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3.1 INTRODUCTION 

The problem of obtaining an artifact-free computed tomographic (CT) 
reconstruction from projection data that are limited in number and possibly 
angular coverage is a difficult one to solve in general. Similarly, restorations 
of blurred images are almost always marred by artifacts that appear to be 
related to the blurring function. These difficulties arise from a fundamental 
limitation inherent in incomplete data sets. This limitation may be viewed 
as resulting from an essential lack of information in the measurements about 
the unknown source function, which is codified in the concept of the null 
space of functions associated with the measurement geometry. The Bayesian 
approach allows one to incorporate a priori information about the source 
function based on the properties of the ensemble of source functions 
realizable in the specified imaging situation. If the prior knowledge is 
restrictive enough, reasonable estimates of the null-space components of 
the source function can be obtained, thereby reducing the artifacts in the 
reconstruction. The use of prior knowledge about the shape or structure of 
the source function will be emphasized here. The results of the maximum 

' 
a posteriori ( M A P )  method will be compared with the fit and iterative 
reconstruction (FAIR) technique, in which the previously known shape of 
the object may be explicitly incorporated by means of a model of the object. 
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80 Kenneth M. Hanson 

Finally, a more comprehensive and flexible Bayesian approach is suggested 
in which the ensemble mean and covariance specifications are estimated 
with the help of the measurements. 

The present work deals with discretely sampled, linear imaging systems. 
Thus, the concept of null space and the Bayesian methods proposed for 
overcoming its limitations are relevant to a wide variety of digital image 
restoration problems. The term reconstruction will be used here to refer to 

:, 
image recovery in a broad sense, encompassing, for example, tomographic 
reconstruction, restoration of blurred images, and decoding of encoded 
images. Owing to the background of the author and the basis of this chapter - 
on an earlier article related to tomography [I], the discussion is heavily 
weighted toward tomographic reconstruction. 

3.2 MEASUREMENT SPACENULL SPACE 

The CT reconstruction problem may be stated as follows: given a finite 
set of projections of a function of two dimensions f(x, y) with compact 
support, obtain the best estimate of that function. Each projection may 
generally be written as a weighted two-dimensional (2-D) integral of f(x, y) 

where the hi are the weighting functions and i = 1,2, . . . , N for N individual 
measurements. We will refer to the hi as response functions. In the CT 
problem, the hi typically have large values within a narrow strip and small 
or zero values outside the strip. If the h, are unity within a strip of finite 
width and are zero outside, Eq. (3.2-1) becomes a strip integral. For zero 
strip width, it becomes a line integral. These are recognized as idealizations 
of the usual physical situation. The generality of Eq (3.2-1) allows it to 
closely represent actual physical measurements because it can take into 
account response functions that vary with position. For example, a slowly 
increasing strip width is implied by the divergence of the sampling beam 
inherent in proton computed tomography [2,3], in diffraction tomography 
with ultrasound [4], which is discussed by Kaveh and Somekh in Chapter 
10, or in well-to-well seismic tomography [ 5 ] .  

Equation (3.2-1) is clearly applicable to any discretely sampled, linear - 
imaging system. What will be developed regarding the CT problem will 
therefore be applicable to the image recovery problem in general. For 
example, Eq. (3.2-1) applies to the standard reconstruction problem in 
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82 Kenneth M. Hanson 

to the finite number of measurements, which is inherently noninvertable. 
When a null space exists, the data are said to be incomplete. In other 
terminology, the inability to determine a correct solution to the measurement 
equations, Eq. (3.2-I), is called an ill-posed problem. Further reading on 
the null-space/measurement-space concept may be found in papers by 
Twomey [8-101, Tanabe [ l l ] ,  Jackson [12], Katz [13], Llacer [14], and 
Sanz and Huang [15]. J 

Figure 3.2-1 illustrates that the null-space component of an image is a 
tangible entity, which is easily calculable. It is assumed that measurements 
are available along 11 projection directions, which span only 90" in view - 
angle. Figure 3.2-lc is obtained by starting the algebraic reconstruction 
technique (ART) algorithm [16] with the source distribution of Fig. 3.2-la 
and using zero for all the assumed projection measurements. On convergence 
ART produces an image whose projections match the input values, that is, 
zero, along each of the 11 assumed projection directions. As explained in 
the next section, ART affects only the measurement-space component of 
the image, leaving just the null-space component in this case. Figure 3.2-lc 
is just one of many possible null-space images that will not contribute 
anything to the available measurements in the assumed projection directions. 
The difference between Figs. 3.2-la and 3.2-lc is the measurement-space 
component of the source, Fig. 3.2-lb, which is unambiguously determined 
by noiseless projection measurements. As explained below, this should be 
the result obtained by using standard, deterministic reconstruction 
algorithms whose solutions satisfy the measurement Eqs. (3.2-1). 

Other authors have alluded to the problem of the null space in CT [17,18] 
but have not explicitly considered its visual effect on reconstructions from 
limited projection data. The existence of the ambiguities associated with 
the null space is known well by applied mathematicians. For example, the 
range of the transpose of the projection-measurement matrix A, referred to 
by Lakshminarayan and Lent [18] in stating the restrictions to their Theorem 
1, which concerns the convergence of Richardson's algorithm, is the 
measurement space in their square-pixel representation. 

Specific discussion of the null space associated with the CT problem has 
appeared in many articles. Smith et al. [7] explored the null space of a 
finite number of projections to determine the convergence rate of the ART 
algorithm. This work was extended by Hamaker and Solmon [19], who - 

went so far as to calculate the "angles" between the null spaces correspond- 
ing to such projections. Katz [13] made extensive use of the null-space 
concept to determine the conditions for uniqueness of a reconstruction, - 

since the original function f (x, y) can be unambiguously determined if and 
only if the null space associated with the measurements is empty (his 
Proposition VI.l). Louis [20] developed an explicit expression for functions 
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(continued) 

belonging to the null space corresponding to a finite number of evenly 
spaced projections and showed that ghosts from the null space could appear 
as lesions. Louis [21] also considered the null space associated with projec- 
tion imaging in higher dimensions and developed suitable series expansions. 
Medoff et al. [22,23] recognized the consequences of the null space associ- 
ated with limited data and introduced a method to reduce null-space ghosts 
through the application of known constraints on the reconstructed image. 
Further references on the limited-angle CT problem may be found in [24]. 
Andrews and Hunt [6] offer numerous cogent discussions of the difficulties 
introduced by the null space in image restoration without mentioning it by 
name. The importance of the null-space problem in other image inversion 
problems will be discussed in the next section. 

Fig. 3.2-1. Decomposition of an object consisting of an annulus with two half-density holes 
(a) into its measurement-space (b) and null-space (c) contributions corresponding to the 
assumption that there are 11 measured projections available covering 90". The projections of - 

(c) along each of the 11 measurement directions are zero! This illustrates that for any given 
measurement scheme, every function is a sum of a component that is measured and a component 
that is not. 
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3 Bayesian and Related Methods 8 5 

Fourier analysis is often used to visualize the CT problem. Its usefulness 
stems from the projection-slice theorem, which states that the 1-D Fourier 
transform of a projection taken with parallel strip or line integrals is the 
same as the 2-D Fourier transform of f(x, y) evaluated along a line through 
the origin of the 2-D spatial-frequency domain. See Chapters 9, 10, and 
11. Then the knowledge of a set of parallel projections that span a limited 
range of angles is tantamount to knowing the Fourier amplitudes of the 
object inside the corresponding sector of the 2-D frequency domain. The 
limited-angle reconstruction problem amounts to determining the Fourier 

4 amplitudes in the "missing" sector. 

3.3 DETERMINISTIC SOLUTIONS 

Deterministic solutions to the measurement Eq. (3.2-1) are defined as 
solutions that follow directly from the measurements and not from any 
other information. They typically do not take into account the effect of 
random noise, which is always present in actual measurements. As argued 
in the previous section, deterministic solutions should be restricted to the 
measurement space. This restriction will now be explored for many of the 
standard methods used to solve the image recovery problem. 

It is natural to expand the estimate of f(x, y) in terms of the response 
functions [25] 

N 

P k  Y) = C aih ik  Y). (3.3-1) 
i = l  

Since the measurement subspace of f(x, y) is spanned by the response 
functions, this expansion provides a complete basis for the measurement 
space. Because t>e hi(x, y)  are orthogonal to the null spate, the null-space 
components off  (x, y) are zero. This leads to artifacts in f (x, y) because it 
does not possess those components of the original function f (x, y)  that lie 
in the null space [24]. In vector notation Eq. (3.3-1) may be expressed as 

where a is the vector of length N composed of the coefficients ai and HT " is the transpose of H. 
The response function expansion, Eq. (3.3-I), is formally identical to the 

familiar backprojection process [26] where the value ai is added to the image ' along the strip function hi(x, y). The transverse profile of the response 
function corresponds to the interpolation function used by the backprojec- 
tion algorithm. In vector notation the backprojection operation is denoted 
by HT. Since the response functions are orthogonal to the null space, any 

083883
Rectangle


083883
Rectangle



86 Kenneth M. Hanson 

backprojection process that includes just the available measurements can 
only affect the measurement-space components of the reconstruction. 

One way often used to overcome the nonuniqueness difficulty associated 
with the existence of a null space is to seek that solution of Eq. (3.2-1) with 
minimum norm. This amounts to minimizing 

m 

-00 

subject to satisfying all N constraints implied by Eq. (3.2-1). When this 
b 

minimization problem is approached by the usual method of Lagrange 
multipliers, it is found that the solution must have the form given by Eq. 
(3.3-1). This is understandable since a necessary condition for its minimum- 
norm solution is that its null-space components are zero. In the desire to 
force a unique solution to the inversion problem, the fundamental 
ambiguities associated with the null space have been glossed over. 

In most of the well-known CT reconstruction algorithms, the reconstruc- 
tion is a linear combination of backprojections. These include filtered 
backprojection [27], algebraic reconstruction technique (ART) [16,28], 
simultaneous iterative reconstruction technique (SIRT) [29], SIRT-like 
algorithms (least squares [30] and other variants [31]), and the "natural- 
pixel" matrix formulation by Buonocore et al. [25], based explicitly on 'the 
expansion given by Eq. (3.3-1). Such algorithms can only alter the measure- 
ment-space part of the initial estimate. When the initial estimate lies solely 
in the measurement space, as is normally the case, so will the final estimate. 
Then the null-space components of the solution will be zero, leading to 
artifacts. 

