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Bayesian reconstruction based on flexible prior models
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A new approach to Bayesian reconstruction is proposed that endows the prior probability distribution with an
inherent geometrical flexibility, which is achieved through a transformation of the coordinate system of the
prior distribution or model into that of the reconstruction. With this warping, prior morphological information
regarding the object that is being reconstructed may be adapted to various degrees to match the available mea-
surements. The extent of warping is readily controlled through the prior probability distributions that are
specified for the warp parameters. The complete reconstruction consists of a warped version of the prior model
plus an estimated deviation from the warped model. Examples of tomographic reconstructions demonstrate
the power of this approach.

1. INTRODUCTION

Often the geometrical structure or morphology of an ob-
ject to be reconstructed is known before data are taken.
When few measurements are available, the reconstruction
is usually underdetermined, which means that many solu-
tions are possible. Bayesian methods of reconstruction
can help to identify the best solution by taking into ac-
count characteristics of the object being imaged that are
known a priori. Knowledge of the object's characteristics
are incorporated in terms of prior probability distributions
on the appropriate physical parameters. These methods
have been shown to improve substantially the accuracy of
reconstructions obtained from limited data when good
geometrical information is employed in the prior model."2

However, if the actual object under study differs even only
slightly in size, shape, or position from the assumed geo-
metrical model, use of this kind of prior can lead to poor
reconstructions.

The above difficulties arise because the prior model is
typically considered to be fixed relative to the spatial coor-
dinate system of the reconstruction. 3 A superior ap-
proach is proposed in which the prior model for the object
that is being reconstructed is allowed to alter its geometri-
cal characteristics to accommodate the data by warping
the coordinate system of the prior model onto the coordi-
nate system of the reconstruction.4 Changes in size, po-
sition, and orientation of the model are accommodated by
a linear transformation between the two coordinate sys-
tems. Changes in shape are possible with nonlinear
transformations. Whereas it may seem counterproduc-
tive to add even more parameters to what is already a dif-
ficult reconstruction task, such parameters permit the
reconstruction procedure to adapt the shape of the prior
model to conform to the measurements. Within the
Bayesian framework, the parameters that are needed to
specify the coordinate transformation are determined as
part of the overall estimation-reconstruction problem of
finding the maximum of the full posterior probability dis-
tribution. One can readily control the degree and type of
warping through a judicious choice of the prior probability
distribution on the transformation parameters. A warp-
ing formulation with many degrees of freedom and wide

prior distributions on the parameters results in a flimsy
prior model. One can choose strong constraints on the
parameters, to maintain closely the initial shape, or weak
constraints, to allow the shape to become fairly contorted.

The power of this new approach to prior models is illus-
trated through a few examples of tomographic reconstruc-
tion. For simplicity, the coordinate transformations are
restricted to low-order polynomials in these examples.

2. BAYESIAN APPROACH

Fundamental to the Bayesian approach is the posterior
probability, which is supposed to summarize the full state
of knowledge concerning a given situation. Given the
data g, the posterior probability of any image f is provided
by Bayes's law in terms of the proportionality

p(fjg) I p(gI lp(f), (1)

where p(g I f), the probability of the observed data g given
f, is called the likelihood and p(f) is the prior probability
of f. The likelihood is specified by the assumed probabil-
ity distribution of the fluctuations in the measurements
regarding their predicted values (in the absence of noise).
The prior probability density p(f), or the prior, expresses
the prior information in terms of the expected relative
frequency of occurrences of all possible images. Any
known constraints concerning impossible images ought to
be included explicitly or implicitly in p(f). The complete
result of the Bayesian approach is constituted in the full
p(f g). However, we humans have difficulty visualizing
such a multidimensional probability distribution. Thus it
is normally desired that a single image be presented as the
reconstruction. An appropriate choice is the image that
maximizes the a posteriori probability, called the maxi-
mum a posteriori (MAP) estimate.5'6

Essential to the Bayesian approach is the use of prior
knowledge to help guide the result in the desirable direc-
tion. Without the prior, the MAP solution would collapse
to nothing more than the maximum-likelihood estimate.
However, an infinite number of solutions exist when the
data are quite limited, which is precisely the situation I
aim to address. Thus the prior is indispensable for weed-
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ing out unlikely solutions. The prior probability distribu-
tion may be thought of as a statement of the type of result
that is preferred. The problem with the typical Bayesian
approach is that the model for the prior is usually consid-
ered to be geometrically fixed.3 This restriction might
seem curious because the approach is grounded in proba-
bility theory and thus ought to allow for a continuum of
possibilities ranked on the basis of their relative likeli-
hood. The possibility of a change in position or shape of
the prior model should be an integral part of the Bayesian
approach. The proposed extension to the standard MAP
technique overcomes its rigid definition of the prior and
provides the desired flexibility in geometry as well as
amplitude.

