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Bayesian Inferencel

* Q1. How should a rational agent form beliefsunder uncertainty?

e Q2: How should arational agent make decisions under
uncertainty?

 [Initially concentrate on_beliefs of a rational agent.
e Must Generalizelogic:

— T or F(0or 1) --> degree of belief (numerical).

— degree of belief depends on particular (known) context

» Cox’sProof showsthat probability theory isthe only consistant
theory that generalizeslogic in thisway (morelater!).

» Example probability statement:
— P(Clinton will win in 1996 | Bosnia-resolved-by-1996, 1995) = .4
— .4isdegree of belief
— “Clinton will winin 1996” istarget proposition (form beliefs about it)
— “1995” is aproposition describing the current conditioning context.

Bayesian Inference ||

— Bosnia-resolved -by-1996 is a conditioning proposition.
— The | symbol separates the target proposition from the conditioning
proposition(s).
e Target Proposition:
— Can be atomic or Boolean combination of propositions.
— Propositions can quantified—e.g. “ All people in this room are older than
25 years”'.
» Conditioning Proposition:
— Can be atomic or Boolean combination of propositions.

— Always includes a proposition representing the context of the probability
assertion (sometimes omitted).

— Can include quantified proposition—e.g. “All peoplein this room
employed”.




Basic Probability Laws |

Probability Law of Excluded Middle (Negation L aw):
P(A) =1-P(not A)

Positivity Law:
0< PA)<1

Non-Truth Functionality:
—eg. 0 < P(A&B)<min(P(A),PB)) [P(A & B) = P(A,B)]

— The probability of the conjunction is not determined by its components
(but is bounded by them).

Digjunction:
— P(A or B) = P(A) + P(B) - P(A & B)
— If A and B mutually exclusive, then
— P(AorB)=P(A) +P(B) (Additivie Law of probabilities)

Basic Probability Laws |

e Multiplication Law:
P(A,B,C..Jl) = P(A|l)P(BJA,I)P(CIA,B,I)...
= P(B|)P(A|B,I)P(CIA,B,I)...
= P(C|NP(BIC,)P(A[B,C.I)... etc.
» Bayes Theorem
— From Multiplication Law
P(A|)P(BIA,I) = P(B|I)P(A|B,1)
--> P(A|l) = P(B|I)P(A|B,I)/P(B|A,l) [Bayes Theorem]
* Marginalization (Discrete)
P(A|C) = P(A,BIC) + P(A,not B|C)  [B ishinary auxilary variable]
P(AIC) = % P(A,X||C) [Xiisani-way auxilary variabl€]
= Zi P(AJX;,C)*P(X|C)
* Marginalization (Continuous)
P(AIC) =] P(AX|C) dx

= [ PAIX,O)* £(XIC) dx

Examples of Marginalization

» Discrete
P(Pass-PhD|School) = P(Pass-PhD, Female|School) +
P(Pass-PhD, Mal€e|School)
= P(Pass-PhD|Femal ,|School)P(Femal elSchool) +
P(Pass-PhD|Mal e, School)P(Male|School)
P(Pass-PhD|Female,USA) = Zgnoas P(Pass-PhD,School |Female,USA)
» Continuous
P(Pass-Phd|USA) = | P(Pass-PhD,Age|USA) d(Age)
= | P(Pass-PhD|Age,USA)* f(AgelUSA) d(Age)
* Marginalization Eliminates“Nuisance” Variables:

— The effect of Marginalization is to eliminate explicit dependence on the
variable(s) that are marginalized away.

Probability Density Functions

» Probabilitiesare numbersfrom Oto 1, representing degree of
belief in target proposition given conditioning informtion.
E.g.--Q: What is probability that thisrock weighs exactly 1 Kg.?
Ans. Zero (infinitessimal)
--> Need probability density functions!
» Definition: Probability Density Function (pdf).
f(X|C) is apiece-wise continuous function of x st.
- fXI0)= 0
- Jf(x|IC)dx=1 (i.e. x must have some value!)
» Probabilitiesfound by integrating pdfs over specific ranges.
— Example:

P(1Kg. < weight(rock) < 1.1Kg.) :,[ f(weight(rock)) dw

i.e. the probability that the rock weighs between 1 and 1.1 Kg. is given by
the integral of the pdf over therange. (see next dide)




PDF Example

Areaunder curveisrequired probability:

P(25< Age< 35| NASA ) = area shaded

f(Age | NASA)

Note:
— f(x|C) canbe>1 [f(x|C)isnotaprobability.]
— f(X\C) can be regarded as the limiting result of a probabilistic histogram
asthe bin sizes go to zero.