Although it is feasible to consider the original function f to belong to a 
(Hilbert) vector space of infinit: dimensions, it is more typical to limit the 
dimensionality of the estimate f by writing it as a linear combination of a 
finite number of basis functions. A common choice for basis functions is 
that of square pixels placed on an equally spaced grid [6]. In this case, the 
continuous coordinates x and y in Eq. (3.2-1) are replaced by a single index 
j designating the jth pixel, the integration becomes a summation, and H is 
a matrix. Then the image is represented by the sequence of coefficients that 
describe each pixel's contribution to the image. Thi~~vector  of coefficients 
is often referred to as the image and is denoted by f, thereby leaving the 
vector equations that describe the linear imaging system unchanged. This - 
finite vector belongs to a Euclidean vector space. Other types of local basis 
functions have considerable merit [32]. In the image-deblurring problem, 
the sampled data typically consist of a blurred image of the same size as 
the desired deblurred image. Then H is a square matrix. In the CT problem, 
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3 Bayesian and Related Methods 87 

the projection measurements lie in an obviously different domain than the 
original image. The matrix H is very seldom square. The incongruity of the 
measurement samples and the image that is peculiar to the CT problem 
make it pedagogically useful for exploring new approaches to image 
recovery. 

The difficulty of inverting the matrix Eq. (3.2-3) for image recovery has 
been appreciated for some time. The straightforward solution may be written 
in terms of a matrix inverse 

b f = H - ' ~ .  (3.3-4) 

The inverse exists, however, only if H is nonsingular, that is, possesses no 
null space. An illuminating way to approach the inversion of Eq. (3.2-3) is 
to consider the singular-value decomposition (SVD) of the measurement 
matrix H (Chapter 1). The number of nonzero singular values gives the 
rank of H, which corresponds to the number of linearly independent 
measurements off .  This has been called the number of degrees of freedom 
contained in the measurements [6] and is the same as the dimension of the 
measurement space. The singular vectors of the SVD with zero singular 
values span the null space. For the purpose of providing an inverse that 
involves only the measurement space, a pseudoinverse can be defined as an 
expansion of the inverse in terms of singular vectors with nonzero singular 
values [33]. As an example of the usefulness of this approach, McCaughey 
and Andrews [34] have calculated the eigenvalue map, which is the sequen- 
tial ordering of the eigenvalues, of HH= for equally spaced projection 
measurements. Their result for 32 samples per view, Fig. 3.3-1, shows that 
the number of degrees of freedom asymptotically approaches an upper limit 
of about 700 as the number of projection angles continually increases. This 
indicates that the dimension of the measurement space reaches an upper 
limit and that more projections than roughly 40 do not add much information 
(in the absence of noise considerations). 

It is known that the Fourier analysis of a blurred image with a stationary 
point spread function (PSF) is closely related to the abovementioned 
eigenanalysis [6]. In fact, in the circulant approximation of the square, 
block-Toeplitz matrix H, the Fourier transform coefficients of the PSF, 
called the optical transfer function (OTF), are the eigenvalues of H. The - zeros in the OTF are identified as being associated with the eigenvectors 
that span the null space of the PSF. It is this null space that is responsible 
for artifacts in deterministic reconstructions, which are seen clearly in - restorations of blurred text [35]. When several blurred images of the same 
text are available, each subjected to a different PSF, the reconstruction can 
be nearly artifact-free [36] because the zeros of the OTSs have little overlap, 
leaving an almost empty null space. 
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Fig. 3.3-1. Eigenvalue map corresponding to various numbers of equally spaced projections, 
each consisting of 32 samples. (From McCaughey and Andrews [34]. Copyright 1979 IEEE.) 

Many standard deterministic algorithms applied to image recovery have 
no effect on the null-space component of the solution. For example, when 
the blur function is symmetric and stationary in the standard problem of 
the restoration of a blurred image, the response-function expansion, Eq. 
(3.3-1) or (3.3-2) or the H~ operation, amounts to a convolution with the 
blur function itself. Although restoration algorithms are not ordinarily 
expressed explicitly in terms of such a convolution, all deterministic restora- 
tion algorithms can be. In its complete form, the Wienerjlter [6] is based 
on the Bayesian approach (next section). However, as it is often applied, 
the image and noise covariance matrices are assumed to be proportional 
to the identity matrix, reflecting a lack of prior knowledge. In this case the 
Wiener filter 1:aves zeros in the OTF unchanged. Thus the null-space 
component o f f  is zero and it must lie in the measurement space. As such, - 

it can be written as an expansion in terms of the response functions, that 
is, as Eq. (3.2-2). The same can be said of the homomorphic filter. Pseudoin- 
verse methods, when expressed in terms of the singular vectors of H, avoid - 
the use of singular vectors with zero singular values, again leaving the 
null-space components zero. In the constrained least-squares approach, the 
norm of some linear operator times f is minimized subject to the condition 
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3 Bayesian and Related Methods 89 

that X 2  (see next section) be equal to a prescribed value. It can be shown 
that when the operator is diagonal, the reconstruction is proportional to 
H ~ .  When the operator is not diagonal, the null space can be impacted, but 
this nondiagonality implies the use of specific prior knowledge and the 
algorithm cannot be viewed as deterministic. It is concluded that determinis- 
tic restoration algorithms do not affect the null-space component of the 

% unblurred image. 
The restriction of deterministic solutions to the measurement space should 

not be viewed as a negative conclusion. Rather, it is simply a statement of 
4 

what is possible for a given set of measurements in the absence of further 
information. It allows one formally to reinterpret the goal for obtaining an 
improved reconstruction from limited data as that of estimating the null- 
space contribution through the use of further information available about 
the function to be reconstructed. 

3.4 THE BAYESIAN APPROACH 

The essence of the Bayesian approach is the assumption that the image 
to be reconstructed is a random selection from an identifiable ensemble of 
similar images. In the context of medical imaging, an example of such an 
ensemble is the collection of all hearts imaged by the same kind of procedure. 
By using this prior information about the type of image that is expected, 
it is anticipated that a meaningful estimate of the null-space component of 
the reconstruction will be provided, thereby reducing artifacts. It is essential 
that the knowledge about the ensemble extend beyond what can be ascer- 
tained from an imaging modality that suffers from a limited-data geometry. 
Otherwise, no information about the null space can be added to the measure- 
ments themselves. The Bayesian approach permits prior information about 
the structure of the reconstructed object to be employed to estimate the 
null-space components of the solution. Of course, other types of prior 
information can also be incorporated in the Bayesian method of recon- 
struction. 

Deterministic solutions to the image recovery problem tacitly assume the 
measurements, Eq. (3.2-3), can be made with infinite accuracy. In reality, 
all measurements of continuous quantities are subject to random fluctuations 
called noise. In general, the measurements should be written as 

where n is the noise vector. It must be emphasized that the noise vector is 
a random variable. It is different for each set of measurements and its exact 
value cannot be correctly guessed. Each realization of the vector n may be 
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90 Kenneth M. Hanson 

regarded as a random selection from an infinitely large ensemble, or collec- 
tion, of noise vectors. In general, the noise fluctuations may possess an 
arbitrary probability density distribution. Frequently, however, the assump- 
tion is made that the noise has a multivariate Gaussian distribution with a 
zero mean 

P(n) - exp{-bx ni[R;'],nj}, 

- e ~ ~ { - ~ n ~ R ; ~ n ) ,  (3.4-2) 

where the second expression is in the vector notation of the previous section 
and R ,  is the noise covariance matrix, the ij  element of which is 

The brackets ( )  indicate an average over all members of the ensemble of 
noise vectors. The above expression is general enough to characterize fully 
noise fluctuations that depend on the strength of the signal being measured 
or on the position of the measurement, or depend on each other, that is, 
are correlated. By its definition, R, is a positive-definite matrix, and its 
inverse, needed in Eq. (3.4-2), is assured. 

Under a wide range of reasonable conditions [37], when averaged over 
the full ensembles of noise and images, the best estimate for the reconstruc- 
tion is that particular image f that maximizes the a posteriori conditional 
probability density o f f  given the measurements g. This probability is given 
by Bayes's formula 

in terms of the conditional probability of g given f, ~ ( g l f ) ,  and the a priori 
probability distributions o f f  and g separately, P(f)  and P(g). 

Herman and Lent [31] and Hunt [38] proposed using the Bayesian 
approach for image reconstruction. It is assumed that ~ ( g l f )  is given by 
P(n), in which g is Gaussian distributed about the mean Hf, as in Eq. (3.4-2), 

~ ( g  1 f)  - expi-;(g - Hf)=Ril(g - Hf)}. (3.4-5) 

This may be referred to as the measurement probability density distribution, 
since it follows solely from the distribution of the error fluctuations in the 
measurements. This probability is also often called the likelihood function 
1371. The a priori probability density function for the ensemble of images - 
P(f) is assumed to be a multivariate Gaussian distribution with a mean 
value T and with a covariance matrix R, 

~ ( f )  - exp{-;(f - Q T ~ ~ l ( f  - T)). (3.4-6) 
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3 Bayesian and Related Methods 9 1 

Under these assumptions, the maximum a posteriori (MAP) solution is 
easily shown to satisfy [38] the MAP equation 

R-1 - (f - f) + H ~ R ; ' ( ~  - ~ f )  = 0, (3.4-7) 

where H is the linear operator (matrix) corresponding to the projection 
process described by the integral in Eq. (3.2-1). As shown in the previous 
section, the transpose of H is the familiar backprojection operation. The 
first term comes from the derivative of P(f) given by Eq. (3.4-6) and the 
second from ~ ( ~ l f ) ,  Eq. (3.4-5). It can be seen that the MAP solution strikes 
a balance between its deviation from the ensemble mean T and the solution 
to the measurement equation (g = Hf). This balance is determined by the 
covariance matrices Rf and R,, which specify the confidence with which 
each deviation is weighted, as well as possible correlations between the 
deviations. Because the last operation in the second term is H ~ ,  it is only 
the measurement-space part of this term that has any relation to the first 
term. It is noted that in Eq. (3.4-7) the linearity in the unknown image f 
follows from the assumption of normal distributions for the a priori and 
measurement-error probability densities. 

