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In the local basis-function approach, a reconstruction is represented as a linear expansion of basis functions, 
which are arranged on a rectangular grid and possess a local region of support. The basis functions considered 
here are positive and may overlap. It is found that basis functions based on cubic B-splines offer significant 
improvements in the calculational accuracy that can be achieved with iterative tomographic reconstruction 
algorithms. By employing repetitive basis functions, the computitisnal effort involved in these algorithms 
can be minimized through the use of tabulated values for the line or strip integralsover a single-basis function. 
The local nature of the basis functions reduces the difficulties associated with applying iocal wnstraints on 
reconstruction values, such as upper and lower limits. Sincea r e ~ l l s t ~ d i ~ n  is specified everywhere by a set 
of coefficients, display of a coarsely represented image does not require an arbitrary choice of an interpolation 
function 

Objects or collections of objeds are inherently func- 
tions of up to three continuous spatial coordinates. 
Images, which are 2-D representations of such objects, 
therefore, should be also functions of continuous spa- 
tial variables. Because digital computers can only 
handle a finite number of digital words, it is necessary 
to approximate a real image by a finite set of discrete 
numbers to process it digitally. Thus image proces- 
sors have come to regard an image as a collection of 
pixels that results from sampling the actual image a t  
evenly spaced points. Although digital images that 
are sampled finely enough create the illusion of repre- 
senting natural objects, the discrete nature of coarsely 
sampled images can be all too obvious. When such 
coarse images are displayed by replicating each sample 
value over a square region, the sharp discontinuities at 
the pixel boundaries can be very disconcerting to the 
eye. Instead bilinear interpolation is often used to 
display coarsely sampled images. While this avoids 
discontinuities in the displayed luminance, discontin- 
uities in the spatial derivatives of the luminance are 
still apparent creating visual artifacts along the sample 
grid. A better means of interpolating coarsely sam- 
pled images is needed, such as the use of cubic B- 
splines proposed by Andrews and Patters0n.l They 
noted the cosmetic improvement in the appearance of 
an image as a result of such interpolation even though 
there is no change in the information content as deter- 
mined by the number of degrees of freedom in the 
interpolated images. 
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Iterative reconstruction algorithms2$ have been 
proposed to solve the computed tomographic (CT) 
reconstruction problem. They have the versatility to 
readily handle odd measurement geometries including 
incomplete projection data, uneven spacing of projec- 
tion angles, and even curved ray paths: as well as make 
use of prior information about the object.5-8 These 
iterative CT algorithms require repeated evaluation of 
projection integrals over a trial object function (recon- 
struction) to compare with the data as well as a proce- 
dure to update the trial function called backprojec- 
t i ~ n . ~  Proper evaluation of these line or strip integrals 
requires that the reconstruction be defined a t  all val- 
ues of the spatial coordinates. When the first iterative 
reconstruction algorithm, algebraic reconstruction 
technique (ART), was introduced by Gordon et aE., lo 
the calculation of the projections was very crude, 
equivalent to assigning the  full value a t  each recon- 
struction grid point to only one sample point in each 
projection. It was Crowther and Klugll and later Gil- 
bert12 who pointed out the need to approximate closely 
the actual physical measurements in the calculation of 
the projections for such iterative algorithms. Many of 
the disputes in the early history of CT recon~ltruction 
m e t h ~ d s l l - ~ ~  may have had their basis in the differing 
approximations used in projection estimation more 
than in the underlying reconstruction principles. 
Subsequently, more attention was given to the details 
of the projection calculation14J5 to the benefit of the 
resulting reconstructions. 

In the local basis-function approach, the continuous 
nature of the two spatial variables x and y is taken as 
fundamental. The image is considered to be a linear 
combination of basis functions, each of which is non- 
zero only in the region local to its corresponding cen- 
tral coordinate. It  is the coefficients of the basis func- 
tions that specify the image, not the values of the 
function at the sample points. The objective of the 
reconstruction algorithm is to determine the coeffi- 
cients from the available projection data. Since the 
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value of the image may be evaluated at any position 
(xy)  by performing the appropriate summation over 
basis functions, not only the projections but also the 
display can be unambiguously evaluated. The dis- 
played function is exactly the same as the reconstruct- 
ed function. The restriction to basis functions that 
are local is motivated by the belief that the implemen- 
tation of local constraints on the reconstructed values 
is easier than if they were nonlocal. 

The local basis-function approach is mathematical- 
ly equivalent to the technique of interpolating between 
reconstruction sample values provided the latter is 
done consistently at  all stages of the computation and 
display. However, the basis-function approach em- 
phasizes the need for consistency and brings to light 
the properties and restrictions of a particular choice 
for the representation of the reconstructed function. 
The local basis-function approach is, of course, gener- 
ally applicable to all areas of image processing. Its use 
in restoration of blurred images with stationary point 
spread functions has already been investigated by Hou 
and Andrews.16J7 Their examples do not show a dra- 
matic improvement when progressively smoother ba- 
sis functions are used. This is possibly because of the 
fact that the original blurred images and the final 
restored images are displayed on the same grid. Thus 
the choice of basis function may have little effect on 
the outcome. In our present application to CT, the 
data have a different sample basis than the desired 
reconstruction. The need to calculate projections of a 
discretely represented reconstruction function forces 
the issue. The atypical disparity inherent in comput- 
ed tomography between the data-sampling geometry 
and the rectangular grid normally used to represent 
the reconstructed function has been instructive in the 
past in the consideration of the propagation of noise in 
the data and its effect on detectability'8J9 and of the 
limitations imposed by incomplete data.7.8 Because of 
its unique characteristics, the CT problem provides a 
valuable testbed for the exploration of image process- 
ing concepts. 

