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Abstract

Projection data that are limited in number
and range of viewing angle cannot completely
specify an arbitrary source function. In the
space of all permissible functions there exists
a null subspace about which the projection mea-
surements provide no information. Deterministic
reconstruction algorithms usually set the null
space contributions to zero leading to severe
reconstruction artifacts. A Fit And Iterative
Reconstruction (FAIR) method is proposed that
incorporates -a priori knowledge of the approx-
imate functional form of the source. In FAIR
the parameters of this functional model are
determined from the available projection data
by a weighted fitting procedure. The resulting
distribution is then iteratively revised to
bring the final estimate into agreement with
the measured projections using a standard algo-
rithm such as ART.

Introduction

There are many situations in which it would
be desirable to obtain decent tomographic recon-
structions of an object from projection data that
are limited in number and /or range of viewing

angle 1. Unfortunately there are severe limita-
tions imposed upon deterministic reconstruction
algorithms by limited angle projection data that
cannot be overcome without the use of a priori

knowledge about the object to be reconstructed 1
We will review these limitations that arise from
the null space corresponding to the available pro-
jection data. A new approach that incorporates
the expected shape of the reconstructed object
will be shown to circumvent the difficulties en-
countered by deterministic methods.

Measurement space - null space

The CT problem may be stated as follows:
given a finite set of projections of a function of
two dimensions f(x,y) with compact support, obtain
the best estimate of that function. The projec-
tions may generally be written as a weighted 2 -D
integral of f(x,y)
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pi = II hi(x,y)f(x.y)dxdy, (1)

where the hi are the weighting functions and i=

1, 2, ...N for N individual measurements. we will
refer to the hi as response functions. In the CT

problem the hi typically have large values within

a narrow strip and small or zero values outside
the strip. If the hi are unity within a strip and

zero outside, eq. 1 becomes a strip integral.
For zero strip width, it becomes a line integral.
These latter two cases are recognized as idealiza-
tions of the usual physical situation. The gener-
ality of eq. 1 allows it to closely represent
actual physical measurements since it can take
into account response functions that vary with
position.

The unknown function f(x,y) is usually re-
stricted to a certain class, e.g., the class of
all integrable functions with compact support.
Consider the space of all acceptable functions and
assume that all the hi belong to that space. Then

eq. 1 has the form of an inner product of hi with

f. That is, pi may be thought of as a projection

of the unknown vector f onto the basis vector h..

Only those components of f that lie in the sub-
space spanned by the set of all hi contribute to

the measurements. We will call this subspace the
measurement space. The components of f in the
remaining orthogonal subspace, the null space, do
not contribute to the measurements. Hence, the
null space contribution to f cannot be determined
from the measurements alone. Since the determi-
nistic (measurement) subspace of f is spanned by
the response functions, it is natural to expand
the estimate of f in terms of them

N

f(x,y) = aihi(x,y). (2)
i =1

This is equivalent to setting the null space com-
ponents of f to zero, which yields the minimum

norm solution. This leads to artifacts in f since
it does not possess those components of f that lie
in the null space. Further reading on the null

space - measurement space concept may be found in

papers by Twomey 2,3'4,
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This is equivalent to setting the null space com 
ponents of f to zero, which yields the minimum

norm solution. This leads to artifacts in f since 
it does not possess those components of f that lie 
in the null space. Further reading on the null 
space - measurement space concept may be found in
papers by Twomey 2 ?3 » 4 ^
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The response function expansion, eq. 2, is
formally identical to the familiar backprojection
process where the value ai is added to the image

along the strip function h.. Thus, the backpro-
jection process only affects the measurement space
components of the reconstruction. Most of the
well -known CT reconstruction algorithms incorporate

backprojection including filtered backprojections,

ART6, SIRT7, SIRT -like algorithms (least squares8

and other variants9, and the "natural" pixel

matrix formulation by Buonocore et al ", 11. Such
algorithms can only alter the measurement space
part of the initial estimate. When the initial
estimate lies solely in the measurement space, as
is normally the case, so will the final estimate.

