterior­
probability distribution associated with the MAP reconstruction. Readjustment of the 
reconstruction external to the analysis region for each test hypothesis is not required. This 
method was introduced by Gull and Skilling (1989) and studied by Myers and Hanson 
(1990) for an entropy prior. 
Method D) Method D proceeds from the constrained MAP reconstruction fMAP from the 
data. The decision variable is taken as the difference in If - fMAP 12 for the two models 
hypothesized for the local region. This method was used by Hanson and Myers (1991a) to 
compare performance of the Rayleigh task using MAP reconstructions based on Gaussian 
and entropy priors. It corresponds to using a likelihood approach using the reconstruction 
as the data assuming that the noise fluctuations in the reconstruction are uncorrelated 
and Gaussian distributed. This method therefore ignores the correlations in the posterior­
probability distribution, shown in Fig. 2, that are incorporated to various degrees by 
methods B and C. 
Method E) Method E also proceeds from the constrained MAP reconstruction fMAP. 

Unlike the preceding methods, the amplitude and background are varied to find the com­
bination of values that minimizes If - fMAP 12 . In this fitting process, both the relative 
amplitude and the background are constrained to be nonnegative. The amplitude so deter­
mined is used as the decision variable. This method was used by Hanson in many earlier 
studies (1988a, 1988b, 1990a, 1990b, 1990c ). It is closely related to the non-prewhitening 
matched filter, which would be optimal if the fluctuations in the reconstruction were un­
correlated and Gaussian distributed. 

4. Example 

A constrained MAP reconstruction of the first scene of the testing sequence for two disks 
is shown in Fig. 1. Because of the noise in the projection data, the presence of the disks in 
the original scene is obscured in the reconstruction. An interesting aspect of the posterior­
probability approach is that one may calculate the probability of a disk being present at 
any location in the reconstruction. Even though the reconstruction 

might be zero (the lower limit decreed by the constraint of nonnegativity) throughout a 
certain region, the probability of a disk being present in that region is finite and calculable. 
By contrast, any analysis method based solely on the reconstruction 

would not be able to distinguish two different regions that are completely zero. This 
point is emphasized by the contour plot in Fig. 2, posterior-probability distribution when 
the values of two nearby pixels are varied. The MAP solution for one of the pixels is zero, 
although both pixels actually fall within a disk in the original scene and should have the 
value 0.1. The plot shows how the prior probability shifts the posterior away from the 
likelihood. 

The test sequences generated to demonstrate the use of posterior probability in decision 
making are analyzed for several different values of the ensemble covariance matrix Uf. We 
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Fig. 2. Contour plot showing the correlation in -log(posterior probability) (solid line) for fluc­
tuations in two pixel values about the MAP solution for an assumed value of the ensemble 
standard deviation ur = 1.0. The first pixel is centered on the lower middle disk in the first 
scene (Fig. 1) and the other is three pixels down and three pixels to the left of the first. The 
dotted contours are for the likelihood and the dashed contours for the prior. 

have found before (Hanson, 1989b, 1990b; Hanson and Myers, 1991a; Myers and Hanson, 
1990) that the performance of vision-like tasks usually varies with the parameters that 
control the rms residual achieved by the reconstruction algorithm. For the present MAP 
algorithm, that parameter is the ratio urfu0 • Recall that u0 is fixed at its expected value 
of 1.0. The strength of the prior is proportional to 1/uj. As the prior becomes stronger, 
the rms residuals of the constrained MAP reconstructions increase. The disk amplitudes, 
measured as the average value over each disk relative to the average over its surrounding 
annulus (essentially method E), are steadily reduced. These amplitudes never come close 
to the actual value of 0.10, probably because there are so f~w views, giving rise to a gigantic 
null space (Hanson, 1987), together with so much noise. When a Gaussian prior with f; = 0 
is employed, which is nearly the case here, the MAP algorithm amounts to using minimum­
norm regularization. Therefore, control of the noise, which dominates the reconstructed 
field, can only be achieved by reducing the sensitivity of the reconstruction (Hanson, 1990b ). 