In this paper we will present the basis-function ap- 
proach to the representation of images and discuss the 
criteria that seem important for the selection of suit- 
able basis functions. A review of some nonlocal basis 
functions and their deficiencies will be followed by a 
description of several choices for local basis functions. 
The computational efficiency that follows from the use 
of local repetitive basis functions will be employed to 
demonstrate the advantages of the one based on the 
cubic B-spline. 

11. Basls-Functlon Approach 
The CT problem may be stated as follows: Given a 

finite set of projections of a function of two variables 
f(x,y) with compact support, obtain the best estimate 
of that function. The original function f is often called 
the object or object function. The projections may 
generally be written as a weighted 2-D integral of 
~ ( X Y ) ,  

I 
Fig. 1. Projection measurement geometry of the tomographic 
problem. Each measurement is an integral over a thinstrip ofwidth 
w. The ith measurement is designated by the perpendicular dis- 
tance of thestrip from theoriginri and angle h. Theassumed region 

of support of the unknown function is a circle with radius R. 

g, = S I  h;(x ,y)f (x ,y)dxd~,  (1) 

where the hi are weighting functions and i = 1 , .  . . $4 
for M individual measurements. We refer to the hi as 
response  function^.^^ The projection geometry is il- 
lustrated in Fig. l. The hi typically have large values 
within a narrow strip and small or zero values outside 
the strip. If the hi are unity within a straight strip of 
constant width and zero outside, Eq. (1) becomes a 
strip integral. For zero strip width, it becomes a line 
integral. These two cases are recognized as idealiza- 
tions of the response functions found in usual physical 
situations as, for example, in x-ray CT scanners.20 As 
most other authors have done, we shall consider only 
these to simplify the calculation of gi. 

For a given offset r with inclination 8, we define a line 
integral L and a strip integral S of width w as follows: 

We observe that both L and S are linear functionals 
with argument f and that, for small values of w, S can 
be approximated by 

S(f;r,B,w) = wLV;r,8). (4) 

In this notation, we can rewrite the measurement Eq. 
(1) as 

Let us assume that our estimate f of the unknown 
function is a linear combination of basis functions 
b j ( x , ~ ) , j  = 1 , .  . . J', 

Here f is a function on a continuous domain and is 
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specified by the set of N coefficients aj. Combining 
Eqs. (5) and (6), we see that the coefficients must 
satisfy 

N 

1 ajS(bj;rj,B,w) = gi, i = 1, . . . ,M. (7) 
j=1 

This approach has been considered before in CT re- 
con~truction.~.~ It is also referred to as collocation 
when applied to the solution of integral and differen- 
tial  equation^.^^ The projection operation, defined by 
Eq. (I), becomes a sum over contributions from the 
individual basis functions. Backprojection, used as 
the principle means of updating reconstructions, 
amounts to adding a quantity to the a, that is propor- - - - - 

tional to S(b,;r&,w). 
If we define a matrix P whose entry in the ith row 

and jth column is given by 

Eq. (7) can be written in matrix form as 

Pa = e. (9) - 
where a is the vector of N unknown coefficients a,, and 
g is the vector of M measurements g,. If Eq. (9) can be 
solved for a, the values off a t  any point (x,y)  can be 
obtained using Eq. (6). The essential problem, then, is 
to invert the M X N measurement matrix P. When 
either M + N or when P is a singular matrix, the 
inverse of P does not exist. When the problem is 
underdetermined, as it must be when M < N, for 
example, a plethora of solutions exists. Finding a 
solution is not the dilemma; rather, it is to decide 
which of the many solutions to choose. To make the 
solution in some sense unique, it might be required 
that out of the many possible solutions the one with 
minimum norm be chosen. This amounts to employ- 
ing the pseudoinverse or generalized inverse2' of P (or 
P'IP). The ambiguous nature of the solutions to this 
~roblem has its roots in the existence of a null s ~ a c e ~  
bf the matrix P. When any vector lying wbollyAin the 
null space is multiplied by P, the result is zero. The 
components of a that lie in this null space cannot be 
determined from the measurements a1one.I When 
reconstruction is formulated as a least-square error 
problem, the matrix that must be inverted is PTP, 
which is square but may be singular nevertheless. 

Consider the magnitude of this inversion task when 
one has 10 views with 100 samples in each view and the 
reconstruction image is to be defined on a 100 X 100 
grid, which is a CT problem of only moderate size. In 
this case, P is a 1000 X 10,000 matrix. Fortunately, 
when the basis functions are local, P is sparse. For 
example, in the above problem, P might contain only 
200,000 nonzero elements, i.e., 2% of the total. It is 
known3 that in such a case iterative reconstruction 
algorithms may be be used to solve Eq. (9) with a small 
number (between 3 and 20) of iterations, where one 
iteration includes al l  the measurements. 

At this point it becomes necessary to choose the 
basis functions bj. Desirable properties of a suitable 
basis-function set include the following: 

(A) strong linear independence; 
(B) power of approximation; 
(C) insensitivity to shift of basis-function set; 
(D) efficient computation of projections and back- 

projections; 
(E) efficient implementation of reconstruction con- 

straints; 
(F) fidelity of visual appearance. 
It is quite possible that no single set of local basis 

functions can meet all these conditions ideally, but 
some do much better than others. Let us discuss these 
criteria in turn. Linear independence of functions in a 
basis set is necessary to specify the coefficients corre- 
sponding to a given reconstruction function uniquely. 
Moreover, we prefer strong linear independence so 
that a pair of distant points in the coefficient space 
corresponds to significantly different reconstruction 

'functions. 
Ideally we want a basis-function set to be complete 

in the class of all acceptable reconstructions so that 
any reconstruction can be represented. In practice, 
we can only ask that any reconstruction function be 
accurately approximated by a linear combination of 
basis functions. For a fixed number of basis functions, 
some sets provide better approximations than others. 
For example, we expect a piecewise-linear function to 
furnish a better approximation to a smooth function 
than a piecewise-constant one. The number of coeffi- 
cients needed to represent the reconstmction is often a 
dominant consideration in the selection of a basis- 
function set because of the need to limit the amount of 
computer storage and computation speed required to 
perform a reconstruction. Hence it is desirable to 
select a representation that gives the best approxima- 
tion with a fixed minimal number of coefficients. I t  is 
expected that, for any form of baais function, the de- 
gree of approximation will improve as the number of 
basis functions is increased. In particular, it is desir- 
able to have agood representation of both the constant 
andlinearly varyingfunctions. It is oftenthe case that 
the objective of reconstruction is to detect the presence 
of a low contrast anomaly against a simple slowly vary- 
ing background. If the representation is incapable of 
properly portraying such a background, it might be 
difficult to distinguish the actual anomaly from de- 
fects in representation. Similarly, it is undesirable for 
a step function to evoke oscillations in the reconstruc- 
tion, as in the Gibbs phenomenon. 