Probability Notes 1

« All Probabilities are conditional probabilities:

— always condition on context

— Sometimes conditioning information understood (not explicit)--Danger!!
* Thereisno such thing as THE probability of a proposition:

— Aslearn new conditioning information and choose to useiit, the
resulting conditional probability will be different than previous
conditional probabilities--i.e the best estimate probability changes
with new information.

— Probability statements can refer to the next outcome in a series or
to future values based on current evidence, but not to long term
frequency.

« Conditional Probability 7 Probability of a Conditional !!

e.g. “Where ever there is smoke there islikely to befire”.

— IsP(Fire | Smoke, context) = high (.9)

— Not P(Smoke -> Fire | context) = high (.9); [No smoke events count as
evidence!]
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Probability Notes||

« Probability isnot a Freguency (it isa measure of belief).

— Can have a probability of asingle event e.g. Prob. of Clinton being re-
elected in 1996.

— probability equals expected frequency in repeated trials (probability and
frequency are closely related).

¢ Conditioning Information can be Hypothetical.

e.g. “If I missmy fight, | can probably get another one today”.

— conditioning information does not have to be true.

— can consider many mutually inconsistant conditioning contexts.

— probabilistic inference is montonic--i.e. do not have to change previous
beliefsif the context changes (compute new probabilitiesin the new
context instead).

» Oddsmap probabilities from [0,1] to [0,00]--i.e.
Odds(A) = P(A)/P(not A)
=P(A)/(1- P(A)) [Only good for Binary propositions]
To transform from Odds to probability use: P= Odds/(1 + Odds)

Alternative Forms of Bayes Theorem

» Basic Form of Bayestheorem for a set of mutually exclusive and
exhaustive hypotheses H (i), given evidence E:

P(H: [C)* P(EIH,,C)
P(EIC)
posterior prob. = prior prob. x likelihood / normalizing const.
Where P(E|C) = P(EH;,C)*P(H; |C) —i.e. marginalize over al H;.
Notethat P(E|C) does not depend on H; — it is just a normalizing constant
« Reélative version of Bayes:

P(Hi|E,C) =

P(HIIEC) _ P(HiIC)*PEH;C)
P(H; [E.C) P(H; [C)* P(EH;,C)

— Eliminates the normalizing constant, but requirement that
2i P(Hi|E,C) = 1 dlowsthe P(H, |E,C)' s to be normalized.
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Example of Bayesian I nference

Situation: Thereare64 coinsin abox, one of these coinsis double-
headed (H2), therest areordinary (H1) . A singlecoinisdrawn
from the box.

* Q1. What isthe probability that this coin isthe double-headed
coin?

Ans. P(H2|C)=1/64 [Cisthe context]
— Principle of Indifference (or more generally, Maximum Enrtopy).

New Situation: The selected coin isflipped, and theresult (R1) is
“heads’. [A “tails’ result meansthat not double-headed coin]

* Q2. What isthe new probability that this coin isthe double-
headed coin?

Ans:--Use Bayes!!
-- Relative version of Bayesis easiest to use.

14

Double-Headed Coin Example (Cont.)

» Relative Bayesfor H1 and H2:

P(H2RLC)  P(H2IC)*P(R1H2,C)

PHURLC)  P(H[C)* P(RLHL,C)

P(H2|C) = 1/64 (prev. dide); P(H1|C) = 63/64 (By normalization)
P(R1H2,C) =1 (only possible outcome); P(R1|H1,C) = 1/2 (fair coin).
Therefore: P(H2JR1,C)/P(H1R1,C) = (1/63)*2 = 2/63 (increased prob.)
And: P(H2|R1,C) = 2/65

New Situation: The selected coin isflipped again, and the result
(R2) is also “heads’.