The MAP reconstruction method presented here is equivalent to the 
minimum-variance linear estimator with nonstationary mean and covariance 
ensemble characterizations [37]. It is also called the minimum mean-square- 
error method [ 6 ] .  When the blur function, noise, and ensemble image 
properties are stationary (do not depend on position), then H, Rf, and R, 
are Toeplitz matrices, and, in the circulant approximation, this is the same 
as the well-known Wiener filter [6]. 

When there is an absence of prior information, as is often the case, the 
a priori probability distribution P(f) does not play a role in Eq. (3.4-4). 
The MAP approach then reduces to maximizing the conditional probability 
Eq. (3.4-5) or, what is equivalent, minimizing (-2) times the logarithm of 
that probability, which is called chi-squared 

X 2  = (g - ~ f ) ~ ~ , l ( g  - ~ f ) .  (3.4-8) 

The minimum chi-squared method, or the least-squares method as it is often 
called, is a deterministic reconstruction procedure since no reference is 
made to the stochastic nature of f. When H is a linear matrix operator, as - assumed here, the solution to the X 2  minimization problem is given in terms 
of the inverse (or pseudoinverse [33]), Eq. (3.3-4). If the matrix H is too 
large to invert directly, an iterative method might be employed [15,30,39]. 
When H is a nonlinear operator, the f that minimizes X 2  can usually be 
found by an iterative procedure [40]. The minimum X 2  solution is also often 
referred to as the maximum-likelihood solution, with the probability density 
distribution given by Eq. (3.4-5) termed the likelihood function [37]. This 
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ENTROPY 
PROBABILITY 

DISTRIBUTION 

(continued) 

usage is not uniformly employed, however [41], as the probability given by 
Eq. (3.4-4) is sometimes referred to as the likelihood. Reference to maximum 
likelihood is also legitimate under assumptions about the noise other than 
it is normally distributed, Eq. (3.4-2). For example, Shepp and Vardi [42] 
have developed a maximum-likelihood reconstruction algorithm appropri- 
ate to Poisson-distributed noise. 

The above concepts may be visualized by considering the equal-proba- 
bility contours in a plane defined by two of the components of the image 
vector f. Figure 3.4-1 shows these contours for a number of situations. 
Under the assumption of Gaussian probability distributions, the contours 

Fig. 3.4-1. Contour plots of the probability distributions associated with prior information 
and the available measurements displayed as a function of two components of the image 
vector, A and fj, for (a) Gaussian distributions, (b) same with the null space intersecting the 

& 

A-f, plane, and (c) distribution corresponding to the maximum-entropy principle. In the 
Bayesian approach, the information provided by the measurements is supplemented by prior 
knowledge cast in terms of an ensemble mean f and its covariance matrix R/. The maximum 
a posteriori solution maximizes the product of the a priori probability and the measurement 
probability or likelihood function. Maximum-entropy algorithms may be interpreted in terms 
of the MAP method with the a priori probability distribution replaced by a non-Gaussian 
distribution specified only by its maximum f .  This probability function is nonzero only for 
positive image values. 
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94 Kenneth M. Hanson 

are ellipses. The contours for the apriori probability distribution are centered 
on the ensemble mean vector T and their shape and extent is controlled by 
the ii, jj, and ij elements of Rf. The contours for the a posteriori distribution 
are centered on the deterministic maximum-likelihood (least-squares) solu- 
tion. Their shape is affected by the noise covariance matrix R, and the 
measurement matrix H. If the J;-J; plane includes a component of the null 
space, there is no unique solution forJ; and& that satisfies the measurements 
Eq. (3.2-3). Figure 3.4-lb represents such a situation. Every point on the 
solution line of Fig. 3.4-lb yields exactly the same measurement vector. 
Deterministic algorithms based on the minimum-norm criterion select the 
point on the solution line that is closest to the origin. The MAP approach 
leads to a solution that is closer to the ensemble mean value in this plane, 
ignoring off-diagonal correlations in Rf. The relationship between MAP 
and the maximum-entropy approach will be considered in the next section. 

When the solution to the above MAP equation is averaged over the 
complete ensemble of noise and images, and the correct values are used 
for the a priori entities, the resulting (f) can be shown to be unbiased; that 
is, it is the same as T [37]. However, if the wrong T is used and RT' is 
nonzero, then (f) will be biased. Of more importance is the fact that for 
subensembles of images whose mean characteristics are different from those 
of the ensemble, the MAP estimates are biased toward the ensemble mean. 
This is an important consideration when the objective of the imaging and 
reconstruction task is to identify abnormal occurrences, as in looking for 
diseased hearts. If the ensemble contains a preponderance of normal 
individuals, the abnormals will tend to be made to appear as normal by 
the MAP algorithm. This sort of consideration may require us to return to 
the fundamental statement of MAP and change the cost function to reflect 
the fact that a misidentified abnormal may be less acceptable than a misiden- 
tified normal (as in heart diagnosis). Alternatively, one might allow for 
greater deviations from T than the true ensemble value of R, indicates. 

3.5 USE OF OTHER KINDS OF PRIOR KNOWLEDGE 

One of the main features of the MAP approach presented in the previous 
section is that it provides a method of supplementing the available measure- 
ments with information previously known about the shape or structure of 
the reconstructed object. Various other extensions to deterministic 
algorithms have been proposed to improve the reconstructions from limited 
data through the use of a priori knowledge about the object. These include 
consistency, analytic continuation, region of support, upper and lower limits, 
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and maximum entropy, which will be discussed in turn. The Bayesian 
approach may be argued to encompass all of these in one way or another. 

Inouye [43] used the consistency between the measurements that is 
implied by the statement that all are projections of a single 2-D object. 
Inouye expressed this consistency through the allowed functional forms of 
the moments of the projections. Of course, consistency is inherent in any 

li reconstruction algorithm that satisfies the measurement equations Eq. (3.2- 
1). Inouye [44] also advanced a method of calculating the missing views 
that is based on the Tschebyscheff polynomial expansion originally used 
by the CT vanguard, Allan Cormack [45]. This method is closely related 
to analytic continuation. Hanson [24] concluded that these proposed 
methods of coping with missing data are ineffective in overcoming the 
measurement-space restrictions presented above for the solution of the 
general problem. 

Tam et al. [46] introduced a method to use the a priori known region of 
support of the source distribution. This method is the 2-D counterpart of 
the celebrated Gerchberg-Papoulis algorithm [47,48] for obtaining "super- 
resolution." It is an iterative technique in which the known properties of 
the image in the spatial and Fourier domains are alternatively invoked. The 
objective is to use the known spatial extent of the source to extend the 2-D 
Fourier transform of the reconstruction from the "known" sector into the 
"missing" sector (Section 3.2 and Chapter 9). This method has been studied 
extensively [49-521 and has been shown to have some merit when either 
the region of support is very restrictive or the angular region of the missing 
projections is fairly narrow. Tam and Perez-Mendez analyzed this problem 
by evaluating the eigenfunction map of the matrix that is the product of 
the constraints of a circular region of support and band-limitedness. 

It is known to be possible to completely determine an integrable function 
with a finite domain of support from projections' that are continuous in 
angle over some finite range and have infinite spatial resolution [7,44]. 
Thus, the null space must be empty and the eigenvalues in the analysis of 
Tam and Perez-Mendez must not actually go to zero in the limit of an 
infinite number of angles. The function to be reconstructed must be rep- 
resentable by the response-function expansion. This seems at odds with the 
interpretation of the limited-angle CT problem as one of a missing sector 
in the 2-D Fourier domain. However, the projection-slice theorem holds 
only for projections over the infinite plane. When the object is restricted to 
a finite domain, the Fourier transform of each parallel projection set, 
although being concentrated along the slice, actually has infinite extent 
perpendicular to the slice. Thus, the projections of an object with known 
finite region of support do sample the missing sector. The above theorem 
may then be interpreted as saying that when there is an infinite number of 
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samples from that sector, the Fourier amplitudes in the sector may be 
recovered because the totality of response functions provides a complete 
basis for the full 2-D frequency domain. The missing sector is not missing 
at all! Incidentally, the problem of superresolution may be similarly 
approached from the standpoint of a measurement-space expansion. The 
Gerchberg-Papoulis algorithm has been shown to be a special case of a 
general SIRT-like iterative procedure due to Bialy [15]. 

The region-of-support constraint may be incorporated more directly into 
many reconstruction algorithms. In virtually every iterative algorithm it is 
possible to invoke constraints on the reconstructed function by restricting 

. 
the function as part of the updating step. Such iterative algorithms yield a 
solution that satisfies the region-of-support constraint, and Tam's procedure 
is not required. This constraint may be enforced through a redefinition of 
the response functions hi(x, y) in Eq. (3.2-1) to make them zero outside the 
region of support. Then the backprojection operation, Eq. (3.3-I), only 
affects the reconstruction within the region of support. With this redefinition 
of the hi(x, y), the measurement space includes only functions that fulfill 
the region-of-support constraint. From this standpoint, Tam's iterative pro- 
cedure does not affect the null space associated with the available measure- 
ments. The natural-pixel formulation of Buonocore et al. [25,53] may be 
revised in a similar manner, but that would probably ruin the properties of 
the measurement matrix they exploited to arrive at an efficient matrix 
calculation. 