A. Standard MAP Formulation
I begin by briefly summarizing the standard MAP ap-
proach. For a fuller treatment, see Refs. 2 and 3. Let us
assume that the amplitudes of the N pixels of an image
are represented by a vector f of length N We are given M
discrete measurements that are linearly related to the am-
plitudes of the original image. Assume that these mea-
surements are degraded by additive noise with a known
covariance matrix Rn, which describes the correlations
between noise fluctuations. The measurements can then
be represented by a vector of length M:

g= Hf + n, (2)

where n is the random noise vector and H is the measure-
ment matrix. In computed tomography the elements of
the jth row of H describe the weight of the contribution of
each image pixel to the jth projection measurement.

Because the probabilities are a function of continuous
parameters, namely, the N pixel values of the image, they
are actually probability densities, designated by a small
p( ). From Bayes's law [Eq. (1)] the negative logarithm of
the posterior probability density is given by

-log[p(flg)] = o(f) = A(f) + 11(f), (3)

where the first term comes from the likelihood and the
second term comes from the prior probability. Assuming
additive Gaussian noise, the negative log(likelihood) is just
half of chi squared:

-log[p(g|f)] = A(f) = (1/2)(x2)

= (1/2)g - Hf)TRn-(g - Hf), (4)

which is quadratic in the residuals. Of course the choice
for the likelihood function should be based on the actual
statistical characteristics of the measurement noise,
which we can assume are known a priori.

The second term I(f) represents the prior probability
distribution, which should incorporate as much as possible
the known characteristics of the original image. For
simplicity, one often chooses a Gaussian distribution for
the prior probability, whose negative logarithm may be
written as

-log[p(f)] = H(f) = (1/2)(f - f)TRf-1 (f - 5,

where f is the mean and Rf is the covariance matrix of the
prior probability distribution. Equation (5) can provide
beneficial information in at least two ways. First, f can
provide geometric or morphological information regarding
the object being reconstructed by the way in which it
varies with position. Second, the matrix Rf describes the
extent of certainty regarding how close f is likely to be to
f. The size of the elements of Rf determines the strength
of the constraint that the prior places on the solution.
Larger values indicate greater uncertainty and a weaker
constraint.

In the absence of any subsidiary constraints on f, at the
minimum of so(f), that is, at the MAP solution,

Vfp(f) = VfA(f) + Vf [(f) = 0. (6)

Under the assumption of Gaussian probability distribu-
tions, A(f) and I(f) are quadratic in f; hence the resulting
MAP equations are linear in f. The solution can there-
fore be obtained by using standard matrix methods, which
explains the popularity of the Gaussian assumption.

Consider an imaging situation in which all possible ob-
jects have the same shape and a known constant ampli-
tude. In such a case it would be expected that the elements
of Rf would be small. However, if the objects cover a wide
range of sizes, the elements of Rf must be correspondingly
increased in the standard approach to express the lack of
knowledge as to size. By using an approach that provides
one with the ability to vary size and shape flexibly, the
elements of Rf can be kept small, thereby properly ex-
pressing one's state of knowledge concerning the ampli-
tude variation for an object of any particular size. The
uncertainty in size can then be incorporated properly in
the specification of the probability distribution that is as-
sociated with geometry rather than amplitude.

B. MAP Based on Flexible Prior
The difficulty with the standard MAP approach described
in Subsection 2.A is that f and Rf are spatially fixed. In
any particular situation the actual object may differ in
location, size, or shape. Any of these inconsistencies can
destroy the usefulness of the prior.2 7

To build geometrical flexibility into the prior, for ex-
ample, we may consider f to be a function of several pa-
rameters represented by the vector a, that is, f(a). The
parameters in vector a control the position, size, and
shape of the prior distribution in a manner yet to be speci-
fied. Writing the reconstruction as

f = d + f, (7)

where d is the deviation of the reconstruction from f, we
stress the equal importance of d and a by taking them to
be the independent variables in the reconstruction prob-
lem. Bayes's law [Eq. (1)] must now be restated in terms
of d and a rather than f. After d and a are determined,
the full reconstruction is given by Eq. (7). The negative
log(likelihood) is expressed as

