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Outline
• Basic probability theory ...........(Peter)
• Simple examples of Bayesian Inference...........(Peter)
• Types of probabilistic inference ...........(Peter)
• Case Studies...........(Peter)

• Advanced Modeling...........(Wray)
• Graphical (probabilistic) models...........(Wray)
• Computation...........(Wray)

• Priors...........(Wray)
• Other views and ideas...........(Peter and Wray)
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Bayesian Inference I
• Q1: How should a rational agent form beliefs under uncertainty?
• Q2: How should a rational agent make decisions under 

uncertainty?
• Initially concentrate on beliefs of a rational agent.

• Must Generalize logic:
– T or F (0 or 1) --> degree of belief (numerical).

– degree of belief depends on particular (known) context 

• Cox’s Proof shows that probability theory is the only consistant 
theory that generalizes logic in this way (more later!).

• Example probability statement:
– P(Clinton will win in 1996 | Bosnia-resolved-by-1996, 1995) = .4

– .4 is degree of belief

– “Clinton will win in 1996” is target proposition (form beliefs about it)

– “1995” is a proposition describing the current conditioning context.
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Bayesian Inference  II
– Bosnia-resolved -by-1996 is a conditioning proposition.

– The | symbol separates the target proposition from the conditioning 
proposition(s).

• Target Proposition:
– Can be atomic or Boolean combination of propositions.

– Propositions can quantified−e.g. “All people in this room are older than 
25 years”.

• Conditioning Proposition:
– Can be atomic or Boolean combination of propositions.

– Always includes a proposition representing the context of the probability 
assertion (sometimes omitted).

– Can include quantified proposition−e.g. “All people in this room 
employed”.
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Basic Probability Laws   I
• Probability Law of Excluded Middle (Negation Law):

P(A) = 1 - P(not A)     

• Positivity Law:
 0 ≤  P(A) ≤ 1

• Non-Truth Functionality:
– e.g.  0  ≤  P(A & B) ≤ min(P(A),P(B))        [P(A & B) = P(A,B)]

– The probability of the conjunction is not determined by its components 
(but is bounded by them).

• Disjunction:
– P(A or B) = P(A) + P(B) - P(A & B)

– If A and B mutually exclusive, then

–     P(A or B) = P(A) + P(B)     (Additivie Law of probabilities)
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Basic Probability Laws II
• Multiplication Law:

P(A,B,C,..|I) =  P(A|I)P(B|A,I)P(C|A,B,I)...

                     =  P(B|I)P(A|B,I)P(C|A,B,I)...

                     =  P(C|I)P(B|C,I)P(A|B,C,I)...  etc.

• Bayes Theorem
– From Multiplication Law

P(A|I)P(B|A,I) = P(B|I)P(A|B,I)

-->  P(A|I) = P(B|I)P(A|B,I)/P(B|A,I)    [Bayes Theorem]

• Marginalization (Discrete)
P(A|C) = P(A,B|C) + P(A,not B|C)      [B is binary auxilary variable]

P(A|C) =  Σi P(A,Xi|C)         [Xi is an i-way auxilary variable]

            =  Σi P(A|Xi,C)*P(Xi|C)

• Marginalization (Continuous)

P(A|C) = ∫  P(A,x|C) dx

            = ∫ P(A|x,C)*ƒ(x|C) dx
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Examples of Marginalization
• Discrete

P(Pass-PhD|School) = P(Pass-PhD, Female|School) + 

                                    P(Pass-PhD, Male|School)

                                 = P(Pass-PhD|Femal,|School)P(Female|School) +

                                    P(Pass-PhD|Male,School)P(Male|School)

P(Pass-PhD|Female,USA) = Σschools P(Pass-PhD,School|Female,USA)

• Continuous
P(Pass-Phd|USA) = ∫ P(Pass-PhD,Age|USA) d(Age)

                             = ∫ P(Pass-PhD|Age,USA)*ƒ(Age|USA) d(Age)

• Marginalization Eliminates “Nuisance” Variables:
– The effect of Marginalization is to eliminate explicit dependence on the 

variable(s) that are marginalized away.
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Probability Density Functions
• Probabilities are numbers from 0 to 1,  representing degree of 

belief in target proposition given conditioning informtion.
E.g.--Q: What is probability that this rock weighs exactly 1 Kg.?