Often it is known that the physical quantity to be reconstructed cannot 
be negative, as, for example, light intensity, density, pressure, and linear 
attenuation coefficients. Thus, it has been suggested by numerous authors 
that reconstructions of such quantities should be constrained to be nonnega- 
tive-Gordon et al. [16], Huang et al. [54], Herman and Lent [39], Schafer 
et al. [55], Sezan and Stark [56], and Medoff et al. [22], to name just a few. 
A simple extension of this is the constraint of known upper and lower limits 
on the reconstruction function. Imposition of such constraints can be very 
effective when a major portion of the image is close to the limits. Likely 
candidates are renditions of text and photographs of the heavens. For this 
kind of image, the limits are likely to be violated by artifacts and noise. 
Thus, by invoking bounds on the reconstructed function, these trans- 
gressions would be reduced and the final image is likely to be more pleasing. 
The value of the lower-bound constraint in overcoming the difficulties 
associated with the null space can be inferred from the excellent maximum- 
entropy reconstruction of text shown in Burch et al. [57] and was explicitly 
demonstrated by Trussell and Civanlar [58]. Hanson [59] has found that 
in favorable circumstances, the nonnegativity constraint can improve the 
visualization of objects when it is hindered by either artifacts produced by 

083883
Rectangle

083883
Rectangle




3 Bayesian and Related Methods 97 

the limited nature of the data or noise in the measurements. When most of 
the image values are far removed from legitimate limits, as in CT scans of 
the brain, the use of such limits cannot be expected to change the results. 

Figure 3.4-1 brings to mind the concepts presented in Chapters 2,8, and 
11 having to do with projections onto convex sets (POCS) [56,60]. This 
correspondence is valid if one restricts oneself to the set of solutions 
possessing prior or measurement probabilities greater than a fixed value. 
For the measurement probability distribution, this amounts to placing a 
bound on X 2 .  Then the sets have well-defined boundaries. Furthermore, for 

4 multivariate Gaussian probability distributions, the sets are obviously con- 
vex. Of course, one of the great advantages of the POCS method is that it 
permits the use of numerous constraints that are beneficial in image restora- 
tion [56,58] but cannot be easily incorporated in conventional algorithms. 
One disadvantage of the POCS method is that it yields only one solution 
out of a possibly infinite set of feasible ones if the sets overlap substantially. 
Furthermore, the POCS solution in this case depends on the starting point 
and on the ordering of the projection operations. Trussell and Civanlar [61] 
have used the POCS approach to solve the MAP problem with several side 
constraints by varying the probability level that defines the boundaries of 
the sets until the MAP equation is satisfied. In its full generality, however, 
the Bayesian approach is not restricted to this kind of arbitrary threshold 
in probability. Because the probability values are often continuous, the sets 
involved in the Bayesian analysis are fuzzy. 

Many authors have proposed and used the maximum-entropy condition 
to ameliorate artifacts in reconstructions. For examples, see Chapter 5 as 
well as Frieden [41], Wernecke and d'Addario [62], Gull and Daniel1 [63], 
and Minerbo [64]. In the straightforward approach, it is desired to find the 
solution to the measurement equations, Eq. (3.2-I), that maximizes the 
entropy 

where pi is the portion of the total intensity that lies in the ith pixel 

pi = LIC fi. (3.5-2) 

It is assumed that pi S 0. Andrews and Hunt [6] and Minerbo [64] showed 
by means of the method of Lagrange multipliers that, when the sum of fi 
is considered to be a constant, the maximum-entropy condition leads to a 
solution of the form 

i = l  

where C is an additive constant and the Ai are the Lagrange multipliers, 
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which must be adjusted to satisfy the measurement equations. The 
maximum-entropy principle implies a solution whose logarithm is propor- 
tional to an expansion in terms of response functions, in much the same 
way as the minimum-norm condition yields the linear, response-function 
expansion form, Eq. (3.3-1). Equation (3.5-3) enforces the nonnegativity 
constraint inherent in maximum entropy. 

Recognizing the fundamental difficulty of this approach when the data e 

are inconsistent, that is, when no solution to Eq. (3.2-3) exists, Gull and 
Daniel1 [63] merged maximum entropy with the probabilistic concepts of 
random noise by proposing that one find the solution that maximizes entropy 
subject to the constraint that XZ be equal to a predetermined value xi. 
Andrews and Hunt [6] suggested this as an alternative form of the con- 
strained least-squares approach but did not show any results. The resulting 
expression for the quantity to be minimized appears very similar to the 
quadratic form of the logarithm of the a posteriori probability function 
based on Gaussian probability distributions, Eqs. (3.4-5) and (3.4-6), that 
led to the standard MAP equation (3.4-7). The similarity prompts one to 
interpret the maximum-entropy technique in terms of a Bayesian approach 
[65] in which the a priori probability density is given by 

The constant e is required for normalization purposes to make the maximum 
of P(f) coincide with the vector T, which takes the place of the ensemble 
mean f in Eq. (3.4-6) [57]. The constant N is the number of something- 
photons in the image, or pixels, or balls thrown by monkeys, or whatnot. 
Its interpretation is still being studied [66]. In any event, the value of N is 
computationally considered to be a Lagrange multiplier that is varied to 
bring X 2  to the required value [57]. Independent of whether this Bayesian 
interpretation is correct or not, the performance of the maximum-entropy 
algorithm can be understood and interpreted in terms of what one expects 
for MAP under the assumption of a prior probability distribution given by 
Eq. (3.5-4). The contours of this probability distribution given by Eq. (3.5-4). 
The contours of this probability distribution are shown in Fig. 3.4-lc with 
i, = ij = 0.0001 and N = 10,000. It is observed that this entropy probability 
function is quite broad. Near its maximum T,, its behavior is similar to that 
of a Gaussian with an rms width of about "f. Thus, the conventional MAP 
approach, augmented to include a constraint of nonnegativity, might be 
expected to yield results quite similar to those obtained with a maximum- 
entropy algorithm. This has been our experience, as shown in Fig. 3.10-1, 
referred to in Section 3.10. As N gets smaller, the above probability distribu- 
tion becomes even flatter. 
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The above interpretation of the maximum-entropy algorithms in terms 
of the Bayesian probabilistic philosophy is contrary to the axiomatic 
approach to maximum entropy espoused by many [66,67]. Some would 
prefer to view MAP as a special case of the maximum-entropy principle 
[68]. However, others find it difficult to accept the interpretation of image 
intensities as probabilities [69]. To add to the confusion, the proper choice 

m for the entropy expression has been a constant source of debate [70,71]. 
One advantage of the Bayesian interpretation is that it permits one to ask 
whether the entropy probability distribution Eq. (3.5-4) represents an 
appropriate a priori probability distribution for the particular problem one 
is addressing. 

3.6 MAP SOLUTIONS 

We have adopted an iterative approach to the solution of Eq. (3.4-7) 
based on the scheme proposed by Herman and Lent [31]. The iteration 
scheme is given by 

f'= = f, (3.6-la) 

where vector rk is the residual of Eq. (3.4-7) (multiplied by Rf), the scalar 
ck is chosen to minimize the norm of rk+', and I is the identity matrix. 
When the residual goes to zero, the corresponding fk is clearly a solution 
of the MAP Eq. (3.4-7). This iterative scheme is very similar to the one 
proposed by Hunt [38] for MAP image restoration in the presence of a 
nonlinear scalar transfer function. His update scheme consisted in 
incrementing fk by Eq. (3.6-1c) multiplied by R;'. This might introduce 
computational difficulty if Rf is nontrivial. Trussell and Hunt [72] refined 
Hunt's iteration procedure to improve the rate of convergence. We have 
found that Eq. (3.6-1) works well, although convergence typically requires 
10 to 20 iterations. An advantage of any iterative reconstruction scheme is 
that constraints may readily be placed on the reconstructed function fk+' 
after each update. Such constraints include upper and lower limits to the 
reconstruction value, known region of support, etc. The reconstruction 
algorithm can thus become quite nonlinear. 

083883
Rectangle

083883
Rectangle




100 Kenneth M. Hanson 

It is easy to see from the form of this iterative procedure that significant 
null-space contributions to fk  can arise from the a priori information. First, 
the zero-order estimate is T, which can contain nill-space contributions. 
Second, in Eq. (3.6-lc), Rf can generate null-space contributions when it 
operates on the result of the backprojection ( H ~ )  process, which lies wholly 
in the measurement space. In effect, Rf weights the backprojection of the 
measurement residuals. If Rf is chosen to be zero in certain regions of 
the reconstruction, these regions will not be altered from T throughout the 
iteration scheme. Prior structural information about the source function can 
be incorporated in both T and Rf. It must be emphasized that the choices 
for T and Rf are crucially important because it is only through them that a 
nonzero null-space contribution to the reconstruction arises. As stated 
earlier, this is the major advantage of the Bayesian approach over determinis- 
tic algorithms. Trivial choices, such as using for T a constant or a filtered 
backprojection reconstruction based on the same projections, or assuming 
Rf to be proportional to the identity matrix [38, 731, are not helpful for 
reducing artifacts because they do not affect the null-space components of 
the solution. However, it has been shown that noise amplification in nearly 
singular inversions, as in Abel inyersion [74], can be controlled through 
the choice of a smoothed value of f  for T and a diagonal smoothing matrix 
for Rf [75]. With these choices the MAP algorithm is similar to one form 
of the constrained least-squares method [6]. By reducing extremely 
large noise fluctuations, the result can be made more acceptable to the 
eye [76]. 

The iteration scheme given by Eq. (3.6-1) is SIRT-like [31], which means 
that the reconstruction update, Eq. (3.6-lb), is accomplished only after all 
the ray sums ( ~ f ~ )  have been calculated. It is known that ART-like 
algorithms converge much faster than SIRT-like ones [26,39]. ART-like 
algorithms originated with Kaczmarz [77]. They are based on an iteration 
scheme in which each measurement is calculated from the present estimate 
of f using the corresponding row of the matrix H. The difference between 
that and the actual measurement is redistributed among the contributing 
components of f  by means of backprojection with the proper normalization 
to assure agreement. Tanabe [ll] showed that this is a fast algorithm for 
finding the generalized inverse of a matrix. Iterative algorithms of this sort 
have been proposed for restoring blurred images with nonlinear constraints 
[54]. Trussell and Civanlar [78] have pointed out the relationship ART and 
SIRT have to the method of projection onto convex sets, which is presented 
in Chapters 2, 8, and 11. Herman et al. [73] have proposed an ART-like 
reconstruction algorithm that converges to the solution of the MAP equation, 
Eq. (3.4-7), under the assumption that Rf and R, are proportional to the 
identity matrix. This algorithm is worth exploring as it may converge much 
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more rapidly than the one used here. However, as stated above, this 
algorithm should be extended to include nontrivial choices for Rf. The 
iterative scheme used here, although it may be slower than necessary, does 
provide a solution to the MAP equation, which is the important thing for 
demonstrating the usefulness of the Bayesian method. The present algorithm 
converges such that the norm of the residual, Eq. (3.6-lc), behaves as the 

, iteration number raised to the -1.5 to -2.0 power. 
It is well known that the assumption of normal probability density 

distributions leads to a MAP solution, Eq. (3.4-7), that is equivalent to the 
. minimum-variance linear estimator [37]. This estimator has been applied 

in a matrix formalism to tomographic reconstruction by Wood et al. [79,80] 
and Buonocore et al. [53]. These authors stressed the importance of a priori 
information in limited-angle reconstruction. The main thrust of their work 
was toward improving the computational efficiency of the required matrix 
operations, in which they were very successful. However, simplifying 
assumptions about the geometry of the measurements or about the ensemble 
coefficients had to be made in order to develop efficient methods. Even 
though the general MAP equation may be solved by direct matrix methods, 
the size of the matrices involved is typically too large to deal with on 
present-day computers. Also, it is difficult to add nonlinear constraints such 
as upper or lower limits to the reconstruction. The above iterative method 
of solution overcomes these difficulties. 