I t  would be unfortunate if a shift of the basis func- 
tions resulted in a much different approximation to 
the same function. Such behavior could only be a 
boon if the basis functions were used to enforce a 
certain structure in the reconstructed function that 
was known beforehand. Generally such information is 
not available, and the choice of the position of the 
basis-function set is arbitrary and random relative to 
the object. 

Computational speed is very important for iterative 
CT reconstruction algorithms, because many itera- 
tions are usually required to obtain an acceptable re- 
sult. In these algorithms it is the projection and back- 
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projection procedures that normally use the most CPU 
time. For this reason, i t  is well to choose basis func- 
tions for which these procedures are simplified. If 
constraints are to be placed on the reconstruction val- 
ues, such as upper and lower limits, it is also important 
that these can be imposed in a computationally effi- 
cient way. Another type of constraint comes in the 
form of prior knowledge about the probability for vari- 
ous densities to occur at  different locations. Algo- 
rithms based on the principle of maximum aposteriori 
(MAP) probabilityS,6,s make use of this kind of knowl- 
edge. The above demands for computational efficien- 
cy and the desirability of being able to apply local 
constraints seem to be met best by basis functions that 
are repetitive, local, and non-negative. 

The ultimate use of processed images, including CT 
reconstructions, is visual interpretation by human ob- 
sewers. Therefore, property (F) is of paramount im- 
portance. Unnecessary fluctuations in the recon- 
struction contributed by the basis-function set should 
be avoided. Since the eye is acutely sensitive tospatial 
variations in luminosity, minor artifacts arising from 
image representation can often be readily observed. 

Ill. Non-local Basis Functions 
Before turning to basis functions that are local, 

which is the subject of this paper, we review some 
noulocal ones that have been employed in the past. 
Because of their nonlocality, such basis functions do 
not typically result in a sparse measurement matrix P, 
as do local ones. Unless there exists a symmetry be- 
tween the projection response functions and the as- 
sumed basis functions that can be e x p l ~ i t e d , ~ ~  the 
computation and storage of P may not be feasible for 
large problems. Thus nonlocal basis functions are 
likely to fail to satisfy criteria (D) and (E). 

Reviewing Eqs. (1)-(6), it would seem that a natural 
choice for the basis functions is the set of response 
functions hi(x,y). In fact, these were considered to be 
the natural pixels for CT reconstruction by Buonocore 
et aLZ3 They employed this representation for evenly 
spaced and complete angle sampling to devise a fast 
noniterative reconstruction algorithm. The resulting 
symmetry in the projection matrix Pleads toacompul 
tatimallv feasible method for obtaining its inverse. A - 
much dekper interpretation of this choice exists, how- 
ever. I t  may be readily argued7 that in the Hilbert 
space of reconstruction functions, the only subspace 
sampled by the measurements is that spanned by the 
response functions. In that measurement space of 
functions, the expansion given by Eq. (6) (with bi = hi) 
is complete. Note that the imposition of the con- 
straint of a minimum-norm solution in the desire for 
uniqueness requires that the solution lie in this sub- 
space. The components in the null space, the sub- 
space of all possible functions that is orthogonal to the 
measurement space, must have zero amplitude. How- 
ever, for a given number of samples per view, as the 
number of views increases, the number of degrees of 
freedom in this representation reaches an asymptotic 
limkZ4 This indicates that condition (A) is not well 

met by the response-function expansion in these cir- 
cumstance~ .~~  But, in this limit, this expansion ap- 
proaches completeness in regard to all functions that 
possess the same frequency limitations as the projec- 
tion measurements arising from their discrete sam- 
pling. In the case of limited angular coverage, this 
representation is not complete with respect to the full 
space of functions. Therefore, a significant null space 
exists. If the null-space components of the solution 
are to be estimated through the adjunct of prior knowl- 
edge, this representation is inadequate. Two algo- 
rithms have been proposed in the past to produce 
reconstructions that maximize the entropy of the re- 
constructed function subject to the constraint of satis- 
fying the measurement equations, Eq. (1): multiplica- 
tive ART (MART)z6 and MENT.z7 It  is interesting to 
note that the essential difference between these two 
algorithms is the representation employed to store the 
reconstruction. Even the ARTlike3 sequence of mul- 
tiplicative updating is fundamentally identical. For 
basis functions, MENT uses the response functions; 
whereas MART uses the standard square pixels placed 
on a square grid. Differences in the results obtained 
using these techniquesz7 can only arise from the details 
of the calculational procedure or from this difference 
in representation. 