[Note: If any flip gives“tails’ then P(H2|E,C) = Q]
Want: P(H2|R1,R2,C) --> Bayesagain!
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Double-Headed Coin Example (Cont.)
* Relative Bayes again:

P(H2RL,R2,C)  P(H2|C)*P(RLR2H2,C)

P(H1RL,R2,C)  P(H1C)*P(RLR2HL,C)

* P(R1,R2H2,C) =1 (only possibility), but what is P(R1,R2|H1,C)?
Note: Inprinciple, P(R1,R2|H1,C) could be any value from 0 to 1/2.
Solution: Use principle of maximum entropy to find the probability
that maximizes the entropy subject to any constraints (more | ater)!
Result: _Conditional Independence--i.e.

P(R1,R2 |H1,C) = P(R1 [H1,C)*P(R2 [HL,C)  or

P(R1 |R2,H1,C) = P(R1 |H1,C)
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Double-Headed Coin Example (Cont.)

« Two Flip (R1,R2) Conclusion:
P(H2IR1,R2,C)  P(H2|C)*P(R1,R2H2,C)  (1/64)*1 4

PHURLR2C)  PHLC)*P(RLR2HLC)  (63/64)* (12)*(1/2) 63
Which gives: P(H2|R1,R2,C) = 4/69

* Recursive form of Bayes (when evidenceis conditionally
independent).
P(H2R1,R2,C)  P(H2/C)*P(RLR2H2,C) P(H2|C)* P(RLH2,C)* P(R2JH2,C)

P(HLRLR2,C) P(H1C)*P(RLR2HLC) P(H1C)*P(R1HL,C)* P(R2H2,C)

P(H2|RL,C)*P(R2JH2,C)  Prior * Likelihood

P(H1|R1,C)*P(R2|H2,C)  Prior * Likelihood

i.e. Previous posterior probability becomesthe prior on the next
iteration!




HIV Testing Example

Situation 1: A patient entersaclinic.
Q1: What isthe probability that this patient is HIV+ ?

Ans. P(HIV+|Clinic)=.01 (answer depends on clinic, location etc.)

Note: P(HIV+|Clinic) Z P(HIV+USA) (“The” prior probability)

Situation 2: A blood sample from the patient is tested using the
ELISA test, and isfound +ve (E1+).

Q2: What isthe prob. that the patient is HIV+ given E1+ ?
Ans. Relative Bayes. Posterior ratio = Prior-ratio* Likelihood-ratio

P(HIV+[E1+C) P(HIV+C)*PEL+HIV+,C) .01x.98
= = =.198

P(HIV-|E1+,C) P(HIV-|C)*P(E1+HIV-,C) .99 x .05
--> P(HIV+|E1+,C) = .165 (much lessthan 1!)
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HIV Testing Example (Cont.)

Situation 3: The blood sample from the patient is tested using the
ELISA test, and isfound -ve (E1-).

Q3: What isthe prob. that the patient is HIV+ given E1- ?
AnNs. Relative Bayes: Posterior ratio = Prior-ratio* Likelihood-ratio

PHIV+[E1L,C)  P(HIV+[C)*P(EL-HIV+C) .01x .02

= =.00021
P(HIV-[E1-,C)  P(HIV-[C)*P(E1-HIV-C) .99x.95

--> P(HIV+|E1+,C) =.00021 (from aprior of .01!)

Situation 4: The blood sample from the patient is tested again using
the ELISA test, and isfound +ve (E2+) after the first test was +ve (E1+).

Q4. What isthe prob. that the patient is HIV+ given E1+ and E2+ ?
AnNsS. Relative Bayes. Posterior ratio = Prior-ratio* Likelihood-ratio

HIV Testing Example (Cont.)

P(HIV+|E1+,E2+,C) P(HIV+|C)* P(E1L+,E2+|HIV+,C) .01 x??7?