     Ans:  Zero (infinitessimal) 
--> Need probability density functions!

• Definition:  Probability Density Function (pdf).
ƒ(x|C) is a piece-wise continuous function of x s.t.

–   ƒ(x|C) ≥  0
–   ∫ ƒ(x|C) dx = 1   (i.e. x must have some value!)

• Probabilities found by integrating pdfs over specific ranges.
– Example:

      P(1Kg. ≤  weight(rock)  <  1.1 Kg.) = ∫ ƒ(weight(rock)) dw

i.e. the probability that the rock weighs between 1 and 1.1 Kg. is given by 
the integral of the pdf over the range.  (see next slide)
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PDF  Example
Area under curve is required probability:

Note:
–  ƒ(x|C) can be > 1     [ƒ(x|C) is not a probability.]

–  ƒ(x\C) can be regarded as the limiting result of a probabilistic histogram 
as the bin sizes  go to zero.

total area = 1

P( 25 ≤ Age ≤ 35 | NASA ) = area shaded
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Probability Notes  1
• All Probabilities are conditional probabilities:

– always condition on context

– Sometimes conditioning information understood (not explicit)--Danger!!

• There is no such thing as THE probability of a proposition:
– As learn new conditioning information and choose to use it, the 

resulting conditional probability will be different than previous 
conditional probabilities--i.e the best estimate probability changes 
with new information.

– Probability statements can refer to the next outcome in a series or 
to future values based on current evidence, but not to long term 
frequency.

• Conditional Probability ≠ Probability of a Conditional !!
e.g. “Where ever there is smoke there is likely to be fire”.

– Is P(Fire | Smoke, context) = high (.9)

– Not  P(Smoke -> Fire | context) = high (.9);    [No smoke events count as 
evidence!]
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Probability Notes II
• Probability is not a Frequency (it is a measure of belief).

– Can have a probability of a single event e.g. Prob. of Clinton being re-
elected in 1996.

– probability equals expected frequency in repeated trials (probability and 
frequency are closely related).

• Conditioning Information can be Hypothetical.
e.g.  “If I miss my fight, I can probably get another one today”.

– conditioning information does not have to be true.

– can consider many mutually inconsistant conditioning contexts.

– probabilistic inference is montonic--i.e. do not have to change previous 
beliefs if the context changes (compute new probabilities in the new 
context instead).

• Odds map probabilities  from  [0,1]  to [0,∞]--i.e.
Odds(A) = P(A)/P(not A)

               = P(A)/(1 - P(A))          [Only good for Binary propositions]

To transform from Odds to probability use:    P =   Odds/(1 + Odds)
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Alternative Forms of Bayes Theorem
• Basic Form of Bayes theorem for a set of mutually exclusive and 

exhaustive hypotheses H(i), given evidence E:
                                           P(Hi |C)*P(E|Hi,C)
                 P(Hi|E,C)  =   ⎯⎯⎯⎯⎯⎯⎯⎯⎯
                                                  P(E|C)

          posterior prob. =  prior prob. x likelihood / normalizing const.
Where  P(E|C)  =    P(E|Hi,C)*P(Hi |C) —i.e. marginalize over all Hi.

Note that  P(E|C) does not depend on Hi — it is just a normalizing constant

• Relative version of Bayes:
•

         P(Hi |E,C)          P(Hi |C)*P(E|Hi,C)
         ⎯⎯⎯⎯    =  ⎯⎯⎯⎯⎯⎯⎯⎯⎯
          P(Hj |E,C)          P(Hj |C)*P(E|Hj,C)

– Eliminates the normalizing constant, but requirement that

    ∑i  P(Hi |E,C) = 1  allows the P(Hi |E,C)’s to be normalized.
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Example of Bayesian Inference
Situation:  There are 64 coins in a box, one of these coins is double-

headed (H2), the rest are ordinary (H1) .  A single coin is drawn 
from the box.