In his pioneering work on x-ray t o m o g ~ a p h y , ~ ~ . ~ ~  
Cormack used a nonlocal basis-function set to repre- 
sent the reconstruction. The reconstructed function 
was expanded as the product of a Fourier series in 
polar angle times Zernike polynomials in radius. Cor- 
mack was able to obtain quite a respectable recon- 
struction from merely 475 measurements! His data 
analysis was aided greatly by the fact that the projec- 
tions of the basis functions enjoy certain orthogonality 
relations. Thus the coefficients in the basis-function 
expansion could be obtained using discrete Fourier 
transforms. Cormack's selection of basis functions 
satisfactorily meets properties (A) and (D) but does 
not fulfill the other desirable properties. An alterna- 
tive choice for nonlocal basis functions consists of 
products of sinc functions [sin(?r&)la&] in x and y 
placed on arectangular grid with spacing A. These are 
orthogonal in the infinite domain, meeting criterion 
(A), but their projections are not. These have the 
advantage of being bandlimited to the appropriate 
Nyquist frequency and so are insensitive to a shift of 
their origin, property (C). The deficiencies of the sinc 
basis-function set are that their projections are diffi- 
cult to calculate; and because of the abrupt falloff of 
their frequency response, reconstructions based on 
them are apt to exhibit substantial ringing (oscilla- 
tions) near discontinuities, thus failing to meet criteri- 
on (F). In some cases, prior knowledge about the 
function to be reconstructed is available. If the co- 
variance of the ensemble of object functions is known, 
the Karhunen-Lokve expansion provides an efficient 
representation for any finite number of terms." In 
this expansion, the basis functions are eigenfunctions 
of the covariance matrix ordered by decreasing eigen- 
value. Of course, this cannot be used if the covariance 
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matrix is unavailable. Eigenfunction expansions 
based on other matrices or equations may also be con- 
sidered. Since eigenfunctions with nonzero eigenva- 
lues either are or can be made orthogonal, they at least 
meet criterion (A). Another choice of nonlocal basis 
functions is a set of semicircular rings,3l which either 
reflects an approximate circular symmetry of the ob- 
ject or is related to a limited-angle projection geome- 
try. Many other choices for nonlocal basis functions 
e ~ i s t . ~ , ~ ~  

IV. LocalEaslsFMctlars 
Let us now consider basis functions that are local 

and repetitive. By local, we mean that the support of 
each bj is small compared with that off. In general, 
the basis functions are centered- on each point of an 
equally spaced 2-D grid with spacing A. All basis 
functions in a set are non-negative and identical except 
for location. We pick the basis grid so that it is aligned 
with the x and y axes. Writing (xj,yj) for the coordi- 
nates of the jth grid point, we have for the correspond- 
ing basis function 

where b(xy) is a basis function centered at  the origin, 
and djj = r, - xj cos Oj - yj sin Bi is the signed distance 
between the projection strip hi and the jth grid point 
(xj,yj) as shown in Fig. 2. Since the basis function has 
finite support, a t  each angle 0 there will be some mini- 
mum distance Re for which the right-hand side of Eq. 
(11) will be zero when 1d;j > Rs. Because the basis 
function is local, Re is much smaller than the width of 
the reconstruction region. Therefore, pv is sparse, as 
mentioned above. The basic approach here is to cre- 
ate a table for S(bj;d,O,w) in terms of d and 0. Because 
the table need only be constructed for nonzero entries, 
the range for d may be restricted to Id 1 < Re. Thus, 
even with fine sampling in d, the table can be fairly 
small. The values of pjj needed by the reconstruction 
algorithm can be readily calculated by interpolation 
between the tabulated values. As presented in the 
Appendix, additional simplifications can be made by 
assuming the separable form, b(x,y) = @(x)@(y), where 
the profile function @ is an even function. Let us 
assume b(x,y) has been normalized so that 

JJb(xy)dxdy = A'. (12) 

While completely arbitrary, this normalization bas the 
advantage that for relatively smooth functions, the 
coefficients a j  are approximately the same as the local 
value of f(x,y). 

The basis functions that we consider here have been 
motivated as improvements over the set of square pix- 
els. Like the square pixel, they are all local, but unlike 
the square pixel, they are permitted to overlap. We 
compare the performance of five different sets of local 
basis functions. As they are all separable, they can be 
specified by the l-D profile function 0 above. The 
profile functions considered are the square pulse, the 

Fig. 2. Geometry associated with the ith strip integral across the 
jthlocal basis function, which is centeredon (xj,yj) and is assumed to 

have square support. 

triangle, cubic B-~pline,'~ Gaussian [exp(-ex2)], and 
Hanning [0.5(1 + cos(cx)] functions, all displayed in 
Fig. 3(a). The Gaussian and Hanning functions are 
specified by their full width a t  half-maximum 
(FWHM). The other sets depend only on the grid 
spacing A. The square pixel is generated by the square 
pulse of width A, and the triangle function is obtained 
by convolving the square pulse with itself. These two 
choices correspond to nearest-neighbor and bilinear 
interpolation. The cubic B-spline, in turn, is obtained 
by convolving the triangle function with itself.16 The 
Gaussian is not strictly local owing to its infinitely long 
tail. We have truncated the Gaussian at aradius of 1.5 
times its FWHM. This makes this basis functionnon- 
separable, but, because the Gaussian has dropped at  
the truncation point to 0.002 times its peak value, there 
is little effect on the results. 

For equally spaced basis functions, the sensitivity of 
the result to a shift in position of the set of basis 
functions is related to the amount of aliasing that they 
have relative to the Nyquist frequency f~ = (2A)-' 
associated with their spacing A. Thus property (C) 
amounts to the requirement that the basis function be 
bandlimited, that is, its Fourier transform is zero 
above f ~ .  The Fourier transforms of the profile func- 
tions in Fig. 3(a) are displayed in Fig. 3(b). If Nu)  is 
the Fourier transform of the profile function @(x), 
where u is the spatial frequency associated with x, then 
@(u)+(u) is the Fourier transform of the separable 
basis function O(x)OCy). The transform of the square 
pulse is a sinc function [sin(aAu)laAu], which is char- 
acterized by sidelobes of alternating sign whose ampli- 
tudes fall off as the reciprocal of spatial frequency. 
Since the transforms of the triangle and the cubic B- 
spline are, respectively, the second and fourth power of 
the transform of the square pulse, their sidelobes are 
more strongly suppressed. Thus the triangle and the 
cubic B-spline are successive improvements over the 
square pulse in terms of bandlimitedness. Trans- 
forms of the truncated Gaussian and Hanning func- 
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tions are shown for FWHM of A. Their high-frequen- 
cy content can be further reduced by increasing the 
FWHM but at  the cost of weakening the linear inde- 
pendence of the basis set and limiting the spatial reso- 
lution that can be achieved, contrary to properties (A) 
and (B). We obserne that the attainment of these two 
properties is a t  the expense of property (C), so the 
choice of basis function involves a compromise be- 
tween desirable properties. 