-log[p(g d, a)] = A(d, a)

= (1/2)[g - H(d + f)]TRn-'

X [g- H(d + f]. (8)
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In Bayesian tradition, we must supply a prior probability
distribution for all variables. As above, we might use a
Gaussian distribution for the prior probability for the pa-
rameters a, which augments the prior on the pixel values.
Then the negative logarithm of the full prior probability
may be written as

II(d, a) = (1/2)dTRd-ld + (1/2)(a - a)TRa-(a - a), (9)

where a and d are assumed to be statistically independent
a priori. The choice of a Gaussian distribution for the
prior on a is arbitrary at this point, although its reason-
ableness will be shown below. The first term is similar to
Eq. (5), with Rd taking the place of Rf. The covariance
matrix Rd for the deviations from the model f(a) is natu-
rally a function of a because it presumably follows the
model. The optimization function p is the sum of Eqs. (8)
and (9). The choice of the relative weight of the likeli-
hood [Eq. (8)] and the prior [Eq. (9)] is critical because it
affects how forcefully the information contained in the
data is transferred to the observer of the image.6

I note in passing that, although one is primarily con-
cerned with morphological flexibility here, the parameter
vector a may include other types of flexibility. For ex-
ample, one element of a might be the magnitude of f inside
the object, which may not be well known beforehand.
This formalism can clearly provide the prior model with
many new types of degrees of freedom.

C. Reconstruction Procedure
In reconstruction we seek to estimate all pixel values in
the original scene. It is necessary to estimate d and 
and therefore a. The self-consistent Bayesian solution
that maximizes the a posteriori probability must satisfy

Vdp = O and Va'p = 0, (10)

provided that the solution is not otherwise constrained.
The gradient of the likelihood with respect to d and is

VdA = VA = HTR.-[g - H(d + f)], (11)

from which we obtain, for the gradient of p with respect
to d,

Vd'p = Rd-ld + HTRn[g - H(d + f)]. (12)

In computed tomography the matrix HT corresponds to
the well-known backprojection operation.

The gradient of p with respect to parameter aj is

[Vap]ja= = [Ra'(a - a)b + i ai aaX (13)

where the sum is over the pixels of the reconstruction.
The first term comes from the prior [Eq. (9)], and the
second comes from the likelihood [Eq. (8)]. The first
quantity inside the sum is given by Eq. (11), and the sec-
ond is given by the functional dependence of f on aj.

The MAP solution characterized by Eqs. (10) can be
found by the method of steepest descent with the use of
Eqs. (12) and (13) for the gradients. Although this
method is computationally inefficient, it demonstrates the
usefulness of the flexible prior method. The inclusion of

parameters on which the solution may depend in a nonlin-
ear fashion can lead to a situation in which the solution is
not unique. This result seems to be a necessary conse-
quence of more complex, and realistic, modeling of the
solution. We suppose that it is feasible to make an intelli-
gent choice for the initial guess, one whose basin of con-
vergence includes the most appropriate solution.

3. WARP

One particularly advantageous way to introduce geometri-
cal flexibility into a fixed prior probability distribution on
the image amplitude is to transform the coordinate system
of the reconstruction into that of the prior probability dis-
tribution. The benefit of this method is that it can be
applied to any prior distribution. The prior distribution
on the image f need not be given in parameterized form to
generate the geometrical distortion.

Assume that the prior is initially specified as a function
of the spatial coordinates (x' y'). A warping of that prior
is achieved by transforming the (x, y) coordinates of the
reconstruction pixels to the original (x' y') coordinates:

x'= x + u(x,y), Y = y + (x,y). (14)

Then the ensemble mean in the reconstruction domain
f(x, y) is actually given by f[x'(x, y), y'(x, y)], whose value
is determined by interpolation, if (x' y') is discretely
sampled. The variables u and v therefore represent the x
and y displacements of a point (x, y) in the new coordinate
system (x' y'). Obviously this coordinate mapping can be
quite general in nature. However, it should be restricted
in some way to reflect the realistic range of possibilities
for the warped shape of the prior model. In most cases it
is desirable that the coordinate transformation be one to
one in the domains of interest, which implies that the
transformation is invertible. Another generally desirable
property might be that the transformation be continuous,
preserving the locality of neighborhoods. The warping
can be accomplished equally well by means of the inverse
transformation, that is, from (x' y') to (x, y). The choice
is merely a matter of computational convenience and de-
pends on the specific situation. More detail regarding
the formulation of the warp can be found in Ref. 9.