• Q1:   What is the probability that this coin is the double-headed 
coin?

    Ans:   P(H2|C) = 1/64      [C is the context]
– Principle of Indifference (or more generally, Maximum Enrtopy).

New Situation:  The selected coin is flipped, and the result (R1) is 
“heads”.   [A “tails” result means that not double-headed coin]

• Q2:  What is the new probability that this coin is the double-
headed coin?

     Ans:--Use Bayes!!
      -- Relative version of Bayes is easiest to use.
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Double-Headed Coin Example (Cont.)

• Relative Bayes for H1 and H2:

         P(H2|R1,C)       P(H2|C)*P(R1|H2,C)
         ⎯⎯⎯⎯⎯  =  ⎯⎯⎯⎯⎯⎯⎯⎯⎯
         P(H1|R1,C)       P(H1|C)*P(R1|H1,C)

P(H2|C) = 1/64  (prev. slide);   P(H1|C) = 63/64   (By normalization)

P(R1|H2,C) = 1  (only possible outcome);  P(R1|H1,C) = 1/2  (fair coin).

Therefore:   P(H2|R1,C)/P(H1|R1,C)  =  (1/63)*2 = 2/63  (increased prob.)

And:   P(H2|R1,C) = 2/65

New Situation:  The selected coin is flipped again, and the result 
(R2) is  also “heads”.   

     [Note:  If any flip gives “tails” then P(H2|E,C) = 0]

Want:    P(H2|R1,R2,C)   -->  Bayes again!
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Double-Headed Coin Example (Cont.)

• Relative Bayes again:

         P(H2|R1,R2,C)       P(H2|C)*P(R1,R2|H2,C)
         ⎯⎯⎯⎯⎯⎯  =  ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
         P(H1|R1,R2,C)       P(H1|C)*P(R1,R2|H1,C)

• P(R1,R2|H2,C) = 1   (only possibility),  but what is  P(R1,R2|H1,C)?

Note:   In principle,  P(R1,R2|H1,C) could be any value from 0 to 1/2.

Solution:  Use principle of maximum entropy to find the probability

that maximizes the entropy subject to any constraints (more later)!

Result:  Conditional Independence--i.e.

                P(R1,R2 |H1,C) = P(R1 |H1,C)*P(R2 |H1,C)      or

                P(R1 |R2,H1,C) = P(R1 |H1,C)

16

Double-Headed Coin Example (Cont.)
• Two Flip (R1,R2) Conclusion:

  P(H2|R1,R2,C)       P(H2|C)*P(R1,R2|H2,C)       (1/64)*1                      4
  ––––––––––––– =  ––––––––––––––––––––  = –––––––––––––––– = –––
  P(H1|R1,R2,C)       P(H1|C)*P(R1,R2|H1,C)       (63/64)*(1/2)*(1/2)   63

Which gives:   P(H2|R1,R2,C) = 4/69

• Recursive form of Bayes (when evidence is conditionally 
independent).

P(H2|R1,R2,C)       P(H2|C)*P(R1,R2|H2,C)     P(H2|C)*P(R1|H2,C)*P(R2|H2,C)  
------------------  =  ------------------------------  =  ---------------------------------------- 
P(H1|R1,R2,C)       P(H1|C)*P(R1,R2|H1,C)     P(H1|C)*P(R1|H1,C)*P(R2|H2,C) 

                                P(H2|R1,C)*P(R2|H2,C)       Prior * Likelihood
                         =    ––––––––––––––––––––– =  –––––––––––––––  
                                P(H1|R1,C)*P(R2|H2,C)       Prior * Likelihood
                    
i.e. Previous posterior probability becomes the prior on the next 

iteration!
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HIV  Testing Example 
Situation 1: A patient enters a clinic.