Recently, Smith et al. [81,82] introduced a new method of image recon- 
struction called simulated annealing, which Geman and Geman [83] have 
shown can be used to obtain MAP solutions. This method is akin to Monte 
Carlo procedures for multidimensional integration in that the updaate 
scheme used is stochastic. It is based on a physical interpretation of the 
above probability distributions in terms of energies associated with a system 
of statistical mechanical particles. The state of randomly selected pixels is 
queried and adjusted according to the total energy and the temperature of 
the system through a random sampling from a Gibbs probability distribution. 
After beginning with the system at a high temperature, the temperature is 
gradually lowered. This annealing process ultimately brings the system to 
its lowest-energy state, which is the desired solution. The power of this 
method is that the energy functions employed can reflect prior knowledge 
about complicated structure. Because there is no smooth progression from 
the initial state to the final one, as there is in the standard MAP and POCS 
techniques, it is not necessary to restrict oneself to constraint sets that are 
convex. In their examples, Geman and Geman chose energy functions that 
maximized the probability for smooth reconstructions. They augmented this 
with a "line process" that allowed breaks in the smooth reconstruction 
along lines. Their final reconstructions closely followed the input images, 
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which consisted of a mosaic of irregularly shaped regions of nearly constant 
intensity. Certain kinds of constraints, such as region of support and 
nonnegativity, can also be incorporated in this algorithm in the form of 
hard constraints [84]. Thus simulated annealing offers an appealing alterna- 
tive way to incorporate certain kinds of prior knowledge about the structure 
of the reconstructed object that may be difficult to implement in and may 
depart drastically from the simplifying assumptions of the standard MAP 
method. This method would appear to be most easily computed when the 
energy functions involve a small number of pixels. 

3.7 FAIR-FIT AND ITERATIVE RECONSTRUCTION 

The fit and iterative reconstruction technique introduced by Hanson [85] 
offers an alternative method for incorporating a priori information about 
the source function is used to construct a parametric model of the unknown 
function. What is known about the structure of the object is employed to 
restrict the structure of the model. The first step in this algorithm is to 
determine the parameters in the model from the available projection data 
by a least-squares [or minimum chi-squared, Eq. (3.4-8)] fitting procedure. 
In the second step of FAIR, an iterative reconstruction procedure is perfor- 
med, using the fitted parametric model as the initial estimate. The iterative 
reconstruction procedure forces the result to agree with the measurements 
through alteration of its measurement-space contribution. The null-space 
contribution to the FAIR reconstruction arises solely from the parametric 
model fitted in the first step and hence from the a priori information used 
in specifying the model. In a certain sense, this parameter estimation 
problem may be viewed as a selection of that point in Hilbert space which 
satisfies the constraints placed on the function through specification of the 
parametric model and minimizes chi-squared. Although the ART algorithm 
[16] has been used in the second, iterative step of FAIR, other iterative 
algorithms such as the MAP algorithm above can be used advantageously 
(see Section 3.6). It might be noted that ART, as usually employed, forces 
the reconstruction to agree with each measurement in turn and is unable 
to accommodate inconsistent data (contaminated by noise, for example). 
However, when employed with a vanishingly small damping factor, or 
relaxation parameter, ART can cope with inconsistent data and will converge 
to a least-squares solution [86]. 

An important advantage of using the fitting procedure in the FAIR 
technique is its flexibility. Additional parameters may be introduced in the 
model to permit the position, orientation, and size of the object to be 
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adjusted to match the data. Constraints may be placed on the extra para- 
meters to avoid unacceptable objects. For example, in the annulus problems 
below, it is possible to allow each of the 2-D Gaussian functions to be 
centered at a variable radius instead of a fixed, predetermined radius. This 
would permit the size and the shape of the contour of the annulus to be 
determined from the measurements. The anular structure of the modeled 
object could still be enforced by adding a penalty function to chi-squared 
based on the quadratic differences between the radii of adjacent Gaussians. 
This MAP approach to parameter estimation would tend to make the radius 

*' a smooth function of polar angle. 

3.8 COMPARISON OF MAP AND FAIR RESULTS 

The results of application of various reconstruction methods to a specific 
two-dimensional, limited-angle reconstruction problem will be compared. 
Algorithms that are useful for handling incomplete data through the use of 
apriori information must have the following important characteristics. They 
must (1) significantly reduce artifacts that result from inappropriate null- 
space contributions, (2) gracefully respond to inconsistencies between the 
actual source function and the assumptions about it, and (3) tolerate noise 
in the projection data. It will be demonstrated that the MAP and FAIR 
algorithms conform to these requirements. 

These reconstruction techniques have been applied to a source function 
consisting of a fuzzy annulus with variable amplitude, Fig. 3.8-la, which 
roughly emulates the nuclear isotope distribution in the cross section of a 
heart [87]. The peak value of the distribution is 1.24. The available projection 
data consist of 11 views covering 90" in projection angle. At first no noise 
was added to the projections. Each projection contained 128 samples evenly 
spaced over the full width of the image. All reconstructions contain 128 x 128 
pixels. The mean diameter of the annulus is 64 pixels. The measurement- 
space reconstruction obtained with ART [16], Fig. 3.8-lb, shows severe 
artifacts that tend to obscure much of the source distribution. 

Figure 3.8-lc shows the reconstruction obtained with the maximum- 
entropy algorithm MENT provided to us by Minerbo [64]. This algorithm 
provides a modest improvement over ART, particularly in regard to the 
detection of the dip in the annulus at 50". However, MENT does not have 
much effect on the splaying of the reconstruction along the central axis of 
the available views. In our experience the principal advantage of the 
maximum-entropy constraint appears to be its implicit constraint of non- 
negativity. ART reconstructions that are constrained to be nonnegative are 
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(continued) 

very similar to the MENT results [MI. The nonnegativity constraint amounts 
to the incorporation of a priori knowledge about the source function. This 
constraint is generally applicable and is very effective in the reconstruction 
of certain types of source distributions, such as pointlike objects on a zero 
background. However, there are many source distributions and data collec- 
tion geometries for which nonnegativity provides little benefit, such as the 
present test case. We will not apply the nonnegativity constraint in the 
remainder of these comparisons to emphasize the value of using a priori 
knowledge about the shape of the object. 

It was assumed that the a priori information consisted of the knowledge 
that the source function had an annular structure with known position, 
radius, and width. Thus, in the MAP approach, T was chosen to be an 
annulus with constant amplitude and Gaussian cross section. The mean 
radius and width of the annulus were chosen to be the same as the unknown 
source function. The covariance matrix Rf was assumed to be diagonal and 
thus could be represented as an image proportional to the ensemble variance 
about the mean T. The covariance image Rf was large (1.0) at the peak of 

Fig. 3.8-1. (a) Source distribution used for the first example. (b) ART and (c) MENT 
reconstructions obtained using 11 views covering 90" in projection angle. Unconstrained ART 
was used, while MENT has an implicit nonnegativity constraint. 
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(continued) 

the annulus and small (0.2) inside and outside, Fig. 3.8-2a. Because noiseless 
projections were used, the measurement noise was assumed to be uncorre- 
lated, constant, and low in value. The resulting MAP reconstruction, Fig. 
3.8-2b, is vastly superior to the ART and MENT results, eliminating essen- 
tially all the artifacts present in these deterministic solutions. The parametric 
model chosen for the FAIR method consisted of 18 two-dimensional 
Gaussian functions evenly distributed on a circle. The radius of the circle 
and the width of the Gaussians were chosen to be the same as those of the 
source function. The fitting procedure determined the amplitude of each of 
the Gaussian functions. The resulting fitted function was used as the initial 
estimate in ART to obtain the final result, Fig. 3.8-2c. This FAIR reconstruc- 
tion is comparable to the MAP result. 

Fig. 3.8-2. Reconstructions obtained by using the a priori information that the unknown 
source function is a fuzzy annulus with known radius and width. The MAP reconstruction 
(b) was obtained with a flat annulus for the ensemble mean ?, and the variance image (a) as 

C 
the diagonal entries of the ensemble covariance matrix Rf (nondiagonal entries assumed to 
be zero). The FAIR result (c) was based on a model of the image consisting of 18 Gaussian 
functions distributed around the circle. The use of a priori knowledge significantly reduces 
the artifacts present in the deterministic reconstruction in Fig. 3.8-1. 
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For a quantitative comparison, Fig. 3.8-3 shows the maximum reconstruc- 
tion value obtained along radii as a function of angle for the various 
reconstruction methods presented in Figs. 3.8-1 and 3.8-2. The FAIR recon- 
struction is seen to follow the original source dependence most closely, 
with the MAP result a close second. The ART reconstruction has many 
quantitatively serious defects. The computation times on a CDC-7600 for 
the algorithms presented here are ART (10 iterations), 17 s; MAP (10 - 
iterations), 73 s; FAIR (3 iterations), 25 s; MENT (6 iterations), 105 s. The 
corresponding execution time for filtered backprojection is 5 s. 