A. Physical Analogy
It is appealing to interpret a two-dimensional warp in
terms of an analogous physical system, a sheet of elastic
material that undergoes distortion while being con-
strained to lie in the plane. Then the constraints that are
placed on the warp roughly correspond to properties of the
material being distorted, such as its stiffness. However,
it must be recognized that it is not the substance of the
object that is actually being warped. In material mechan-
ics the strain corresponds to the first derivative of the
mapping. For example, dulx specifies the amount of lin-
ear stretching in the x direction producing normal strain,
which can occur as either expansion (>0) or contraction
(<0). The stress that is induced in the material is propor-
tional to the strain. Thus the strain-energy density,
found by integrating the stress with respect to the strain,
is proportional to the square of the strain (see Ref. 10,
p. 150). Then, for small deformations in linear materials
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obeying Hooke's law, the normal strain-energy density is
written as

aOu, 2
Wnormal = C, ~-

aOx

a 2
+ c2 i i

aOy

Material elements can experience another type of strain
in the form of twisting, which induces shear. For small
distortions the shear strain-energy density is

aOu a 2
Wshear = C3 - + - (16)

ay axi

The coefficients cl and c2 are proportional to the effective
elastic moduli in the x and y directions, respectively, and
C3 is proportional to the shear modulus of the fictitious
material. In an actual physical system, they are a prop-
erty of the material (see Ref. 10, p. 365). For the flexible
prior, they are set to achieve the properties desired for the
warping of the prior, which should be based on prior infor-
mation concerning the types of geometrical variation ex-
pected for the objects that are being imaged.

The Jacobian of the transformation from (x, y) to (x' y')
is the determinant

a(xY') _ax' ay' ax' ay'
a (x, y) Ax y ay ax

1 au av au av au av (17)

ax Oy ax ay ay ax

which gives the ratio of the change in area of a differential
element produced by the transformation. For the trans-
formation to be invertible, the Jacobian must be nonzero.

This conceptual physical model of geometrical distor-
tion may have no connection with the material from
which the object being reconstructed is actually composed.
Indeed, the choices for the ci in the above equations are
not restricted by the usual constraints that regulate physi-
cal systems.'" Instead, the choices should reflect the
range of reasonable configurations that the prior distribu-
tion can assume for the class of objects being imaged. The
Poisson ratio v, which specifies the amount of contraction
of an unconstrained material element in the direction per-
pendicular to an applied tension, may well take on values
that would be considered unphysical for real materials. It
might be set to zero or even to a negative value. For ex-
ample, v = -1 indicates that expansion in one direction is
most likely accompanied by expansion in the orthogonal
direction as well. Such a value corresponds to a prefer-
ence for similarity transformations, those that maintain
shapes. Also, because material is not actually being dis-
torted in the warping process, it is not necessary to scale
the amplitude of the prior by the Jacobian of the transfor-
mation to conserve mass.

In this physical analogy, the MAP equation [Eq. (6)] cor-
responds to the solution of a problem in static equilibrium.
The A(f) represents the potential energy associated with
the measurements, and l(f) represents the potential en-
ergy associated with the prior information. The gradi-
ents of these potentials represent forces. The force that
moves the solution away from its default, which is defined
by d = 0 and a = a, is provided by the data in the form of
VdA and VGA, respectively. Equation (6) states that the
MAP solution balances the force of the data against the
force of the prior. We may again note that linear depen-
dence of the force on displacements from default values

arises directly from the assumption of Gaussian-shaped
probability distributions.

B. Priors on the Warp
We can take a cue from the above physical model as to how
to specify constraints on the warp. Clearly the degree of
local distortion is related to the first derivatives of the
mapping. Since the strain-energy density is proportional
to the square of the first derivatives, a reasonable way to
control the amount of distortion is by limiting the strain
energy. For example, we may wish to minimize the total
normal strain energy, given for small deformations by

Wnormal = fWnormaldXdy

= Lcl~ Ox/ +c2(x,y) \.CX y)J dxdy,

and similarly for the total shear energy:

Wshear = FWsheardxdy = c3(x,y) (- + a dxdy.
f fOy axi

(18)

(19)

One chooses the region of integration in Eqs. (18) and (19)
in a manner that is consistent with the problem. For
large deformations a more complete calculation must be
done. In accordance with the physical interpretation of
the preceding section, we take the negative logarithm
of the prior probability on the warp to be proportional
to the total strain energy WtOta = Wnormai + Wshear. In
other words, the prior probability on the warp is a Gibbs
distribution:

p(warp) = exp(-Wtota1). (20)