The effect of the restriction of determin-
istic solutions to the measurement space may be
demonstrated by means of an example. Consider
Fig. la to be an object to be reconstructed.
Suppose that eleven parallel projections are taken

of the object within a 90° angular range. Each
projection contains 128 samples and is subject to
a slight degradation in spatial resolution. The
null space contribution to the original image may
be readily calculated by using Fig. la as the ini-
tial estimate for an iterative reconstruction
algorithm and setting the input projections to
zero. In this example an ART algorithm was used.
The algorithm alters the measurement space part of
the initial image (by means of backprojection)
until the result has zero projection values in the
measured projection directions. The result, Fig.
lb, is the null space part of the original image.
Subtraction of Fig. lb from Fig. la yields the
measurement space part of the original image, Fig.
lc. The null space component, Fig. lb, is the part
of the object that cannot be determined from the
measurements alone. The sections of the annulus
that are roughly tangential to the response func-
tions are nearly zero except for the abrupt changes
at the edge due to finite spatial resolution. The
upper -left and lower -right portions of the annulus
are determined the worst. The measurement space
part of the object, Fig. lc, is the minimum norm
solution consistent with the measurements and is
the best that can be expected from any linear,
deterministic algorithm.

Various augmentations to deterministic algo-
rithms such as consistency, analytic continuation,
and global constraints (including maximum entropy)

have been considered by Hansonl. These seem to be
ineffective in overcoming the measurement space
restrictions presented above. Other authors have
mentioned in passing the concept of the measure-

ment space -null space dichotomy12'13,14,15 but have
not considered its effect on reconstructions from
limited projection data. As an aside, the range of
the transpose of the projection measurement matrix
A referred to in Ref. 15 is the measurement space

in the square pixel representation. Louis16 has
shown that spurious ghosts can arise from the null
space corresponding to a finite set of projection
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data. Further references on the limited angle CT

problem may be found in Ref. 1.

The restriction of deterministic solutions to
the measurement space should not be viewed as a
negative conclusion. Rather it is simply a state-
ment of what is possible for a given set of mea-
surements in the absense of further information.
It allows one to formally state the goal in limited
angle CT reconstruction as that of estimating the
null space contribution through the use of further
information about the function to be reconstructed.

FAIR - use of a priori knowledge

We have seen in the foregoing development that
deterministic solutions are deficient because of
their lack of a null space contribution. Thus, we
are led to supplement the available measurements
with additional information about the object to be
reconstructed in order to obtain some reasonable
estimate of its null space component. A priori
knowledge may take many forms. For example, it
may be known that the values of the function to be
reconstructed are restricted in any of several
ways such as upper and /or lower limits or known
discrete values. A commonly used reconstruction
constraint is that of positivity (strictly, non -
negativity) since the quantities often being re-
constructed, linear attenuation coefficients or
isotope densities, are known not to have negative
values. Positivity can exert a strong influence
on the reconstruction result in cases where the
reconstruction should be zero in a large portion
of the reconstruction region. In other situations
it may be useless. Another type of a priori knowl-
edge it might be that it is known that the object
to be reconstructed is taken from a well- defined
ensemble of objects. Then the reconstruction pro-
cedure could be based upon the ensemble probability
distributions as in maximum a posteriori probabil-

ity reconstruction using a SIRT -like algorithm9

or as in a Karhunen -Loéve expansion17. This ap-
proach may prove to work well only in situations
where the ensemble statistics are sufficiently
restrictive.

We wish to introduce a new method for using
a priori knowledge about the shape or form of the
object to be reconstructed. In this two step ap-
proach, the fit and iterative reconstruction (FAIR)
technique, it is assumed that a parametric model
roughly approximating the object can be specified.
The first step is to fit the model parameters in a
least square (or minimum chi squared) sense to the
available projection data. The second step is to
employ an iterative reconstruction algorithm, such
as ART, using the fitted model as the initial esti-
mate. This step is needed since the functional
model used in the first step may be necessarily
crude and its projections may not fully agree with
the measurements. As discussed earlier, the second
step only affects the measurement space part of the
reconstruction bringing it into agreement with the
available projection data. The first step may be
viewed as providing a reasonable guess for the null
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space contribution consistent with the functional
model. This approach will be demonstrated below
by means of two examples.