Let us address the question of the ability of the 
above local basis functions to represent a constant 
function. The set of square pixels clearly can repre- 
sent a constant function. In one dimension, it is easy 
to see that the other basis functions under consider- 
ation, with the exception of the Gaussian, also have 
this property. Consider a point in the internal be- 
tween two grid points. In the case of the triangle 
function and the Hanning window, only the two basis 
functions centered on the endpoints contribute to this 
point. We can easily verify for these cases that if the 
two corresponding coefficients have the same value, 
each point of the interval will have this same common 
function value. For cubic B-spline, four basis func- 
tions contribute to this interval. The four coefficients 
provide enough degrees of freedom to represent exact- 
ly any polynomial of up to third order on the interval. 
This includes polynomials of degree zero, that is, con- 
stant functions. 

We have found that to evaluate the required projec- 
tions and backprojections, it is computationally effi- 
cient to construct a numerical table of values for 
S(b;r,B,w). Since we are interested in comparing gen- 
eral choices of basis functions. it is convenient to use a 
numerical integration technique to evaluate the right- 
hand side of Eq. (11). We use one based on the ten- 
point Gauss Legendre quadrature scheme33 in which 
the integration intervals are adaptively chosen. The 
accuracy of this numerical integration method has 
been checked against the analytic integration for the 
square pixel (Appendix) and that based on the triangle 
function and has been found to be accurate to better 
than one part in lo7. For each viewing angle 0 of 
interest, we create a table of values of S(b:k&.O.w). for k . .  . .  . .  
=0, .  . . J,- 1,onafinegridof pointswithspacingd = 
ReI(N,- 1). Thecomplete set of projections (or back- 
projections) at  any specific angleis &dated at once 
by making one pass through all the coefficient values 
aj. The contribution from the jth basis function to the 
ith projectionS(b;dj,,Oi,w) can be found by linear inter- 
polation on d, the offset dij = r; - xj cos8; - yj sin&, 
when dij < Re If the width w is small, the strip integral 
may be approximated by the line integral, Eq. (4). 

Fig. 3. (a) One-dimensional profile func- 
tions 6(x) used to prduce the 2-D separable 
basis functions studied. From bottom to 

-8 4 -2 0 2 4 6 top, they are the square, triangle, Hanning, 
FREQUENCY Gaussian, and cubic B-spline profile func- 

NYQUIST FREQUENCY tions. (b) Fourier transforms of the profile 
0) functions. 
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A more general approach, one that we use, is to 
define 

For even basis functions, L(b;-t,O) = L(b;t,O + a) = 
L(b;t,O), and so we have 

and the strip integral 

S(b;r,O,w) = F(r + ~ 1 2 . 8 )  - F(r - w/2,8) (15) 

is well defined for all r. From the line integrals L, we 
can compute F given by Eq. (13) using a numerical 
integration scheme as simple as the trapezoidal rule. 
A table of Fvalues is constructed in much the same way 
as suggested for S before. Then, in this approach, the 
strip integrals are calculated from Eq. (15) obtaining 
the F values from the table by interpolation. 

Although we have restricted ourselves in this paper 
onlv to ~arallel-beam ~roiections. it is worth mention- 
inithat the above technique of tabularization can be 
extended to cover the fan-beam case. For the parallel- 
beam geometry, the strip of integration for a measure- 
ment lies between two parallel lines. For the fan- 
beam geometry, the strip of integration lies between 
two lines that diverge from a common point outside the 
domain of reconstruction. If we build a 2-D table of 
values for F(r,O) for finely spaced values of r and 0, we 
can compute F(r,O) for arbitrary r and 0 by bilinear 
interpolation in the table. Thus the contribution of an 
arbitrary basis function to a measurement is given by 
%,of) - F(r,,O,), where rf and r, are the distances from 
the center of the basis function to the farther and 
closer line, respectively, and Of and 0, are the corre- 
sponding inclinations. 

The reconstructions presented here are obtained 
using the ART algorithm? mainly because it is versa- 
tile and possesses excellent convergence characteris- 
tics. Any other iterative reconstruction algorithm 
could have been chosen to demonstrate the local basis- 
function approach, which is the main point of this 
paper. The basic technique in ART is as follows. At 
any stage in the iteration, the projection, Eq. (I), is 
cdculated corresponding to a particular ith measure- 
ment. Thedifference between the result and the mea- 
surement. termed the residual. is taken. This residual 
is backprojected, that is, added to the contributing 
basis-function coefficients in proportion to S(b,;r,, 
O,,w), with such normalization that if the projection 
were recalculated, it would perfectly agree with the 
measurement. The measurement index i is cycled 
through allMvalues to complete what is defined as one 
iteration. This individual treatment of each measure- 
ment is approximated in our calculation by computing 
all projections at  each measurement angle in a single 
operation to reduce the number of times the coeffi- 
cients of the reconstruction function must be refer- 
enced. The residuals at  that angle are then all back- 
projected in the same operation. The overlap of 
contributions to any one coefficient from more than 

one projection is thus ignored. A repeated projection 
of the updated reconstruction at  the same angle would 
not exactly match the measurement data. In the ex- 
amples that follow, where a 32 X 32 grid is used, typi- 
cally ten iterations are used even though five iterations 
are found to be sufficient. The CPU time required on 
a CDC-7600 computer to complete ten iterations is 1.7 
min. This is -30% slower than that required to run 
ART when a normal method of projection is used, in 
which linear interpolation is carried out in the projec- 
tion ordinate using an accumulation scheme based on a 
5X finer sampling. The local basis-function approach 
involves more computation because the contribution 
of each coefficient must be added to all the ~roiection 
samples that fall within the projection of-the basis 
function's support. 