The role of the coefficients ci in Eqs. (15) and (16) is then
clearly identified as that of specifying the strength of the
prior on the warp relative to the prior on the amplitude
and relative to the likelihood. Whereas the preceding ex-
pressions are satisfactory for our present purposes, a
more satisfactory formulation in which the expressions
are independent of the choice of the initial orthogonal co-
ordinate system is possible.9

Selection of these coefficients amounts to choosing the
priors on the warp and should correspond to knowledge of
the relative degrees of variability that are encountered for
the objects under study. If it were deemed desirable in
the warping to maintain right angles between grid lines,
as in conformal mapping, then no shear would be allowed,
even locally. This constraint could be enforced by requir-
ing the shear energy density [Eq. (16)] to be zero, which
would implicitly place constraints on the parameters of
the warp. Alternatively, conformality can be achieved by
making C3 very large compared with cl or c2 ."

Because constraints of this type may be expressed in
general terms, one need not be limited to the simple poly-
nomial transformations that are assumed in Subsec-
tion 3.C below. Quite general forms are possible because
the constraint of minimizing the total strain energy of the
warp will sufficiently control the warp parameters. If ex-
treme local distortion were desired, one could use a finite-
element representation to describe the mapping.'2 Such
an approach, taken by Brackbill and Saltzman,"1 seems
particularly well suited to the present method because
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Fig. 1. Examples of warps achieved through a coordinate trans-
formation consisting of the polynomial warp, Eqs. (21), including
only the constant terms (upper left) and the linear terms (others).
The scene that is being warped consists of a square, centered in
the (x' y') plane, with a. superimposed Cartesian grid. The lower-
right image demonstrates the. shearing effect that occurs when
the mapping is not conformal.

images are typically represented by pixels that give the
image values on Cartesian grids. The finite elements
that one uses to represent the image need not coincide
with the pixel representation. However, such a represen-
tation for the warp would preserve line elements that were
located between pixels and thus would be useful in main-
taining a prior that was defined on those line elements.'3

C. Polynomial Warp
Some simplicity is achieved if we express the coordinate
transformation [Eqs. (14)] as a polynomial expansion:

x' = amnx y;

Use of the polynomial expressions of the warp [Eqs. (21)]
results in expressions for the strains that are likewise
polynomials with coefficients that are quadratic in the amn
and bmn parameters. Then the total strain energy Wtota
will also be quadratic in these warp parameters. The pro-
posed prior on the warp reproduces the form of the second
term of Eq. (9), which was based on a Gaussian prior
probability distribution. The matrix R'-' is therefore re-
lated to the ci in Eqs. (15) and (16). The degree to which
distortion occurs is governed by the balance between Raj'
and Rd-' in Eq. (9) and on the strength of these priors
relative to the likelihood. If the range of integration in
Eqs. (18) and (19) subtends a rectangular region, e.g., the
full reconstruction, and the ci are constant, then the inte-
grals are easy to perform. However, in many applications
it might make more sense to integrate only over the ex-
tent of the object that is being warped, which could com-
plicate the analytic evaluation of Eqs. (18) and (19).

Although the warp that is given by the polynomial ex-
pansion is convenient, it suffers from a few fundamental
drawbacks. First, it does not provide much local flexibil-
ity without including high orders. This limitation might
not be a significant problem for applications that involve
only small distortions. Second, when second- or higher-
order terms are admitted, the mapping will fold back on
itself at some value of x and y. Severe mapping distor-
tions are bound to occur, although they may happen only
outside the support of the reconstruction and hence may
be inconsequential. A minor computational difficulty of
the polynomial warp is that each parameter amn or bmn
globally affect f, so the derivative with respect to each pa-
rameter in Eq. (13) involves a sum over all pixels. In con-
trast, if each warp parameter affects only a local region,
as in a finite-element representation of the warp, the sum
would be limited to that local region.

(21)

where the coefficients amn and bmn are represented as ele-
ments in the parameter vector a introduced in Subsec-
tion 2.B. It is recognized that the constant terms in
Eqs. (21), ao0 and boo, amount to a simple shift in the posi-
tion of the prior. The linear terms al0 , a0 l, blo, and bol
can produce change of scale, rotation, and skewing of the
coordinates, which is called shear. The effects elicited by
these terms are shown in Fig. 1. The quadratic terms can
give rise to bending of the coordinate grid, as shown in
Fig. 2. While the quadratic terms can severely skew the
coordinates, certain combinations of coefficients can re-
sult in conformal mapping, which locally preserves the
right angles between the original coordinates.