A slightly different source function, Fig. 3.8-4a, was used to test the ability .. 
of the algorithms to deal with inconsistencies between assumptions about 
the source function and its actual distribution. This source function is the 
same as Fig. 3.8-la with a narrow, 0.6 amplitude, 2-D Gaussian added 
outside the annulus at 330" and a broad, 0.1 amplitude, Gaussian added 

THETA (deq) 

Fig. 3.8-3. Angular dependence of the maximum values along various radii for the ART, 
MAP, and FAIR reconstructions in Figs. 3.8-1 and 3.8-2 compared with that for the original 
function, Fig. 3.8-la, quantitatively demonstrating the improvement afforded by MAP and 
FAIR. 
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underneath the annulus at 162". The reconstructions obtained using the 
same assumptions as above are shown in Figs. 3.8-4b to 3.8-4d. Both MAP 
and FAIR handle the inconsistencies similarly. The angular dependence of 
the maximum reconstruction value, Fig. 3.8-5, shows that both algorithms 
produce an excess near 330" since they tend to shift the discrepant exterior 
source to the annulus, consistent with the a priori assumptions. However, 
both methods do have a significant response in the region of the exterior 
source and, therefore, provide some information about the discrepancy. 
This would not be the case for the MAP algorithm were Rf chosen to be 
zero outside the annulus. This illustrates the need for conservatism in placing 
restrictions on the reconstructions that may be violated by the actual source 
distribution. The second, iterative reconstruction step in the FAIR method 
is needed for the same reason as it allows corrections to be made to the 
fitted model, if indicated by the available projections. 

The final example is the reconstruction of Fig. 3.8-la from noisy data. 
The same 11 projections were used as before but with random noise added, 

I I I I I I I I I I I 

90 180 270 31 

THETA (deg) 

Fig. 3.8-5. Angular dependence of the maximum values in the MAP and FAIR reconstructions 
of Fig. 3.8-4. 
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(continued) 

which has an rms deviation of 10% relative to the maximum projection 
value. The reconstructions in Fig. 3.8-6 demonstrate that both MAP and 
FAIR simply yield noisy versions of those obtained from noiseless projec- 
tions. There is no disastrous degradation as would be expected for algorithms 
based on analytic continuation [43,44]. Although the FAIR result appears 
to be much noisier than the MAP reconstruction, careful observation reveals 
that both have nearly identical noise in the annular region, which is the 
only region of interest for diagnosis. The rms difference between the projec- 
tion measurements and the ray sums of the MAP and FAIR reconstructions, 
respectively, are roughtly 0.8 and 0.5 times the actual rms deviation of the 
noise in the projections. This indicates that both algorithms have attempted 
to solve the measurement equations beyond what is reasonable. The MAP 
algorithm does balance the rms error in the projections against the deviation - from f. However, when used with unity damping factor, ART simply 
attempts to reduce the rms projection error to zero, satisfying each projection 

Fig. 3.8-6. Reconstructions of the source in Fig. 3.8-la from 11 noisy projections with the 
(a) ART, (b) MAP, and (c) FAIR algorithms, showing that the latter two algorithms are 
tolerant of noise. 
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in turn. It may never converge to a solution if the data are inconsistent. It 
is possible to temper the adverse reaction of ART to inconsistent data by 
using small damping factors [86]. 

3.9 A GENERALIZED BAYESIAN METHOD 
w 

Both MAP and FAIR, as presented above, have drawbacks. The 
incorporation of a priori knowledge in the MAP algorithm presented above , 

is quite restrictive. It does not readily accommodate prior source distribu- 
tions that vary in size, shape, or location. However, the fitting procedure 
used in the first step of FAIR can easily handle such variations by including 
them as variables to be determined from the data. In the spirit of the 
Bayesian approach, constraints on these variables may be introduced to 
guide the fitting procedure toward a "reasonable" result. The use of ART 
in the second, iterative portion of FAIR has the disadvantage that ART 
tries to reduce the discrepancy in the measurement equations to zero without 
regard for the estimated uncertainties in the data. Thus, the FAIR result 
shown in Fig. 3.8-6c is quite noisy and is substantially farther from the 
actual source distribution (rms deviation = 0.154) than the intermediate 
fitted result (rms deviation = 0.031). 

In a more global Bayesian approach to the problem, the fitting procedure 
in FAIR may be used to estimate suitable ensemble properties T and Rf for 
input to a MAP algorithm. The fitting procedure may be viewed as defining 
a subensemble appropriate to the available data. This is similar to a radiolo- 
gist's approach to interpreting a radiograph. The radiograph typically con- 
tains enough identifying features that the radiologist can determine which 
part of the body is being imaged with which imaging modality. This allows 
him to select the appropriate set of diagnostic criteria. For the present 
example, the fitting procedure used the same model as described above for 
the first step of FAIR and the fitted result was used for T. Rf was assumed 
to be 0.1 times the identity matrix. This is much smaller than the value used 
in the preceding MAP calculation to reflect the supposition that the fit is 
much closer to the desired result than the annulus of constant amplitude 
previously used for T. Figure 3.9-1 shows the MAP reconstruction using the .. 
10% rms noise data, and the results are superior to those in Fig. 3.8-6. The 
rms deviation of this reconstruction relative to the source function is 0.035, 
whereas that for the earlier MAP result, Fig. 3.8-6, is 0.060. When this . 
generalized MAP method is applied to the projections of the inconsistent 
source function shown in Fig. 3.8-4a, the result is very similar to that 
obtained with FAIR, Fig. 3.8-4d. These examples only hint at the power of 
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Fig. 3.9-1. Reconstruction from the same data used in Fig. 3.8-6 obtained by employing 
MAP as the second step in the FAIR procedure. This global Bayesian approach yields the 
best estimate of the original function and provides flexibility in the use of a priori information. 

this global Bayesian approach where the MAP algorithm is used for the 
second, iterative step of FAIR. The true flexibility of this global approach 
awaits demonstration with more demanding problems. 

3.10 DISCUSSION 

In past comparisons of MAP results to those of more standard techniques 
in the areas of CT [31,73] and in image restoration [38,72,88,89], MAP 
yielded few or no benefits. The reasons for the success of MAP in the above 
limited-angle CT example problem are: (1) the solution is severely under- 
determined because of the limited nature of the data set, and (2) the a priori 

c assumptions about T and Rf can be made quite restrictive because of the 
nature of the stated problem. It is expected that the Bayesian analysis will 
be most useful in situations where these two conditions hold because only 
then will there be both a significant contribution from the null space, which 

083883
Rectangle


083883
Rectangle



116 Kenneth M. Hanson 



Fi
g.

 3
.1

0-
1.

 
R

ec
on

st
ru

ct
io

ns
 f

ro
m

 x
-r

ay
 t

ra
ns

m
is

si
on

 d
at

a 
of

 a
 m

oc
k-

up
 o

f 
pr

op
el

la
nt

 g
ra

in
s 

in
si

de
 a

 f
ib

er
gl

as
s 

ca
nn

on
 b

or
e.

 S
ee

 Z
ol

ta
ni

 e
t 

al
. 

[9
0,

91
] 

fo
r d

et
ai

ls
. T

he
 tr

ue
 o

bj
ec

t 
is

 g
iv

en
 b

y 
(a

),
 th

e 
fi

lt
er

ed
 b

ac
kp

ro
je

ct
io

n 
re

co
ns

tr
uc

ti
on

 f
ro

m
 1

80
 v

ie
w

s.
 T

h
e 

m
ax

im
um

-e
nt

ro
py

 r
ec

on
st

ru
ct

io
ns

 
fr

om
 n

in
e 

vi
ew

s 
(b

) 
an

d 
fi

ve
 v

ie
w

s 
(e

) 
sh

ow
 a

rt
if

ac
ts

 s
im

il
ar

 to
 th

os
e 

in
 th

ei
r 

co
un

te
rp

ar
ts

 (
c)

 a
nd

 (
f)

 o
bt

ai
ne

d 
by

 u
si

ng
 A

R
T

 w
it

h 
a 

no
nn

eg
at

iv
it

y 
co

ns
tr

ai
nt

. T
h

e 
so

ft
 e

nf
or

ce
m

en
t o

f b
in

ar
y 

re
co

ns
tr

uc
ti

on
 v

al
ue

s 
in

 th
e 

in
te

ri
or

 o
f t

he
 c

yl
in

de
r,

 (d
) a

nd
 (g

),
 re

sp
ec

ti
ve

ly
, r

es
ul

ts
 in

 A
R

T
re

co
ns

tr
uc

ti
on

s 
th

at
 a

re
 m

uc
h 

m
or

e 
"r

ea
so

na
bl

e"
. 

H
ow

ev
er

, t
he

 r
ec

on
st

ru
ct

io
n 

w
it

h 
on

ly
 f

iv
e 

vi
ew

s 
(g

) 
is

 p
la

in
ly

 w
ro

ng
, e

ve
n 

th
ou

gh
 it

 l
oo

ks
 li

ke
 w

ha
t 

is
 e

xp
ec

te
d.

 
In

ci
de

nt
al

ly
, 

pr
io

r 
kn

ow
le

dg
e 

of
 t

he
 f

ib
er

gl
as

s 
cy

li
nd

er
 w

as
 i

nc
or

po
ra

te
d 

in
 (

g)
. 

083883
Rectangle

083883
Rectangle




118 Kenneth M. Hanson 

083883
Rectangle




3 Bayesian and Related Methods 

083883
Rectangle

083883
Rectangle




120 Kenneth M. Hanson 

must be properly estimated to avoid artifacts, and the necessary information 
to accomplish that. 

As indicated several times in this chapter, great care must be exercised 
in specifying the ensemble mean and covariance matrix when using the 
Bayesian approach. The same must be said of other supplementary forms 
of constraint. First, it is necessary to avoid assumptions that are inconsistent 
with the actual object as well as with the data. Otherwise the abundance , 

of constraints may cause these inconsistencies to show up as artifacts that 
appear to be part of what was expected. The second consideration is that 
the MAP method necessarily produces results that are weighted toward T ,  
as discussed in Section 3.4. This may not be appropriate if the sought-for 
entities are anomalous. The magnitude of the elements of Rf can be increased 
from their true ensemble values to allow for this. Thus one may view the 
selection of the ensemble characteristics as a method of "tuning" the 
reconstruction algorithm. This tuning must be done with the final purpose 
of the images kept in mind. It should be realized that this is a trade-off 
situation. The constraints must be restrictive in order to affect the null space 
and hence to reduce reconstruction artifacts. But overly restrictive con- 
straints can obscure deviations from what one expects, which might be 
precisely what one is looking for. To make matters worse, in such a situation 
the resulting reconstructions may look very "reasonable," giving the obser- 
ver a false sense of security. Figure 3.10-lshows what happens when excess- 
ively restrictive constraints (binary reconstruction values) are placed on 
data that possess insufficient information. This exercise suggests that the 
definition of an optimal reconstruction should include the ability to estimate 
the reliability of the interpretation from the reconstruction itself. It is this 
ability, among others, that distinguishes the human observer [76]. 