Table 1 summarizes the detectability results obtained in the tests described above for 



BINARY DECISIONS 323 

dA 
Method Decision Variable O"f = 0.02 O"f = 0.1 O"f = 0.2 O"f = 1 

A ~x· 1.75 same sam~ same 
(use data only) 

B ~log(posterior probability) 1.80 1.87 1.82 1.74 
(exterior re-estimated ) 

c ~log(posterior probability) 1.81 1.87 1.81 1.70 
(exterior fixed at fMAP) 

D ~If- fMAPI 2 1.80 1.76 1.67 1.47 
(use reconstruction only) 

E Disk amplitude 1.01 1.09 1.01 0.96 
(constrained fit to If- fMAPI 2) 

RMS residual 0.914 0.823 0.774 0.725 
<amplitude>disk 0.0005 0.0068 0.0134 0.0247 
<amplitude>bkg 0.0002 0.0014 0.0024 0.0039 

Table 1. Summary of the performance of the detection task for scenes containing two disks each 
obtained using the decision methods described in the text. 

two disks per scene. The absolute statistical accuracy of these dA values is about 0.25. 
Much better accuracy should prevail in comparisons between entries in the table, however, 
because they are obtained by analyzing the exact same data sequence. The dA value for 
the two-disk scenes based on using just the measurement data (Method A) is 1.75, in 
good agreement with the value of 1.89 estimated in Sec. 3.2. As only the likelihood is 
involved, this value is independent of O"f. tests is sets. Both methods of using the posterior 
probability (methods B and C) provide nearly the same detectability over a large range of ar 
values. Perhaps this consistent behavior stems from the ability of the posterior probability 
to fully retain the available information even though ar changes. There seems to be little 
advantage to re-estimation of the exterior of the local region to minimize the posterior 
probability implied by Eq. (12) in this imaging situation. There is a slight trend toward 
better detectability as ar gets smaller. The force of regularization imposed by the prior is 
overwhelming at ar = .02. For example, the reconstruction values lie between 0.0005 and 
0.0046; the nonnegativity constraint is not even engaged. We observe very similar trends 
for the single disk scenes as well. 

Method D, which is based only on the reconstruction, yields performance comparable 
to the methods based on the posterior probability for small ar values, but its performance 
drops off as O"f increases. Basing the decision on the estimated disk amplitude (method E) 
significantly c~ 45%) reduces detectability compared to the other methods. 

For unconstrained MAP with ar = 0.1, the dA values are nearly the same as those 
in Table 1, so the nonnegativity constraint has little effect on detectability in the present 
situation. In previous work involving a limited number of views, we have seen remarkable 
improvements in detectability wrought by the nonnegativity constraint (Hanson, 1988a, 
1988b, 1990c ). Although the less efficient method E was used in those studies, the principal 
reason for the ineffectiveness of nonnegativity in the present case is that it is more limited 
by noise than by the limited nature of the data. The large amount of noise is needed to 
limit dA within the range of reasonable accuracy as discussed in Sec. 3.2. The effects of 
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artifacts were enhanced in previous studies by adding several disks with large amplitude to 
the scene. In the present study there is only the presence of a second disk with the same 
amplitude outside a given analysis region. This extra disk can hardly give rise to significant 
artifacts. 

5. Discussion 

We have compared several methods for detecting small disks in tomographic reconstruc­
tions. The worst performance is provided by method E in which the amplitude obtained 
by fitting the MAP reconstruction is used as the decision variable. This choice is the same 
as the matched filter for uncorrelated, Gaussian-distributed, noise fluctuations, so it is 
probably more appropriate for unconstrained reconstructions than for constrained recon­
structions.A better decision variable is the mean-square difference between the model and 
the reconstruction If- fMAP 12 (Method D), which is equivalent to using a log(likelihood 
ratio) if the image is taken to be the input measurements and correlations in the recon­
struction fluctuations are ignored. This method provides much better results, especially for 
small CTf values. However, the performance of method D varies the most any of the methods 
over the range of CTf tried dropping significantly as CTf approaches the maximum likelihood 
limit. The best detectabilities are achieved by basing decisions on the calculated posterior 
probability, which takes fully into account the information contained in the measurements 
as well as in the prior knowledge. In the present tests, however, there is little benefit in 
re-estimating the exterior region. 

We note that as an image containing N pixels, the MAP solution (or a reconstruction 
of any type) corresponds to a singe point in anN-dimensional space. Any analysis based 
solely on such a reconstruction must necessarily ignore the complexity of the full posterior­
probability distribution, which corresponds to a cloud in the same N-dimensional space. It 
is the correlations embodied in the posterior-probability distribution that presumably set 
the ideal observer apart from mortals. A human observer viewing a reconstruction is, in a 
sense, handicapped by not having access to the full posterior probability distribution and 
thus may be limited to the use of a decision method similar to D or E. 

The full Bayesian treatment codified by Eq. (8) is expected to represent the ideal 
observer. 
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