P(HIV-[E1+E2+,C)  P(HIV-|C)* P(EL+,E2+HIV-,C) 99 x 772

Q5: What value should be used for P(E1+,E2+HIV+,C) and
P(E1+E2+HIV-,C)?
Possible Answers:
Total Dependence:  P(E1+,E2+ |HIV+,C) = P(E1+ |HIV+,C)
(Nonew Info.) P(El+,E2+ |HIV-,C) = P(E1+ [HIV-,C)
Conditional I ndependence:
P(E1+,E2+ [HIV+,C) = P(E1+ [HIV+,C) * P(E2+ |HIV+,C)
P(E1+,E2+ [HIV+,C) = P(E1+ [HIV-,C) * P(E2+ [HIV-,C)
Empirically Determined Values: E.g.

P(EL+,E2+ [HIV+,C) = #(E1+,E2+ [HIV+,C)/ #(all test resultsHIV+,C)
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HIV Testing Example (Cont.)

Situation 5: The blood sample from the patient is tested again using

the Western Blot test, and is found -ve (WB-), after an ELISA test
was found +ve (E1+).

Q6: What isthe prob. that the patient is HIV+ given E1+ and WB- ?
Ans. Relative Bayes: Posterior ratio = Prior-ratio* Likelihood-ratio

P(HIV+E1+WB-C)  P(HIV+C)*P(E1l+WB-HIV+C)  .01x 72?

P(HIV-[E1+WB-.C)  P(HIV-|C)* P(E1+WB-|HIV-,C) 99 x 772

Q7: What value should be used for P(E1+,WB-|HIV+,C) and
P(E1+WB-|HIV-,C)?

Possible Answer : Assume conditional independence—i.e. result of
tests depends only sample--not on the results of other tests.




HIV Testing Example (Cont.)

P(HIV+[E1+WB-C)  P(HIV+C)*P(E1+WB-|HIV+,C)  .01x .0001
= = = 000002
P(HIV-[E1+WB-C)  P(HIV-|C)* P(EL+WB-|HIV-,C) 99x .05

-> P(HIV+|E1+,WB-,C) =.000002 i.e. The WB- evidence overwhelmsthe E1+
evidence.

Summary--HIV Example:
— Probabilistic inference is an update procedure---prior beliefs--> posterior

— Even though there may be alarge change in relative probability in a Bayesian
update, the absolute magnitude may still be small.

— How new evidence interacts with previous evidence depends on the domain.
Whether conditional independence (maxent) applies is domain dependent.

— Priors are dependent on the specific context of the inference.

— Evidence is never “contraditory” (e.g. E1+ and WB-), but different pieces of
evidence can swing the probability toward O or 1.
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Types of Probabilistic I nference

Direct (Likelihood):
— Likelihood determination
— Maximum Likelihood estimation.
Inductive:
— Posterior Probability Inference (inverse inference)
— Maximum Posterior probability estimation
— Abductive Reasoning
Proj ective (mar ginalization):
— eliminate nuisance variables
— Important specia case—convolution
Transductive:
— i.e Find probability of new evidence given old.
Praobability Transfor mation (Re-parameterization):

Types of Probabilistic Inference,
—Direct—
Example (Likelihood):

P(Observed Intensity|Intrinsic luminousity, distance) = N(mean,var)

— Likeihood isthe domain model (states how observables depend
on the true state of the world, assumed known).

— Likelihood is usually afunction of (conditioned on) the state of
the world.

Maximum Likelihood I nference:

— Example: P(heart-attack| age) = f(age). Given that someone has
had a heart-attack, what is their most likely age?

— Vary the conditioning variable(s) to find the value(s) that
maximize the probability (or pdf). Thisvalue(s) isthe maximum
likelihood (ML) estimator(s).

— Can estimate the uncertainty of the ML estimator by looking at
the change in probability around the maximum as the variable(s)
arevaried.
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Types of Probabilistic I nference,

—Inductive-|
Induction = P(Model | Data)
o< P(Model) * P(Data | Model) [Bayes|

Previous Examples:
— Double-Headed Coin example (Binary target variable, discrete evidence)
— HIV Testing example.

General Inductive Inference = Inverse Inference

— i.e. If know true state of the world, then can predict the data
(probabilistically), but given the data want the true state of the world.

