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• Overfitting 
– due to poor statistical criteria

– due to inappropriate computational method

• Subjectivity versus Objectivity
– “objectivity” needs to be carefully defined

– its all a matter of your decision context

– in some contexts, subjectivity is unavoidable

• Occam’s Razor 
"Entities are not to be multiplied except of necessity"  (from Latin)

– Bayesian methods provide a coherent implementation strategy

– Bayesian factors provide a means of comparing models of different 
complexity

Outline
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Overfitting:  curve-fitting

• have 10-th degree polynomial with 
Gaussian(0,1) error

• take a fixed sample of 20 points

• fit the Maximum Likelihood (ML) model for 
different degrees of the polynomial

• notice transition from “underfit”  to “overfit” 
– 17-th degree fit almost goes exactly through each point

– 9-th degree is the closest in this case

(see Gelman et al. 95 for detail on Bayesian linear regression)
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Overfitting:  plots

See  polyfit.ps
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Overfitting:  posterior samples
• assume “uniform prior” and sample from the posterior 

distribution for different degrees of the polynomial

• notice variation:  overfitting disappears, but underfitting remains

Lesson:   overfitting is due to poor statistical criteria or poor 
approximation

See  samplepost.ps
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Overfitting:  justifying sampling

• sampling is one way to estimate the posterior 
expected value

Ew|data( yw(x) )  =  ∫w yw(x)  p(w|data) dw

         ≈  ∑ w ∈ posterior-sample  yw(x) / #posterior-sample

• in general, averaging over “multiple models” 
gives better estimates, and better quantifies 
uncertainty

• a large part of Bayesian computation is about 
approximating an integral such as this
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Objectivity:  some notions

• classical Fisherian view of objectivity
– “Make an inference by only considering the data”

– a noble view but requires inordinate amounts of data

- from Bayesian perspective, this is required to “swamp” the 
prior

e.g.,   see the work on uniform convergence and worst case 
bounds for learning (Vapnik, 82, Devroye, 91, Haussler, 92)

• intersubjectivity
– Kant’s notion of a group of scientists with different subjective 

opinions attempting to reach consensus

– modeled with a range of priors, see Bernardo and Smith (94)
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• Bayesian reasoning with an “objective” prior
– so called non-informative or objective priors are 

controversial, but

– invariance arguments provide reasonable priors for a range of 
problems (see Bernardo and Smith, 94; Jaynes 96), e.g.,

» scale invariant prior on magnitudes such as a standard 
deviation

» rotation-invariant priors on straight lines

• “public” decisions based on data
– what is the decision context and who is making the decision?

– is group concensus to be achieved?

Objectivity:  some notions, cont.
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Objectivity vs. decision context

Let  X = a grounded proposition, with value in  {0,1},  
e.g.   X  =  smoking increases propensity for lung cancer by 40%

• my best guess about X at the moment is that its true
i.e.,     p(X | data )  >  0.5     using my own subjective prior

• I believe X is probably true and I expect my belief 
wont change in the future

i.e.,   Efuture-data(  E( (p(X|data) - X)2  |  future-data, data ) ) is small

NB.    this evaluates to p(X|data) being near 1

NB.    in practice, also need to consider for a range of priors since you 
may change your prior as well
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Objectivity vs. decision context, cont.

• based on the data, most “reasonable” people 
should believe that X is probably true

i.e.,    under a variety of different “reasonable” priors,  

                 p(X|data) > 0.5

• the “rational man” using an “objective prior” 
based on invariance argument Y would believe 
that X is probably true

i.e.,     p(X | data )  >  0.5  using the specific “objective” prior
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Occam's Razor:  valid justifications
It wont get us into too much trouble in the future as we get more data:

i.e.    If we guess something too simple, as we get more data, we'll soon 
discover our mistakes.  The Barron and Cover (91) stochastic complexity 
argument of convergence in the limit.

It wont get us in too much trouble in the future with our users:

i.e.    We wont be blamed for vacillation.

i.e.    If we guess something simple, we will have sufficient data at least to 
choose the best of the simple things, so we wont change our mind much 
later, except for adding more complexity.  The Blumer at al. (87) 
argument of simpler spaces are easier to search statistically.

Its psychologically pleasing:

i.e.    Most things we remember are simple too.  (We've restructured our 
memory to make them that way.)