Expansion of the coefficient set a, for display as a 
quasi-continuous luminance distribution is done in 
two steps. First, the basis-function expansion, Eq. 
(61, is evaluated on a 4X finer grid than the coefficient 
grid by convolving the coefficients with a kernel that 
consists of the point sampling of the basis function. 
This kernel may be up to 15 X 15 in size in our comput- 
er codes. Further interpolation is carried out to reach 
the 512 X 512 display size of our ComtalVision-One120 
using bilinear interpolation for all but the square basis 
function, for which simple replication is employed to 
preserve the sharp boundaries of the pixels. 

VI. Examples 
In this paper we compare coarse 32 X 32 ART recon- 

.structions of a phantom using the above choices of 
local basis functions. An example with a coarse grid is 
used to demonstrate the essential properties of various 
basis functions. The same behavior can be expected 
on the scale of the grid spacing no matter how many 
grid samples are contained in a digital image. In each 
case, a 32 X 32 set of coefficients is found using the 
ART algorithm. The input data consist of projections 
taken at  60 equally spaced angles, 0 d 0 < a,  with 32 
equally spaced sample points per view. In the calcula- 
tion of the input data and in the reconstruction proce- 
dure itself, the width of the strip integral is taken to be 
the spacing between projection points. The recon- 
structions are then displayed as explained above. In 
Fig. 4, we display our phantom on a 512 X 512 grid. 
The phantom is defined as a superposition of perfect 
disks and perfect squares (possibly tilted). The cen- 
tral pair of circles has a diameter of 4.04 where A is the 
sample spacing of the 32 X 32 grid. The length of the 
sides of the two squares is 3.5A to give them the same 
area as the circles. The four circles in the upper right- 
hand portion of the object have a diameter of 1.5A and 
a spacing between centers of 3.0A. The centers of each 
of the above objects were randomly placed relative to 
the grid. The outer nonconcentric annulus has a mini- 
mum width of 1.0A and a maximum width of 5.06. In 
developing this phantom, the anticipated visual tasks 
are: (a) di8crimination between squares and circles in 
the central region; (b) identification of the separation 
between the four circles in a row; (c) observed constan- 
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Fig. 4. Image of the original object used in 
the following examples. 

cy in the flat region in the lower left-hand comer of the 
outer annulus; and (d) visualization of the thin smooth 
arc in the upper right-hand corner of the outer annu- 
lus. The first task is particularly relevant as its perfor- 
mance relies heavily on the fidelity of the high spatial 
frequency components of the image,34s35 which are 
most difficult to preserve with coarse sampling. 

Reconstmctions based on a 32 X 32 grid using the 
square, triangle, and cubic B-spline as profile func- 
tions are shown in Fig. 5. Successive improvements in 
image quality are evident. The sharp discontinuities 
in the square pixels of Fig. 5(a) are visually disturbing. 
There is little to indicate the shapes of the objects in 
the central region. While the result based on the 
triangle profile function is visually far more appealing, 
the eye perceives enhancements along the basis-func- 
tion grid axes because of the discontinuity in slope 
there. These grid artifacts inhibit the performance of 
the stated visual tasks. The cubic B-spline appears to 
provide the best result. The distinction between the 
squares and circles is best made using Fig. 5(c). Simi- 
lar reconstructions for the truncated Gaussian and 
Hanning functions, each with aFWHM of A, are shown 

in Fig. 6. The grid structure is seen in both of these. 
In the Gaussian case, this is related to the inability of 
the basis function to represent a constant. In the 
Hanning case, it is because the basis functions neces- 
sarily have zero derivatives on the grid lines. This 
creates a visually disturbing presentation that does not 
represent the original object very well. 

I t  is expected that basis functions with improved 
powers of approximation should provide more than a 
method of interpolation for display purposes. They 
should lead to more accurate reconstructions. To 
demonstrate this we show in Fig. 7 the result of using 
bilinear interpolation (equivalent to the basis function 
that corresponds to the triangle profile function) to 
display the coefficients obtained with the square basis 
function. While the visual appearance is improved 
over that of Fig. 5(a), the accuracy is not as good as Fig. 
5(b) in which the triangle profile function was used 
throughout. Many artifacts show up inFig. 7, particu- 
larly in the flat region of the crescent and between the 
small objects. The square basis function on a coarse 
grid does not provide a very good estimate of the pro- 
jection. I t  yields an inconsistent set of projections 
that cannot agree with the physical measurements. I t  
is hard to quantify the superiority of the more ad- 
vanced basis functions over the square pixel because 
the usual rms measures of accuracy are inadequate to 
describe such minor, but significant, differences. 
However, in the original versions of Figs. 7 and 5(b), 
the improvement afforded by the triangle basis func- 
tion is easily observed. 

VII. Dlscusdar 
The local basis-function approach has several ad- 

vantages. Strip or line integrals over a single-basis 
function can be obtained either analytically or numeri- 
cally and can be placed in a table. Then, the corre- 
sponding strip or line integrals over the reconstruction 
function can be calculated as linear combinations of 
stored coefficients using interpolated table values for 

(a) (b) (c) 

Fig. 5. Reconstructions of Fig. 4 obta~nedusing basis functions on a 32 X 32 gnd and the ARTreeonstruetionalgorithm. The input datacon- 
sist of 32 strip integrals (projections) at each of 60 angles, evenly spaced over z rad. The separable basis functions employed are based on the 
profile functions (a) square, (b) triangle, and (c)  cubic B-spline. In the display of these results, the reconstruction values are obtained 

everywhere in the x-y plane by using the corresponding basis-function expansion Eq. (6). 
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Fig. 6. Reconstructions on a 32 X 32 grid 
using (a) Gaussian and (b) Hanning profile 

functions. 