An important advantage of using the fitting
procedure in the FAIR technique is its flexibility.
Additional parameters may be employed to allow the
position, orientation and size of the object to be
adjusted. It is also possible to incorporate con-
straints on the parameters to avoid unrealistic
objects. For example, in the annulus problems be-
low, it would be possible to allow each of the 2 -D
gaussian basis functions to be centered at an arbi-
trary radius instead of at a fixed radius. This

would permit the size and contour of the recon-
structed annulus to be determined from the measure-
ment data. The reconstruction could still be re-
stricted to an annular shape by adding a penalty
function to chi squared based on the quadratic dif-
ference between the radii of adjacent gaussians.
This would tend to force the radii to be a smooth
function of polar angle.

The iterative reconstruction algorithm used
here in the second step of FAIR is a version of ART
developed at Los Alamos. In this version, the
present estimate of the reconstruction is stored as
a square pixel representation. The usual technique
is used of backprojecting differences between pro-
jections of the present estimate and the input pro-
jections. The algorithm used here differs from

earlier versions of ARTS in that the basic projec-
tion and backprojection computations are carried
out in a way to more accurately represent the
corresponding analytic processes than the simpler
nearest neighbor assignment of pixels to projection
rays. The present ART routine typically converges
in three to five iterations to a stable solution
that does not change appreciably in subsequent it-
erations (up to 20). When faced with noisy input
projections, the reconstruction tends to diverge
slowly after five iterations as has been observed

before for ART18.

Example 1

The first example will be based on the object
shown in Fig. la that resembles a thick -walled pipe
with two inclusions. Where the image width is 1.0,
the inner and outer radii of the annulus are 0.2
and 0.3, respectively. The two small circles have a

diameter of 0.05 and are at half the density of the
annulus. It will be assumed that eleven parallel,
noiseless projections over a range of 90° are
available. Each projection consists of 128 samples.
The unconstrained ART reconstruction starting with
the average value, Fig. 2a, is virtually identical
with the measurement space component of the object,
Fig. lc. The positivity constraint greatly reduces
the streaking artifacts, Fig. 2b, but does not
eliminate the squaring off of the rear and far
sides of the annulus that arises from the lack of

projections over the remaining 90 °. The maximum

entropy algorithm MENT19 produces a very similar
result, Fig. 2c. MENT does not degrade the spatial
resolution as much as ART because the representa-
tion of the MENT reconstruction is directly related
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to the response function expansion instead of the
square pixel representation used in ART. Besides
distorting the shape of the annulus, all of these
reconstructions make it d fficult to observe the
two small circles.

It will be assumed that it is known a priori
that the object to be reconstructed has an annular
shape of known radius and width. Let us choose
for a model of this object a linear combination of
18 two dimensional gaussian distributions whose
centers are equally spaced on a circle of appro-
priate radius. The FWHM of the gaussians is the
same as the width of the annulus. The amplitudes
are to be determined by fitting the projections of
this functional model to the projection data. It

is realized at the outset that this model is a
crude representation of the actual object but it
will yield a distribution restricted to an annulus
and has the computational advantage that its pro-
jections are easily calculated. Fig. 3a shows the
result of fitting the amplitudes of the 18 gauss -
ians to best match the 11 projections, the first
step in FAIR. There is hardly a hint of the two
small circles since the amplitudes have been se-
verely distorted to make up for the discrepancy
between the assumed and actual cross sections.
However, using Fig. 3a as the starting distribu-
tion, the ART algorithm produces the final results,
Fig. 3b without positivity and Fig. 3c with posi-
tivity. These results provide much better visual-
ization of the small circles in the original ob-
ject than the reconstructions in Fig. 2. The
major advantage of starting ART with Fig. 3a is
that Fig. 3a properly positions the near and far
sections of the annulus and thus the squaring off
is avoided. The incorporation of a reasonable
estimate of the null space contribution through
Fig. 3a is seen to greatly improve the reconstruc-
tion result.