The judgment of the success of the Bayesian analysis is not a trivial 
process. Because the Bayesian approach is based on minimization of an 
ensemble variance, it can be accurately evaluated only by using a relatively 
large number of trials. The assessment of the technique cannot be made on 
the basis of a single image or even several images, as the reader of the open 
literature in general or of this chapter in particular is asked to do. Before 
a Bayesian method can be fully tested in any new imaging situation, the 
observers must be thoroughly trained. This requires a large set of training 
images for which the "truth" is known. The observer should be fully aware 
of the kinds of assumptions that have been made in the reconstruction 
process in order not to be misled by the results. Judgment of any new -, 

imaging technique is too often made on the basis of experience with past 
techniques without retraining the observers. Of course, such retraining is 
costly and demands real commitment to the new method. 

083883
Rectangle



3 Bayesian and Related Methods 

3.11 SUMMARY 

The deficiency in limited data is a consequence of a null space of 
reconstruction functions about which the available measurements say noth- 
ing. Artifacts in deterministic reconstructions can be reduced if the null- 
space components of the original image can be properly estimated through 

Y the use of prior information. The Bayesian approach permits the incorpor- 
ation of information about the general shape or structure of the object. An 
iterative reconstruction algorithm is presented that finds the solution with 
the maximum a posteriori (MAP) probability. The incorporation of other 
kinds of prior knowledge, including maximum entropy, may be considered 
as special cases of the Bayesian approach. An alternative Bayesian scheme 
is the fit and iterative reconstruction (FAIR) algorithm that is based on a 
parametric model of the object, which is restricted according to prior 
knowledge about the object. Both MAP and FAIR are shown to work well 
in ameliorating reconstruction artifacts, even in the presence of noise and 
other sources of inconsistencies with the prior assumptions. A global 
Bayesian approach, which combines the flexibility of the fitting procedure 
in the FAIR method and the tolerance of the MAP method, promises to 
be even better. It is stressed that the prior constraints placed on any 
reconstruction must be carefully chosen so as not to automatically produce 
an acceptable looking result, irrespective of the data. Because the Bayesian 
method allows information that is not inherent in the measurement data to 
affect the resulting image, it is wise to take a cautious approach in interpret- 
ing its results. Thus, much personal experience with the Bayesian method 
is required before one can rely on it. 

ACKNOWLEDGMENTS 

This work was supported by the U.S. Department of Energy under contract W-7405-ENG-36. 
I wish to acknowledge helpful and interesting discussions with Gerald Minerbo, Michael 
Buonocore, Barry Medoff, Jorge Llacer, George W. Wecksung, and Henry Stark. George 
Wecksung is responsible for the computer codes used to generate the MAP examples shown 
here and for introducing me to the measurement-space/nuIl-space concept. I thank Richard 
P. Kruger and Csaba Zoltani for the data used to obtain the reconstructions shown in Fig. 3.10-1. 

REFERENCES 

.; 1. K. M. Hanson and G. W. Wecksung (1983). Bayesian approach to limited-angle reconstruc- 
tion in computed tomography. J. Opt. Soc. Amer. 73, 1501-1509. 

2. K. M. Hanson, J. N. Bradbury, T. M. Cannon, R. L. Hutson, D. B. Laubacher, R. J. 
Macek, M. A. Paciotti and C. A. Taylor (1981). Computed tomography using proton 
energy loss. Phys. Med. BioL 26, 965-983. 

083883
Rectangle


083883
Rectangle



122 Kenneth M. Hanson 

3. K. M. Hanson, J. N. Bradbury R. A. Koeppe, R. J. Macek, D. R. Machen, R. Morgado, 
M. A. Paciotti, S. A. Sanford and V. W. Steward (1982). Proton computed tomography of 
human specimens. Phys. Med. Biol. 27, 25-36. 

4. A. J. Devaney (1983). A computer simulation study of diffraction tomography. ZEEE 
Trans. Biomed. Eng. BME-30, 377-386. 

5. A. J. Devaney (1984). Geophysical diffraction tomography. ZEEE Trans. Geosci. Remote 
Sens. GE-22, 3-13. 

6. H. C. Andrews and B. R. Hunt (1977). "Digital Image Restoration", Prentice-Hall, 
Englewood Cliffs, New Jersey. 

7. K. T. Smith, D. C. Solmon and S. L. Wagner (1977). Practical and mathematical aspects 
of the problem of reconstructing objects from radiographs. Bull. Amer. Math. Soc. 83, 
1227-1270. 

8. S. Twomey (1965). The application of numerical filtering to the solution of integral 
equations encountered in indirect sensing measurement. J. Frank Znst. 279, 95-109. 

9. S. Twomey and H. B. Howell (1967). Some aspects of the optical estimation of microstruc- 
ture in fog and cloud. Appl. Opt. 6, 2125-2131. 

10. S. Twomey (1974). Information content in remote sensing. Appl. Opt. 13, 942-945. 
11. K. Tanabe (1971). Projection method for solving a singular system of linear equations 

and its applications. Numer. Math. 17, 203-214. 
12. D. D. Jackson (1972). Interpretation of inaccurate, insufficient and inconsistent data. 

Geophys. J. R Astr. Soc. 28, 97-109. 
13. M. B. Katz (1979). "Questions of Uniqueness and Resolution in Reconstruction from 

Projections," Lecture Notes in Biomathematics, (S. Levin, ed.) Springer, Berlin. 
14. J. Llacer (1979). Theory of imaging with a very limited number of projections. ZEEE Trans. 

Nucl. Sci. NS-26, 596-602. 
15. J. L. C. Sanz and T. S. Huang (1983). Unified Hilbert space approach to iterative least- 

squares linear signal restoration. J. Opt. Soc. Am. 73, 1455-1465. 
16. R. Gordon, R. Bender and G. T. Herman (1970). Algebraic reconstruction techniques for 

three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29,471-481. 
17. B. F. Logan and L. A. Shepp (1975). Optimal reconstruction of a function from its 

projections. Duke Math. Jour. 42, 645-659. 
18. A. V. Lakshminarayan and A. Lent (1976). The simultaneous iterative reconstruction 

technique as a least-squares method. Proc. SPZE 96, 108-116. 
19. C. Hamaker and D. C. Solmon (1978). The angles between the null spaces of x rays. J. 

Math. Anal. Appl. 62, 1-23. 
20. A. K. Louis (1981). Ghosts in tomography-The null space of the Radon transform. Math. 

Meth. Appl. Sci. 3, 1-10. 
21. A. K. Louis (1984). Orthogonal function series expansions and the null space of the Radon 

transform. SZAM J. Math. Anal. 15, 621-633. 
22. B. P. Medoff, W. R. Brody and A. Macovski (1982). Image reconstruction from limited 

data. Proc. Znt. Workshop on Physics and Engineering in Medical Imaging, Pacific Grove, 
1982, IEEE Computer Society, Silver Spring, 188-192. 

23. B. P. Medoff, W. R. Brody, M. Nassi and A. Macovski (1983). Iterative convolution 
backprojection algorithms for image reconstruction from limited data. J. Opt. Soc. Am. 
73, 1493-1500. 

24. K. M. Hanson (1982). CT reconstruction from limited projection angles. Proc. SPZE 347, . 
166-173. 

25. Buonocore, M. H., Brody, W. R., and Macovski, A. (1981). Natural pixel decomposition 
for two-dimensional image reconstruction. ZEEE Trans. Biomed. Eng. BME-28, 69-78. 

26. G. T. Herman (1980), "Image Reconstruction from Projections," Academic Press, New 
York. 

083883
Rectangle

083883
Rectangle

083883
Rectangle



3 Bayesian and Related Methods 123 

27. Shepp, L. A., and Logan, B. F. (1974). The Fourier reconstruction of a head section. IEEE 
Trans. NucL Sci. NS-21, 21-43. 

28. R. Gordon (1974). A tutorial on ART. IEEE Trans. Nucl. Sci NS-21, 78-93. 
29. P. Gilbert (1972). Iterative methods for the three-dimensional reconstruction of an object 

from projections. J. Theor. Biol. 36, 105-117. 
30. M. Goitein (1972). Three-dimensional density reconstruction from a series of two- 

dimensional projections. Nucl. Instrum. Meth. 101, 509-518. 
31. G. T. Herman and A Lent (1976). A computer implementation of a Bayesian analysis of 

image reconstruction. Inform. Contr. 31, 364-384. 
32. K. M. Hanson and G. W. Wecksung (1985). Local basis-function approach to computed 

tomography. Appl. Opt. 24, 4028-4039. 
w 33. A. Ben Israel and T. N. E. Greville (1974). "Generalized Inverses: Theory and Applica- 

tions," John Wiley and Sons, New York, pp. 244-245. 
34. D. G. McCaughey and H. C. Andrews (1977). Degrees of freedom for projection imaging. 

IEEE Trans. Acoust, Speech, Signal Processing ASSP-25, 63-73. 
35. T. M. Cannon (1976). Blind deconvolution of spatially invariant image blurs with phase. 

IEEE Trans. Accoust., Speech, Signal Processing ASSP-24, 58-63. 
36. D. C. Ghiglia (1984). Space-invariant deblurring given N independent blurred images of 

a common object. J. Opt. Soc. Am. Al, 398-402. 
37. A. P. Sage and J. L. Melsa (1979). "Estimation Theory with Applications to Communica- 

tions and Control," Robert E. Krieger, Huntington, p. 175. 
38. B. R. Hunt (1977). Bayesian methods in nonlinear digital image restoration. IEEE Trans. 