Q1:  What is the probability that this patient is HIV+ ?

Ans:  P(HIV+|Clinic) = .01     (answer depends on clinic, location etc.)

Note: P(HIV+|Clinic) ≠ P(HIV+|USA)   (“The” prior probability)

Situation 2:  A blood sample from the patient is tested using the 
ELISA test, and is found +ve (E1+).

Q2: What is the prob. that the patient is HIV+ given E1+ ?

Ans:  Relative Bayes:  Posterior ratio = Prior-ratio*Likelihood-ratio

   

    P(HIV+|E1+,C)     P(HIV+|C)*P(E1+|HIV+,C)     .01 x .98
     ------------------- =  --------------------------------- = ----------- = .198
    P(HIV-|E1+,C)     P(HIV-|C)*P(E1+|HIV-,C)        .99 x .05

   --> P(HIV+|E1+,C) = .165  (much less than 1!)
18

HIV  Testing Example (Cont.)
Situation 3:  The blood sample from the patient is tested using the 

ELISA test, and is found -ve (E1-).

Q3: What is the prob. that the patient is HIV+ given E1- ?

Ans:  Relative Bayes:  Posterior ratio = Prior-ratio*Likelihood-ratio

    P(HIV+|E1-,C)       P(HIV+|C)*P(E1-|HIV+,C)     .01 x .02
     ------------------- =  --------------------------------- = ----------- = .00021
    P(HIV-|E1-,C)        P(HIV-|C)*P(E1-|HIV-,C)       .99 x .95

    --> P(HIV+|E1+,C) = .00021  (from a prior of .01 !)

Situation 4:  The blood sample from the patient is tested again using

the ELISA test, and is found +ve (E2+) after the first test was +ve (E1+).

Q4: What is the prob. that the patient is HIV+ given E1+ and E2+ ?

Ans:  Relative Bayes:  Posterior ratio = Prior-ratio*Likelihood-ratio
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HIV  Testing Example (Cont.)

P(HIV+|E1+,E2+,C)       P(HIV+|C)*P(E1+,E2+|HIV+,C)       .01 x ???
-------------------------  =  ----------------------------------------  =  -----------
P(HIV-|E1+,E2+,C)       P(HIV-|C)*P(E1+,E2+|HIV-,C)          .99 x ???

Q5:  What value should be used for P(E1+,E2+|HIV+,C) and 

            P(E1+,E2+|HIV-,C)?

Possible Answers:
Total Dependence:   P(E1+,E2+ |HIV+,C) = P(E1+ |HIV+,C)

       (No new Info.)    P(E1+,E2+ |HIV-,C) = P(E1+ |HIV-,C)

Conditional Independence:

  P(E1+,E2+ |HIV+,C) = P(E1+ |HIV+,C) * P(E2+ |HIV+,C)

  P(E1+,E2+ |HIV+,C) = P(E1+ |HIV-,C) * P(E2+ |HIV-,C)

Empirically Determined Values:   E.g.

  P(E1+,E2+ |HIV+,C) = #(E1+,E2+ |HIV+,C)/ #(all test results|HIV+,C)
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HIV  Testing Example (Cont.)

Situation 5:  The blood sample from the patient is tested again using

    the Western Blot test, and is found -ve (WB-), after an ELISA test 
was found +ve (E1+).

Q6: What is the prob. that the patient is HIV+ given E1+ and WB- ?

Ans:  Relative Bayes:  Posterior ratio = Prior-ratio*Likelihood-ratio

P(HIV+|E1+,WB-,C)       P(HIV+|C)*P(E1+,WB-|HIV+,C)       .01 x ???
-------------------------  =  ----------------------------------------  =  -----------
P(HIV-|E1+,WB-,C)       P(HIV-|C)*P(E1+,WB-|HIV-,C)          .99 x ???