It has been proposed2
0'21'22'23

that one way to
overcome the limitations arising from limited pro-
jection angles is to exploit a priori information
concerning the region of support of the unknown
function. One way to do this is to use an adapta-
tion of the Papoulis -Gerchberg technique in which
the known properties of the function are alterna-
tively enforced in the spatial and Fourier domains.

It has been shown 21 >22 that this technique is not
sufficient to recover all the degrees of freedom
in the original function. The ART reconstruction
algorithm may be easily altered to incorporate a
known region of support and upon convergence the
result should be identical to that obtained by the
above technique. The result of specifying a cir-
cular region of support just outside the annulus
in Fig. la is shown in Fig. 4a. This certainly
improves the reconstruction (compared with Fig. 2b)
but does not reproduce the original image.

We have seen in the FAIR results that the ini-
tial choice for ART can make a big difference in
the final result. Fig. 4b shows the ART recon-
struction that results when a flat annulus of prop-
er dimensions is used for the starting distribu-
tion. This would be a reasonable guess if it were
known that the object being examined was a pipe
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but the presence of the small holes was unknown.
Figure 4b is a very good reconstruction because the
null space part of Fig. la is well specified by the
flat annulus. However, if a flat annulus of the
wrong size is chosen for the starting distribution,
the result (Fig. 4c) is much worse than the stan-
dard ART result, Fig 2a. It is important that the
starting distribution be representative of the un-
known object. The advantage of the FAIR approach
is evident since the parameters for the flat annu-
lus model could easily and accurately be obtained
from the projection data to yield Fig. 4b.

It is important to realize that all of the ART
reconstructions shown in this section have the same
projections at the measured projection angles, i.e.
their measurement space contributions are identi-
cal. They differ only in their null space contri-
butions, these being determined by the combined
effect of constraints and starting distributions.
This observation indicates the enormity of the am-
biguity present in the measurements that can only
be reduced by use of a priori information.

Example 2

The second example will be based on an annulus
with gaussian cross section and variable amplitude,
Fig. 5a. This object is similar to the blurred
cross section of the Thallium 201 distribution
taken up in heart muscle. The straightforward ART
reconstructions from 11 viewings subtending 90 °,
Fig. 5b and c, show the same types of artifacts as
in the preceeding example. The hole in the upper -
right quadrant has virtually disappeared while that
in the lower right has been greatly exaggerated.
Use of the 18- gaussian annulus model described
above in the fitting step of FAIR yields, Fig. 6,
a decent representation of the original object be-
cause the gaussian basis functions provide a good
approximation to the gaussian cross section of the
annulus. When this is used as the starting distri-
bution in an unconstrained ART algorithm, the final
result, Fig. 6b, reproduces the original distribu-
tion very well. Since this starting distribution
so closely matches the projection data, the posi-
tivity constraint has little effect on the result.
Figure 7 shows that, even when an annulus with
gaussian cross section and constant amplitude is
used for the starting distribution, the uncon-
strained ART reconstruction yields an acceptable
result. This indicates that reconstruction methods
based on ensemble statistics may work well since
their initial estimate is the ensemble mean, which
could be a flat annulus for Thallium 201 distribu-
tions in the heart walls.

The foregoing results are quantitatively sum-
marized in Fig. 8. The maximum reconstruction
value between radii of 0.5 and 1.5 times the mean
annulus radius is plotted versus polar angle. It

is observed that the FAIR result that starts with
the fitted distribution, Fig. 6a, comes remarkably
close to the original distribution. This is con-
trasted by the conventional ART reconstruction that
starts with the average value which does very poor-
ly. Again, the use of a priori knowledge to esti-
mate the null space contribution is very beneficial.
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Discussion