Fig. '7. Result uE idinear interpolation of 
the coeiiirimts ohtained in the reconstruc- 
tion employing the square basis function on 
a 32 X 32 grid, that is, the same coefficients 
as in Fig. 5(a). Although improvement in 
the display over Fig. %a) results, there are 
more artifacts than in Fig. 5(b) in which the 
triangle profile function was consistently 

used throughout. 

the weights. This improves computing efficiency es- 
pecially when the basis function is very complicated. 
Also, when the basis function has good approximating 
properties, as, for example, the B-splines used here, we 
can expect more accurate estimates of the projection 
integrals over the object function. Improved accuracy 
in the projection calculations can improve the conver- 
gence characteristics of ART14 since inconsistencies in 
the projections have long been known to eventually 
lead to divergence in ART. The inconsistencies also 
lead to artifacts in the reconstruction. The use of 
proper strip integrals in the projection calculation 
when the actual measurements are strip integrals 
might also be expected to reduce inconsistencies and, 
therefore, artifacts. This was verified in tests with the 
phantom used here, although the effect was not great. 
Of the five sets of local basis functions that we consid- 
er, the cubic B-spline holds the most promise in terms 
of the given criteria. All others have obvious faults. 
The Gaussian, with all of its intuitive appeal, is the 
only choice that cannot represent a constant function. 
As the B-spline basis set has excellent approximating 
properties, for a fixed number of coefficients we expect 
higher accuracy in the reconstruction and fewer arti- 
facts in the display by use of the cubic B-spline than by 
use of either the square or triangle profile function. 
Our results appear to confirm this. We do not claim 
that the cubic B-spline is necessarily the optimum 
choice. The optimum choice depends on the relative 
weight given to each of the criteria stated in Sec. 11, of 
additional criteria. Obviously many other forms of 
local basis functions exist.36 

I t  has been proposed3 that if the object function is 
known a priori to lie between certain upper and lower 
limits, invoking these limits on the reconstructed func- 
tion can yield better results. Such limits provide a 
means to overcome the restrictions of linear solutions 
to the measurement space of reconstruction func- 
t i o n ~ . ~  This is, in effect, a way of estimating the prop- 
er null-space components of the reconstruction. Hou 
and Andrewsl%ave considered the problem of apply- 
ing these constraints when using the local basis func- 
tion representation but did not offer a viable solution. 
Suppose that it is desired to restrict the reconstruction 
function to be non-negative. If adjacent basis func- 
tions oterlap, the condition that all coefficients be 
non-negative is too strong, since it is possible to have a 
non-negative reconstruction with some negative coef- 
ficients in its expansion. For example, for the cubic B- 
spline profile function, sixteen coefficients contribute 
to the reconstruction values within each square that 
has grid points as vertices. Thus, considering the size 
of the matrix P, a mathematical (linear) programming 
problem of vast proportions results. It is unlikely that 
the traditional methods for soiution of this class of 
problems will work here. An approach s~milar to that 
of Herman3? in which the upper and lower limits are 
not strictly enforced at  each update of the reconstruc- 
tion may have application here. Whenever an update 
is to be made to the reconstruction, if the new value of 
the reconstruction will violate a limit, the new value is 
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set midway between the limit and the value it would 
have had without the constraint. Herman showed 
that this iterative scheme converges to a solution that 
fulfills the constraint, even though it might not strictly 
fulfill the constraint at intermediate iterations. This 
approach was to be used in the typical point-sampled 
representation. I t  appears that a possible solution to 
our overlapping basis-function problem is to check 
each grid square after an update for violations of the 
stated limits. Whenever such violations occur, the 
contributing basis-function coefficients could be al- 
tered to reduce the magnitude of the violation, sharing 
the correction among the coefficients in a weighted 
manner. This procedure may have convergence prop- 
erties similar to the one suggested by Herman. The 
use of local basis functions minimizes the number of 
coefficients that contribute to each grid square and 
hence should improve the computational efficiency of 
any procedure used to impose upper and lower limits 
on the reconstruction function. 

Experience with phantoms other than the one used 
here shows that sharp discontinuities in the phantom 
can result in oscillations in the reconstruction. The 
source of this Gibbs phenomenon seems to be the 
inability of the representation to approximate the 
data. In essence, this deficiency arises from aliasing: 
the high frequency components of the function to be 
approximated appear as low frequency components in 
the final image because the representation is unable to 
produce faithfully the high frequencies present in the 
measurement data. The remedy to this unsightly 
ringing is to restrict the data to be consistent with the 
image representation's capabilities. Success has been 
achieved with a low pass filter applied to the data 
before reconstruction. An alternative approach to 
this problem is to place restrictions on the basis-func- 
tion expansion to avoid such oscillations. Hyman38 
has proposed this in regard to spline representations of 
1-D functions. He has shown it possible to constrain 
the derivatives at  the nodes either to make the expan- 
sion monotonically increasing or to maintain convex- 
ity. Although additional degrees of freedom associat- 
ed with the derivatives must be taken into account, 
which detracts from the simplicity of the basis-func- 
tion approach, this method could possibly have appli- 
cation here. 