— e.g. X-ray crystallography, IRS audit prediction, diagnosis,....
Bayesis general Solution to I nver se Problems

— Bayes finds the posterior probability distribution over possible models
given data and a prior distribution over models.
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Types of Probabilistic Inference,

—Inductive-I1
Maximum Aposteriori Probability (MAP) Estimation:

— Picks the model(s) with maximum posterior probability
— Most posterior probability distributions have many local maxima.
— Need to search to find maximum (or local maximum)

— Need to indicate how concentrated the probability distribtion is around
the maximum (*“ error bars”).

Why find MAP estimates?

— Posterior probability distribution contains al the information from prior
beliefs and data—the MAP estimate is a summary that |oses information.

— Themost likely posterior model is not generally the same as the mean
model, and can vary depending on how the problem is parameterized.

— Hill climbing is asimple procedure for finding (local) MAP estimates.
Conclusion:
Wher e convenient use full posterior distribution!
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Types of Probabilistic Inference,
—Projective-

Proj ect out the variable(s) of interest = marginalize over
all “nuisance’ variables.

Example:
F,01 X)— FuiX) = | fwolX) do
= | f(uo,x)*P(c|x) dx
T(1/2) * Si-y

For aNormal: f(ul|X) =

\/n *[ 2 - 12)x{2+ (M- )2}
——Student “T" distribution.

Where S=sample standard deviation, m = sample mean,
and T'() isthe Gamma function.
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Types of Probabilistic Inference,
—Transduction—

Transductive inference gives the probability of new data

given old data (by marginalizing over model possibilities).

Example (Previous HI'V Example):

P(WB+|E1+)
= P(WB+,HIV+|E1+) +  P(WB+HIV-|E1+)
= P(WB+[HIV+)*P(HIV+|E1+) + P(WB+[HIV-)*P(HIV-|[E1+)

Where we have assumed conditional independence of evidence
e.g. PWB+|HIV+) = P(WB+HIV+,E1+)

Can use transduction to evaluate the effect of evidence that
could be obtained.
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Types of Probabilistic I nference,

—Probability Transformation—

Probability transformation allows a PDF in one
representation to be transformed to another.

Example: Transform from Polar to Cartesian
representation, i.e.

f(r,8) = h(x.y)
Answer: d(x,y)
£(r,8) = h(x) *Def]

],

d(r,0)

I.E. Multiply by the Jacobian to transform correctly.




Thumb-Tack Example

We toss athumbtack N
tl mes WI th prObab| | |ty 9 lands on flat lands on its side

of it landing on itsflat [

Direct Inference: If know 6, what is the probability that
will get n“flats’ in N trials?
Ans. From logic get Binomial Distribution:
n! (N-n)!
P(n|®,N) =—— * On (1 - B)(N-n)
N!
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Thumb-Tack Examplell

Inductive Inference: Given number of “sides’ n, and total
number of trials N, what is0 ?

Ans. Use Bayesto invert the binomial distribution:

f(O]X) o= m(0)*1(x|6). Use (conjugate) prior dist m(6) o< B (1-0)c

I'(N +20)
Then f(6]x) = B(6|x) = * (o) (1-0)(N-n+a-1)
['(n+ o)*IT'(N-n+o)

Note: The beta distribution gives the posterior distribution on the
unknown parameter 0, but it isvery similar in form to the
binomial distribution.
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Thumb-Tack Examplell|

Transductive Inference: Givenn previous“flats’ in N
trials, what is the probability of getting r “flats’ in R
trials?

Ans. Marginalize over 6—i.e.

PrIN,R) = | P(rIR.6)* £(Bn,N) do

n!* (r+R)! * (N +n-R-r)! * N!

(L * (nen)! * RE* (N-R)!* (N +n)!

Thisisthe beta-binomial distribution (independent of 6, but
still dependent on the conditionally independent trials
model).

Summary of Probabilistic Inference

* General method for reasoning under uncertainty.
» Simplest generalization of classical (binary) logic

— allows degrees of belief (not just 0 or 1)

— explicitly conditions belief on specific known evidence
Probabilistic I nference computes degr ees of belief

(does not make decisions--thisrequires Decision Theory).

» Bayesian Inference provides a way of computing beliefs given
particular evidence.
— No such thing as “the” probability of a proposition.
— Probabilities are not frequencies, but these are closely related.
— Evidence can be hypothetical
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