Q7:  What value should be used for P(E1+,WB-|HIV+,C) and 

            P(E1+,WB-|HIV-,C)?

Possible Answer: Assume conditional independence–i.e. result of 
tests depends only sample--not on the results of other tests.
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HIV  Testing Example (Cont.)
P(HIV+|E1+,WB-,C)       P(HIV+|C)*P(E1+,WB-|HIV+,C)       .01 x .0001
-------------------------  =  ----------------------------------------  =  ------------ = .000002
P(HIV-|E1+,WB-,C)       P(HIV-|C)*P(E1+,WB-|HIV-,C)          .99 x .05

-> P(HIV+|E1+,WB-,C) = .000002    i.e. The WB- evidence overwhelms the E1+ 
evidence.

Summary--HIV Example:
– Probabilistic inference is an update procedure---prior beliefs--> posterior

– Even though there may be a large change in relative probability in a Bayesian 
update, the absolute magnitude may still be small.

– How new evidence interacts with previous evidence depends on the domain.  
Whether conditional independence (maxent) applies is domain dependent.

– Priors are dependent on the specific context of the inference.

– Evidence is never “contraditory” (e.g. E1+ and WB-), but different pieces of 
evidence can swing the probability toward 0 or 1.
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Types of Probabilistic Inference

• Direct (Likelihood):
– Likelihood determination

– Maximum Likelihood estimation.

• Inductive:
– Posterior Probability Inference (inverse inference)

– Maximum Posterior probability estimation

– Abductive Reasoning

• Projective (marginalization):
– eliminate nuisance variables

– Important special case−convolution

• Transductive:
– i.e Find probability of new evidence given old.

• Probability Transformation (Re-parameterization):

23

Types of Probabilistic Inference,
−Direct−

Example (Likelihood):
  P(Observed Intensity|Intrinsic luminousity, distance) = N(mean,var)

– Likelihood is the domain model (states how observables depend 
on the true state of the world, assumed known).

– Likelihood is usually a function of (conditioned on) the state of 
the world.

Maximum Likelihood Inference:
– Example:   P(heart-attack| age) = ƒ(age).  Given that someone has 

had a heart-attack, what is their most likely age?

– Vary the conditioning variable(s) to find the value(s) that 
maximize the probability (or pdf).  This value(s) is the maximum 
likelihood (ML) estimator(s).

– Can estimate the uncertainty of the ML estimator by looking at 
the change in probability around the maximum as the variable(s) 
are varied.
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Types of Probabilistic Inference,
−Inductive−I

Induction ≡ P(Model | Data)

                 ∝ P(Model) * P(Data | Model)  [Bayes]

Previous Examples:  
– Double-Headed Coin example (Binary target variable, discrete evidence)

– HIV Testing example.

General Inductive Inference = Inverse Inference  
– i.e. If know true state of the world, then can predict  the data 

(probabilistically), but given the data want the true state of the world.

– e.g. X-ray crystallography, IRS audit prediction,  diagnosis,....

Bayes is general Solution to Inverse Problems
– Bayes finds the posterior probability distribution over possible models 

given data and a prior distribution over models.
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Types of Probabilistic Inference,
−Inductive−II

Maximum Aposteriori Probability (MAP) Estimation:
– Picks the model(s) with maximum posterior probability

– Most posterior probability distributions have many local maxima.

– Need to search to find maximum (or local maximum)

– Need to indicate how concentrated the probability distribtion is around 
the maximum (“error bars”).

Why find MAP estimates?
– Posterior probability distribution contains all the information from prior 

beliefs and data−the MAP estimate is a summary that loses information.

– The most likely posterior model is not generally the same as the mean 
model, and can vary depending on how the problem is parameterized.

– Hill climbing is a simple procedure for finding (local) MAP estimates.

Conclusion:
      Where convenient use full posterior distribution!
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Types of Probabilistic Inference,
−Projective−

Project out the variable(s) of interest = marginalize over 
all “nuisance’ variables.