In Fig. 8 we show a reconstruction on a 128 X 128 grid 
obtained using the triangle profile function. The 
reader should compare this reconstruction with Fig. 
5(b), which is the result of using the same basis func- 
tion on a 32 X 32 grid. While we might expect that 
finer sampling would result in a better reconstruction, 
Fig. 8(a) seems to contradict this. An explanation 
follows. As the spatial resolution of the reconstruc- 
tion representation improves, details of the recon- 
struction algorithm become better resolved. In the 
ART algorithm, as with most CT algorithms, the final 
reconstruction is fundamentally a summation of back- 
projections. In the limit of perfect resolution, the 
individual response functions are better approximat- 
ed, so the reconstruction has the form of Eq. (6) with 

Fig. 8. Reconstructions on a 128 X 128 grid 
using the B-spline profile function. In (a) 
projections are assumed to be line integrals 
and in (b), strip integrals. The improve- 
ment in the resolution of the image repre- 
sentation afforded by finer sampling does 
not necessarily improve the appearance of 
the final result. These reconstructions 
should approximate the measurement- 
space component of the original function. 
This demonstrates the unsuitability of the 
mathematically pure minimum-norm solu- 
tion. which is restricted to the measurement 

space. 

the response functions hi used as the basis functions bj. 
This im~lies that if the initialmess for the reconstruc- 
tion liesin the measurement space, so does each updat- 
ed version. The final solution lies totally in the mea- 
surement space of functions and contains no null- 
space c~mponent.~ This is consistent with the known 
convergence of ART to a minimum-norm solution3 for 
which the null-space components must be zero. As the 
reconstruction representation approaches the re- 
sponse-function expansion, the number of degrees of 
freedom contained therein are more than sufficient to 
satisfy themeasurement equations, Eq. (1). Thus the 
rms residuals of these equations in the reconstruction 
shown in Fig. 8(a) are reduced by more than a factor of 
4 compared with those for Fig. 5(b). What is seen in 
Fig. 8(a) is an approximation to the measurement- 
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ated with the measurements as well as their sample 
spacing. 

Fig. 9. Geometry associated with separable basis functions. The 
limits of integration along the dashed line are sl and.sr. 

space solution when the projections are line integrals. 
Clearly such a solution does not provide the quality of 
visual impact that Fig. 5(c) does. Although the mini- 
mum-norm solution may be appealing mathematical- 
ly, i t  may not be appropriate for human consumption. ' 
The best choice for the reconstruction resolution can- 
not be made purely on calculational or mathematical 
grounds but must involve satisfying the needs of the 
human When the measurements are strip 
integrals, the corresponding reconstruction, Fig. 8(b), 
is more appealing. But signs of interference between 
the representation and the measurement-space expan- 
sion are present. 

Some workers40 have deliberately restricted the spa- 
tial resolution of tomographic reconstructions to avoid 
singular P matrices (or PTP in the case of the least- 
squares approach). When such an approach is em- 
ployed, we have shown that there is a significant ad- 
vantage to the use of cubic B-spline basis functions 
over the typical square pixel. However, this restric- 
tion is not necessary and can produce unsatisfactory 
results. I t  is now known7s8 that iterative reconstruc- 
tion algorithms based on backprojection updating, 
such as ART, can yield meaningful solutions in vastly 
underdetermined situations. In a sense, ART obtains 
a p ~ e u d o i n v e r s e ~ ~ ~ ~ ~  of P. The deficit in these situa- 
tions amounts to the null-space corresponding to the 
limited nature of the measurement geometry. 

As we have seen above, the restriction to the mea- 
surement space can have annoying visual conse- 
quences. When this happens, i t  may be wise to limit 
the resolution of the reconstruction through the use of 
a coarse basis-function grid. However, in limited- 
angle situations, the artifacts resulting from the limit- 
ed span of the measurement space may not be so dis- 
turbing? and reduction of t he  reconstruction 
resolution may be counterproductive. The important 
consideration seems to be that the representation 
should be able to provide a spatial resolution consis- 
tent with, but not much superior to, that inherent in 
the measurements, which depends on the blur associ- 

VIII. Summaly 
We have investigated the use of local basis functions 

to represent reconstruction functions in the problem of 
computed tomography. Local basis functions that are 
re~etitive have several a~nealinp. features. For exam- 
pL, the repeated calculation of projection integrals of' 
the reconstruction required by iterative reconstruc- 
tion algorithms can he accomplished with great sim- 
plicity. The choice of smooth positive overlapping 
basis functions, such as those based on cubic B-splines, 
is preferred because they avoid annoying visual arti- 
facts in the displayed result and allow improved com- 
putational accuracy. Because of the local nature of 
the basis functions considered, local constraints based 
on prior information about the reconstruction func- 
tion should he much easier to impose than if the basis 
functions extended over most of the reconstruction 
region. 
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Appemlix A: Separable Local Basis Functions 
In this Appendix we consider local basis functions 

that are separable, that is, they have the form 

where @(x) = 0 for 1x1 > a. Figure 9 shows the geome- 
try. We further assume that the profile function @ is 
even, i.e., 

We can write the line integral L in terms of the rotated 
coordinates as 

L(b;r,8) = [ $(r ms 8 - s sin #)+(r sin 0 + s eos 8)ds, (A3) 

where the limits of integration sl and sz are determined 
by the boundary of the square. Clearly, L(b;r,B) = 0 
when r lies outside the interval (-Rs,Rs) with Rs = a 
(lcos 6j + lsin 4). We observe that Re is just t h e  
maximum projection of the comers of the square onto 
the r axis. Also, it is easily verified from Eqs. (Al) and 
(A2) that for all 8 and all r, L(b;r,B) is an even function 
of r and B and that for 0 d B d 7rI4, 

Thus we need only compute L(b;r,B) for 0 d 8 d d4 and 
0 d r < Rs. The limits of integration become 
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o+rs inO reos8-u 
8 ,  = max (- 

eos 0 sin 8 ) 8.0, 
= - 0 = 0, 

a, (A5) 

In some cases, Eq. (A4) can be easily integrated 
analytically. For example, in the case of the square 
pixel (a = A/2), 

L(b;r,B) = s, - 8, 

= 2o/cos 8, r < a (cos 8 - sin a), 
= (R, - r)/(sin 8 eos 8), a(- 8 - sin 8) < r < R,, 
=O,r>R,. 

(A61 
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