It has been shown that artifacts arising in
the limited angle CT problem can be reduced by
properly estimating the null space contributions of
the unknown function. This can only be accom-
plished through the use of a priori knowledge con-
cerning the source function. In the FAIR technique
presented here, the initial estimate of the func-
tion is obtained by fitting the parameters in a
functional model of the object to the available
projection measurements. The null space contribu-
tion of this estimate survives the subsequent iter-
ative reconstruction procedure to reduce the arti-
facts in the result. As with most image processing
schemes, this new technique must be tried in each
new imaging problem to assess its worth since expe-
rience is not easily transferred. We have at-
tempted to provide the reader with some understand-
ing of the behavior of the FAIR technique by means
of several examples.
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Fig. 1 - The decomposition of an object consisting of an annulus with two holes a) into its measurement
space b) and null space c) contributions corresponding to 11 measured projections covering 90 °.
This illustrates that for a given measurement scheme, any function is the sum a part that is

measured and a part that is not.

a b c

Fig. 2 - Reconstructions of Fig. la from 11 views covering 90° using a) unconstrained ART (average starting
value), b) ART with positivity, and c) the maximum entropy algorithm MENT.
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a b c

Fig. 3 - The Fit And Iterative Reconstruction (FAIR) results for Fig. la from 11 views covering 90° showing
a) the 18- gaussian fit to the measurements used for the initial guess in the subsequent ART
reconstruction, b) without positivity, and c) with positivity.

a b c

Fig. 4 - Reconstruction of Fig. la from 11 views covering 90° using ART a) with positivity and the recon-
struction region limited to a circle that is slightly larger than the annulus. Reconstruction
from same projections with a uniform annulus used for the starting distribution, b) of proper
size, and c) of too small radius.

a b c

Fig. 5 a) An annulus with gaussian cross section and variable amplitude and its reconstruction from ll
views covering 90° using b) unconstrained ART (average starting value) and c) ART with positivity
constraint.
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Fig. 3 - The Fit And Iterative Reconstruction (FAIR) results for Fig. la from 11 views covering 90° showing 
a) the 18-gaussian fit to the measurements used for the initial guess in the subsequent ART 
reconstruction, b) without positivity, and c) with positivity.

Fig. 4 - Reconstruction of Fig. la from 11 views covering 90° using ART a) with positivity and the recon 
struction region limited to a circle that is slightly larger than the annulus. Reconstruction 
from same projections with a uniform annulus used for the starting distribution, b) of proper 
size, and c) of too small radius.

Fig. 5 a) An annulus with gaussian cross section and variable amplitude and its reconstruction from 11
views covering 90° using b) unconstrained ART (average starting value) and c) ART with positivity 
constraint.
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a b

Fig. 6 - FAIR reconstruction of Fig. 5a from 11 views covering 90° showing the a) 18 gaussian fit and
final ART reconstruction b) without positivity constraint. The use of a positivity constraint
makes little difference.

Fig. 7 - Reconstruction of Fig. 5a from 11 views covering 90° using an initial guess of an annulus with
gaussian cross section and constant amplitude in ART algorithm.
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Fig. 8 - Angular dependence of maximum reconstruc-
tion value between radii of 0.5 to 1.5
times mean annulus radius for positivity
constrained ART reconstructions employing
various starting distributions. The fitted
starting distribution used in FAIR (Fig.
6b) closely matches the original object
while starting with the constant amplitude
annulus (Fig. 7) does remarkably well.
The conventional initial guess of a con-
stant distribution with correct value (Fig.
5c) results in poor agreement.

Fig. 6 - FAIR reconstruction of Fig. 5a from 11 views covering 90° showing the a) 18 gaussian fit and
final ART reconstruction b) without positivity constraint. The use of a positivity constraint 
makes little difference.

F i g, 7 - Re con s t ru c ti o n of Fig. 5 a from 11 v i ews cover ing 90 ° us ing an ini t i a1 g liess of an a n n u1u s w i t h 
g au s s i a n c ro s s section and con s tan t amp1i tude i n ART a 1g o r i t hm.

Fig. 8 - Angular dependence of maximum reconstruc 
tion value between radii of 0.5 to 1.5 
times mean annul us radius for positivity 
cons tra i ne d ART neeons t r u c t i ons em p1oy i n g 
various starting distributions. The fitted 
starting distribution used in FAIR (Fig. 
6b) closely matches the original object 
while starting with the constant amplitude 
annul us (Fig. 7) does remarkably well. 
The conventional initial guess of a con 
stant distribution with correct value (Fig. 
5c) results in poor agreement.
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