We've set the problem up that way:

i.e.    Our choice of variables is carefully made using ones that made related 
things simpler.
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Bayes factors for comparing models
• suppose we believe either a n or m-degree polynomial fits the data;  

call these models M1 and M2 respectively
• a prediction on a new case is then given by:

E(y(x)|data)  =  

         p(M1|data) E(y(x)|data,M1)  +  p(M2|data) E(y(x)|data,M2)

• some useful quantities to consider here are:

p(M1|data)/p(M2|data)  =  posterior odds ratio for M1 versus M2 

p(M1)/p(M2)  =   prior odds ratio for M1 versus M2 

log p(M1|data)/p(M2|data)  =   (posterior) weight of evidence (after Good)

p(data|M1)/p(data|M2)   =   Bayes factor for M1 versus M2 

p(data|M1)       =   evidence for  M1  =  ∫ p(data,w |M1)  dw

• the following equations hold:
posterior odds ratio  =  prior odds ratio * Bayes factor

Bayes factor for M1 versus M2  =  evidence for M1 /  evidence for M2
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Bayes factors for comparing models

• the evidence can easily become order 2-100, so computation is 
usually done as posterior weight of evidence

– divide by the evidence for some “null” model and then calculate in 
log space

• most model comparison over heterogeneous models (e.g., n-
degree polynomial for different values of n)  uses:

– computation or approximation of the Bayes factors

– special prior to glom the heterogeneous models into a single 
model family over a well defined parameter space

• use of Bayes factors over heterogeneous models assumes 
Occam’s razor

– 3-degree polynomials are a set of measure zero in 6-degree 
polynomials so the prior odds should be 0 (in general) !
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Smooth versus discontinuous priors
prior on μ such that 0 is 

highly likely

a)  composes 2 priors of 
dimension 0 (delta 
function at 0) & 1 
respectively

b)  makes a smooth peak at 0 
so prior is of dimension 1

a) b)

• this situation occurs frequently in complex models when Occam’s razor 
is required:

– curve fitting with different dimensional poynomials
– clustering where the number of hidden classes is unknown

• prior b) may be easy to write search algorithms for
• prior a) requires model comparison and use of Bayes factors to compare 

the two models of different dimension
• which situation is more realistic, and which is merely an approximation 

for convenience?

-1 1μ

p(μ)

-1 1μ

p(μ)
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Occam’s razor:   example priors
• plots on left are sample curves drawn from a uniform prior on 10-

degree Legendre polynomials (implicitly used by ML)

• plots on right are sample curves drawn from a prior on 10-degree 
Legendre polynomials with “almost”  scale invariant prior on 
“average curvature” (see Buntine & Weigend, 91 for prior)

i.e.,  
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• a sample of posteriors (for 
different data) from a 
Bernoulli sampling problem 
is shown below

• notice they’re all peaked, and 
to a good approximation the 
peaks are Gaussian (see Kass 
and Raftery, 93 or any text)

Large sample behavior of the joint

p(data,θ|Μ) = p(θ|Μ) exp ( - N  (1/N)∑i=1Nlog 1/p(xi|θ,Μ)  )    data = {x1, ..., xN}

∫ f(θ) exp (- N g(θ)) dθ    

       ≈    f(θ0)   ∫  exp (- N < 2nd-order taylor expansion of g(θ) at θ0>)) dθ
       =    exp (- N g(θ0))  f(θ0)   (2π / N)k/2  /  det1/2 jacobiang(θ0)
Laplace approximation where  θ0 is the unique local minima  of g(θ) which 
must be interior, and  dim(θ)=k
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A coarse approximation for evidence

using the large sample behavior, we  
get p(data|M)

  ≈   p(data,w=w0|M) (2π)k/2 ∏i(λi /√N)

where:
w0 = unique local maxima of the    

posterior for w

FI(w) = observed Fisher information 

      =  Jacobian( ∑i  log 1/p(xi|w,Μ) / N )

      =  Jacobian(average negative log. 

                        likelihood for data |w,M )

k  =  dim(w),    N = dim(data)

λ1, λ2, ...   =  eigenvalues of FI1/2(w
0)

p(data,w0|M)

λ

λ

Vol. = p(data,w0|M) (2π) λ λ

N
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 p(data,w=w1,0|M1)     (2π)k1/2 ∏i=1
k1(λ1,i /√N)

p(data|M1)/p(data|M2)   =  
 p(data,w=w2,0|M2)     (2π)k2/2 ∏i=1

k2(λ2,i /√N) 

comparative
fit to the data comparative

precision of fit

Understanding the Bayes factor

• this approximation is coarse but informative

• all else being equal, the higher dimensional model gets killed by 
the 2nd term due to  (1/√N)(k2-k1)

• we might expect the higher dimensional model to have a much 
better fit, but this needs to overcome the 2nd term first

• minimum description length (MDL, and many other names) gains 
its credence due to a related effect, see Barron and Cover, 91