Example:

          ƒ(μ,σ| X) ⎯→ ƒ(μ|X) = ∫ ƒ(μ,σ|X) dσ

                                               = ∫ ƒ(μ|σ,x)*P(σ|x) dx

                                           Γ(I/2) * S(I-1)

For a Normal:  ƒ(μ|X) =  –––––––––––––––––––––––
                                          √π ∗Γ(Ι/2 − 1/2)∗{S2 + (m - μ)2}
−−−Student “T” distribution.

Where   S = sample standard deviation,  m = sample mean,
      and  Γ()  is the Gamma function.
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Types of Probabilistic Inference,
−Transduction−

Transductive inference gives the probability of new data 
given old data (by marginalizing over model possibilities).

Example (Previous HIV Example):

P(WB+|E1+)  

=        P(WB+,HIV+|E1+)           +       P(WB+,HIV-|E1+) 

= P(WB+|HIV+)*P(HIV+|E1+)  + P(WB+|HIV-)*P(HIV-|E1+)

Where we have assumed conditional independence of evidence 
e.g. P(WB+|HIV+) = P(WB+|HIV+,E1+) 

Can use transduction to evaluate the effect of evidence that 
could be obtained.
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Probability transformation allows a PDF in one 
representation to be transformed to another.

Example:  Transform from Polar to Cartesian 
representation, i.e.

                            ƒ(r,θ) → h(x,y) 

Answer:                                              d(x,y)

                         ƒ(r,θ) =  h(x,y) *Det[⎯⎯⎯];
                                             d(r,θ)

I.E.   Multiply by the Jacobian to transform correctly.

Types of Probabilistic Inference,
−Probability Transformation−
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 Thumb-Tack Example

Direct Inference:  If know θ, what is the probability that 
will get n “flats” in N trials?

Ans:  From logic get Binomial Distribution:

                       n! (N-n)!
   P(n|θ,N)  = ⎯⎯⎯ ∗ θn (1 - θ)(N-n)

                      N!

We toss a thumbtack N 
times with probability θ 
of it landing on its flat

lands on flat lands on its side
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Thumb-Tack Example II
Inductive Inference:  Given number of “sides” n, and total 

number of trials N, what is θ ?

Ans:  Use Bayes to invert the binomial distribution:

ƒ(θ|x) ∝ π(θ)*l(x|θ).  Use (conjugate) prior dist π(θ) ∝ θα (1−θ)α 

                                        Γ(Ν + 2α)
 Then ƒ(θ|x) = β(θ|x) = ⎯⎯⎯⎯⎯⎯⎯⎯ *θ(n+α-1)(1-θ)(N-n+α−1)

                                       Γ(n + α)∗Γ(N-n+α)

Note:  The beta distribution gives the posterior distribution on the 
unknown parameter θ, but it is very similar in form to the 
binomial distribution.
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Thumb-Tack Example III

Transductive Inference:  Given n previous “flats” in N 
trials, what is the probability of getting r “flats” in R 
trials?

Ans:  Marginalize over θ⎯i.e.

P(r|n,N,R) = ∫ P(r|R,θ)* ƒ(θ|n,N) dθ

                        n! * (r +R)! * (N +n -R-r)! * N!
                  = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
                        r! * (n-r)! * R! * (N-R)! * (N +n)!

This is the beta-binomial distribution (independent of θ, but 
still dependent on the conditionally independent trials 
model).
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Summary of Probabilistic Inference
• General method for reasoning under uncertainty.
• Simplest generalization of classical (binary) logic

– allows degrees of belief (not just 0 or 1)

– explicitly conditions belief on specific known evidence

• Probabilistic Inference computes degrees of belief
       (does not make decisions--this requires Decision Theory).

• Bayesian Inference provides a way of computing beliefs given 
particular evidence.

– No such thing as “the” probability of a proposition.

– Probabilities are not frequencies, but these are closely related.

– Evidence can be hypothetical