Comput. C-26, 219-229. 
39. G. T. Herman and A. Lent (1976). Iterative reconstruction algorithms. Comput. Biol. Med. 

6, 273-294. 
40. P. R. Bevington (1969). "Data Reduction and Error Analysis for the Physical Sciences," 

McGraw-Hill, New York. 
41. B. R. Frieden (1972). Restoring with maximum likelihood and maximum entropy. J. Opt. 

Soc. Am. 62, 511-518. 
42. L. A. Shepp and Y. Vardi (1982). Maximum likelihood reconstruction for emission 

tomography. IEEE Trans. Med. Imdging MI-1, 113-122. 
43. T. Inouye (1979). Image reconstruction with limited-angle projection data. IEEE Trans. 

Nucl. Sci. NS-26, 2666-2669. 
44. T. Inouye (1982). Image reconstruction with limited view angle projections. Proc. Int. 

Workshop on Physics and Engineering in Medical Imaging, Pacific Grove, 1982, IEEE 
Computer Society, Silver Spring, Maryland, 165-168. 

45. A. M. Cormack (1963). Representation of a function by its line integrals, with some 
radiological applications. J. Appl. Phys. 34, 2722-2727, and J. Appl. Phys. 35, 2908-2913. 

46. K. C. Tam, V. Perez-Mendez and B. Macdonald (1979). 3-D object reconstruction in 
emission and transmission tomography with limited-angular input. IEEE Trans. Nucl. Sci. 
NS-26, 2797-2805. 

47. R. W. Gerchberg (1974). Super-resolution through error energy reduction. Opt. Acta 21, 
709-720. * 48. A. Papoulis (1975). A new algorithm in spectral analysis and band-limited extrapolation. 
IEEE Trans. Circuits Syst. CAS-22, 735-742. 

49. K. C. Tam and V. Perez-Mendez (1981). Tomographic imaging with limited-angle input. 
B J. Opt. Soc. Am. 71, 582-592. 

50. K. C. Tam and V. Perez-Mendez (1981). Limits to image reconstruction from restricted 
angular input. IEEE Trans. Nucl. Sci. NS-28, 179-183. 

51. F. A. Griinbaum (1980). A study of Fourier space methods for limited-angle image 
reconstruction. Numer. Funct. Anal. and Optimiz. 2, 31-42. 

083883
Rectangle


083883
Rectangle



124 Kenneth M. Hanson 

52. T. Sato, S. J. Norton, M. Linzer, 0 .  Ikeda and M. Hirama (1981). Tomographic image 
reconstruction from limited projections using iterative revisions in image and transform 
spaces. Appl. Opt. 20, 395-399. 

53. M. H. Buonocore, W. R. Brody and A. Macovski (1981). Fast minimum variance estimator 
for limited-angle CT image reconstruction. Med. Phys. 8, 695-702. 

54. T. S. Huang, D. A. Barker and S. P. Berger (1975). Iterative image restoration. Appl. Opt. 
14, 1165-1168. 

55. R. W. Schafer, R. M. Mersereau and M. A. Richards (1981). Constrained iterative restora- 
tion algorithms. Proc. IEEE 69, 432-450. 

56. M. I. Sezan and H. Stark (1982). Image restoration by the method of convex projections: 
Part 2-Applications and numerical results. IEEE Trans. Med. Imag. MI-1, 95-101. 

57. S. F. Burch, S. F. Gull and J. Skilling (1983). Image restoration by a powerful maximum 
entropy method. Comp. Vision Graphics Image Process. 23, 113-128. 

58. H. J. Trussell and M. R. Civanlar (1984). The feasible solution in signal restoration. IEEE 
Trans. Acoust., Speech, Signal Processing ASSP-32, 201-212. 

59. K. M. Hanson (1986). Effect of nonnegativity constraints on detectability. Proc. Topical 
Meeting on Quantum Limited Imaging and Image Processing, Honolulu, 1986 (Opt. Soc. 
Am.) (to be published elsewhere). 

60. D. C. Youla and H. Webb (1982). Image restoration by the method of convex projections: 
Part 1-Theory. IEEE Trans. Med. Imag. MI-1, 81-94. 

61. H. J. Trussell and M. R. Civanlar (1985). Digital signal restoration using projection and 
fuzzy set techniques (submitted to IEEE Trans. Acoust., Speech, Signal Processing). 

62. S. J. Wernecke and L. R. d'Addario (1977). Maximum entropy image restoration. IEEE 
Trans. Comput. C-26, 35 1-364. 

63. S. F. Gull and G. J. Daniel1 (1978). Image reconstruction from incomplete and noisy data. 
Nature 272, 686-690. 

64. G. Minerbo, G. (1979). MENT: A maximum entropy algorithm for reconstructing a source 
from projection data. Comput. Graph. Imag. Process. 10, 48-68. 

65. H. J. Trussell (1980). The relationship between image reconstruction by the maximum a 
posteriori method and a maximum entropy method. IEEE Trans. Acoust., Speech, Signal 
Processing ASSP-28, 114-117. 

66. J. Skilling (1984). Theory of maximum entropy image reconstruction. Proc. 4th Workshop 
on Maximum Entropy and Bayesian Methods in Applied Statistics, Calgary, 1984 (J. H. 
Justice, ed.), Cambridge University Press, Cambridge, England. 

67. J. E. Shore and R. W. Johnson (1980). Axiomatic derivation of maximum entropy and 
the principle of minimum cross-entropy. IEEE Trans. Inform. Theory IT-26, 26-37. 

68. B. R. Musicus (1983). Iterative algorithms for optimal signal reconstruction and parameter 
identification given noisy and incomplete data. Proc. Int. Con$ Acoust., Speech, Signal 
Processing, Boston, 1983. 

69. D. M. Titterington (1984). The maximum entropy method for data analysis. Nature 312, 
381-382. 

70. R. Nityananda and R. Narayan (1982). Maximum entropy image reconstruction-A 
practical noninformation-theoretic approach. J. Astrophys. Astr. (India) 3, 419-450. 

71. T. J. Ponman (1984). Maximum entropy methods. Nucl. Instru. Meth. 221, 72-76. 
72. H. J. Trussell and B. R. Hunt (1979). Improved methods of maximum aposterion restora- 

tion. IEEE Trans. Comput. C-27, 57-62. 
73. G. T. Herman, H. Hurwitz, A. Lent and H. Lung (1979). On the Bayesian approach to 

image reconstruction. Inform. Contr. 42, 60-71. 
74. K. M. Hanson (1984). Tomographic reconstruction of axially symmetric objects from a 

single radiograph. Proc. SPIE 491, 180-187. 



3 Bayesian and Related Methods 125 

75. K. M. Hanson (1985). A Bayesian approach to nonlinear inversion: Abel inversion from 
x-ray attentuation data, presented at the Fourth Workshop on Maximum Entropy and 
Bayesian Methods in Applied Statistics, Calgary, 1984 (to be published elsewhere). 

76. K. M. Hanson (1985). Image processing: Mathematics, engineering, or art? Proc. SPIE 
535, 70-81. 

77. S. Kaczmarz (1937). Angenahrte Auflosung von Systemen hea re r  Gleichungen. Bull. Int. 
Acad. Pol. Sci. Lett. A, 355-357. 

78. H. J. Trussell and M. R. Civanlar (1985). The Landweber iteration and projection onto 
Y convex sets. IEEE Trans. Acoust., Speech, Signal Processing ASSP-33, 1632-1633. 

79. S. L. Wood, A. Macovski and M. Morf (1979). Reconstructions with limited data using 
estimation theory. In "Computer Aided Tomography and Ultrasonics in Medicine," (J. 

U Raviv, J. F. Greenlead, G. T. Herman, eds.), Proc. IFIP, TC-4 Working Conf., Haifa, Israel, 
1978, North-Holland, Amsterdam, 219-233. 

80. S. L. Wood and M. Morf (1981). A fast implementation of a minimum variance estimator 
for computerized tomography image reconstruction. IEEE Trans. Biomed. Eng. BME-28, 
56-68. 

81. W. E. Smith, H. H. Barrett and R. G. Paxman (1983). Reconstruction of objects from 
coded images by simulated annealing. Opt. Lett. 8, 199-201. 

82. W. E. Smith, R. G. Paxman and H. H. Barrett (1985). Image reconstruction from coded 
data: I. Reconstruction algorithms and experimental results. J. Opt. Soc Am. A2,491-500. 

83. S. Geman and D. Geman (1984). Stochastic relaxation, Gibbs distributions, and the 
Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell. PAMI-6, 721- 
741. 

84. G. R. Gindi, R. G. Paxman and H. H. Barrett (1984). Reconstruction of an object from 
its coded image and object constraints. Appl. Opt. 23, 851-856. 

85. K. M. Hanson (1982). Limited-angle CT reconstruction using a priori information. Proc. 
First IEEE Computer Society Int. Sympt. on Medical Imaging Interpretation, Berlin, 1982, 
IEEE Computer Society, Silver Spring, Maryland, 527-533. 

86. Y. Censor, P. P. B. Eggennont and D. Gordon (1983). Strong underrelaxation in Kaczmarz's 
method for inconsistent systems. Numer. Math. 41, 83-92. 

87. M. T. LeFree, R. A. Vogel, D. L. Kirch and P. P. Steele (1981). Seven-pinhole tomography- 
A technical description. J. Nucl. Med. 22, 48-54. 

88. H. J. Trussell (1978). Notes on linear image restoration by maximizing the a posteriori 
probability. IEEE Trans. Comp. C-27, 57-62. 

89. T. M. Cannon, H. J. Trussell and B. R. Hunt (1978). Comparison of image restoration 
methods. Appl. Opt. 17, 3384-3390. 

90. C. K. Zoltani, K. J. White and R. P. Kruger (1983). Results of feasibility study on computer 
assisted tomography for ballistic applications. Tech. Report ARBRL-TR-02513, Ballistic 
Research Laboratory, Aberdeen Proving Ground, Maryland. 

91. C. K. Zoltani, K. J. White and F. A. DiBianca (1986). The flash x-ray computed tomography 
facility for microsecond events (to be published in Rev. Sci. Instr.). 

083883
Rectangle


083883
Rectangle