With Eqs. (21) the second factor inside the sum in
Eq. (13) is

af, fi ax' mn afi,
aamn ax' aamn ax'

Of, ay, ab y' = xm y r of- (22)

Fig. 2. Examples of warps achieved through a coordinate trans-
formation consisting of the polynomial warp, Eqs. (21), including
only the quadratic terms. Although the shape of the square
(upper left) appears to be unaltered, the interior grid is strained.
The lower-left image shows a conformal mapping in which the
right angles between grid lines are locally preserved.
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Fig. 5. ART reconstruction (lower left) that was obtained from
five noiseless parallel views poorly reproduces the original
sausage-shaped object (upper left). The MAP reconstruction
(lower right) that was obtained from the same data is based on
the circular prior distribution (upper right) subjected to a poly-
nomial warp of third order, constrained to possess left-right
symmetry.

5. DISCUSSION

In the examples presented here no constraining limits on
the reconstruction values were employed. The use of con-
straints, such as nonnegativity, has been shown to provide
a bona fide benefit for reconstruction from limited
data.'6 '9 The use of such amplitude constraints in com-
bination with the flexible prior could prove to be ex-
tremely powerful. The constraints for each pixel might
depend on its position relative to the warped prior model.
For instance, the reconstruction values in the above ex-
ample could be required to be zero outside the initial ob-
ject model and lie between zero and an upper limit inside.
These constraints would carry over into the final recon-
struction coordinates.

The polynomial mapping that I used here was chosen for
its simplicity. The ultimate implementation of the pro-
posed warp would be in terms of a finite-element represen-
tation.""2 Then every aspect of the warp might depend
on the position in the prior model. For example, Ra-' in
Eq. (9) or, equivalently, the ci in Eqs. (15) and (16) that
describe the rigidity of the warp might be a function of
(u, v) and therefore a function of (x, y). With this type of
model, some regions of the object could be permitted to
distort considerably while others remained stiff. With
the latitude that is available in the flexible prior approach,
the algorithm developer gains exquisite control over the
reconstruction process.

I have not addressed the issue of how to choose the
strength of the priors on the warp parameters. This
choice is critical. The amount of warping is regulated by
the strength of the priors on the warp relative to likelihood
and by the balance between the deviation from the warped
model and the amount of warp regulated by the priors'
strength relative to the strength of the prior on the devia-

tion. The relative strengths of the individual terms in
Eq. (9) affect the shape of the warped grid lines." If one
assigns too much strength to the prior, the final recon-
struction will generally be pulled toward the default solu-
tion, which results in a significant bias away from the
truth. These complex relationships must be dealt with in
the future.

In this discussion I have assumed that the fictitious
warping material possesses only a linear response to de-
formations. Many other types of nonlinear behavior are
possible. For example, the material might yield above a
critical strain, permitting it to flow when the data de-
mand large warps. After yielding, the material could
even heal itself to take on its original stiffness. If the
reconstruction process is viewed as a time-dependent
problem, then similar effects can be attained with elasto-
viscous materials for which the solution is allowed to creep
into its final form.

I have only considered the use of bulk properties of the
warped material. In some three-dimensional situations,
it may be most appropriate to warp surfaces or curves
(two- and one-dimensional manifolds). What happens
inside the volume may be unimportant or of secondary
interest. The strain-energy expressions would then be
changed to focus on these aspects of the geometry. An
example of a one-dimensional manifold is the snake model
that was proposed for use in computer vision by Kass
et al.,20 which mimics an elastic rod that can be bent into
a curve (in two or three dimensions) to conform to some
specified image features. Such an approach is used there
to regularize an otherwise ill-posed problem in much the
same way that the flexible prior models used here regular-
ize the reconstruction problem.

The notion of introducing geometrical flexibility into
Bayesian estimation clearly extends to all types of recon-
struction problems, including deblurring, decoding of
coded-aperture images, and the solution of inverse prob-
lems in general. This new approach to image reconstruc-
tion has ramifications in virtually every other field of
imaging. Flexible models are quickly finding use in
many aspects of computer vision.2 -24 They are being
used to match magnetic resonance images to generic
shapes from a brain atlas.25 26 Indeed, the flexibility that
warping provides will likely become an essential tool
in every area of image analysis and image recognition.
Without this flexibility computer models cannot capture
the essential features of the real objects that they are sup-
posed to represent.
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