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Outline

� Mathematical Model of Atmospheric Optical Image Formation

� Regularization and the Associated Optimization Problem

� Large Scale Optimization Techniques

Limited Memory BFGS (L-BFGS)

Newton/CG/Trust Region algorithm due to Steihaug

� Implementation Issues

Initial Hessian for L-BFGS

Preconditioner for CG

� Comparison of Methods
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Physics of Atmospheric Image Formation

As light from a distant space object enters the atmosphere, the

light rays are bent because of variations in the index of refraction

associated with temperature changes. This causes blurring of images.

Refractive index variations are time-dependent due to atmospheric

turbulence.

Model Assumptions

� The light source is very far from the observer. Light rays are

nearly parallel as they enter the atmosphere.

� Image degradation is caused by variations in the index of refrac-

tion within the atmosphere.

� Variations in the index of refraction are relatively small.

� Variations in index of refraction occur in a thin layer which is

close to the observer.

� Light from the source is incoherent.
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Forward Model

dij = (s ? f)(xi; yj) + �ij; 1 � i � nx; 1 � j � ny:

� dij denotes measured intensity at the ijth pixel. The nx � ny

array d constitutes the discrete image.

� s denotes the point spread function, or PSF.

� f denotes the object. This is the desired \true image".

� ? denotes 2-D convolution product,

(s ? f)(x; y) =
Z Z

s(x� x0; y � y0) f(x0; y0) dx0 dy0:

� �ij represents noise in the data.

The PSF

s[�] = jF�1fpe{�gj2;
where

� F denotes 2-D Fourier transform

� { =
p�1

� p denotes the pupil function, or aperture function,

p(x; y) =

8><
>:
1; (x; y) 2 
p;

0; otherwise:

� � denotes the phase, or wavefront aberration. This characterizes

the medium through which light travels.
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Simulated Data
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Phase � and PSF s[�] = jF�1fpe{�gj2.
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Inverse Problem

Estimate object f from data d = s ? f + �. Di�culty: PSF s is also

unknown. Need additional information.

Phase Diversity. Recall s = s[�] = jF�1fp exp({�)gj2. Add known

phase perturbation to get a second image,

d = s[�] ? f + �

d0 = s[� + �] ? f + �0
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Regularization

Solution to object, phase estimation problem is unstable with re-

spect to noise in the data.

Regularization. To restore stability, apply Tikhonov regularization,

or penalized output least squares. Mimimize

J [�; f ] = jjs[�] ? f � djj2 + jjs[� + �] ? f � d0jj2
+
Jreg

object[f ] + �J
reg
phase[�];

where 
; � are small positive parameters, and Jreg
object, J

reg
phase are reg-

ularization functions.

Extensions. Much better reconstructions can be obtained by tak-

ing more (time-dependent) frames. One can also take more phase

diversity channels.

J [�1; : : : ; �T ; f ] =
KX
k=1

TX
t=1

jjs[�t + �k] ? f � dk;tjj2

+
Jreg
object[f ] + �

TX
t=1

J
reg
phase[�t]:

For object regularization use the \minimum information prior",

J
reg
object[f ] = jjf jj2:

7



Phase Modeling and Regularization

Model phase �(x) as a realization of a wide-sense stationary stochas-

tic process with zero mean and translation-invariant covariance,

E(�(x)�(y)) def= c�(x;y)

= c�(x� y):

The von Karman model for phase spectrum is

Ffc�g(!) = a

(b + j!j2)11=6 :

Construct phase regularization operator,

J
reg
phase[�] =

*Ff�g
Ffc�g;Ff�g

+
:

This penalizes high spatial-frequency components in reconstructed

phase.
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Gradient Computations

The least squares �t-to-data portion of the cost function is

J [~�; f ] =
1

2

TX
t=1

KX
k=1

jjsk[�t] ? f � dktjj2;

where ~� = (�1; : : : ; �T ) and sk[�t] = s[�t + �k]. Let upper case

letters denote Fourier transforms, � denotes complex conjugate, and

Rkt = Sk[�t]F �Dkt:

Then the gradient of J with respect to f , denoted by gf , has the

following characterization:

hgf ; wi =
d

d�
J [~�; f + �w]j�=0

=
1

2

X
t;k

d

d�
hSk[�t](F + �W )�Dkt; Sk[�t](F + �W )�Dktij�=0

=
1

2

X
t;k
(hSk[�t]W;Rkti + hRkt; Sk[�t]W i)

=
1

2

X
t;k
(hW;Sk[�t]

�Rkti + hSk[�t]
�Rkt;W i)

=
1

2

X
t;k

�
hw;F�1fSk[�t]

�Rktgi + hF�1fSk[�t]
�Rktg; wi

�
:

From this we obtain

gf =
1

2

X
t;k

�
F�1fSk[�t]

�Rktg + F��fSk[�t]
�Rktg

�

= Real

2
64F�1

8><
>:
X
t;k
Sk[�t]

�Rkt

9>=
>;
3
75 :
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Gradient Computations, Continued

To obtain the gradient with respect to �t, which we denote by gt,

hgt; �i =
d

d�
J [�1; : : : ; �t + ��; : : : ; �T ; f ]j�=0

=
1

2

X
t;k

d

d�
hSk[�t + ��]F �Dkt; Sk[�t + ��]F �Dktij�=0

=
1

2

X
k
(h(S0

k[�t]�)F;Rkti + hRkt; (S
0

k[�t]�)F i) ;

=
1

2

X
k
(hS0

k[�t]�; Zkti + hZkt; S
0

k[�t]�i) ;

where Zkt = F �Rkt, and

S0

k[�t]� =
d

d�
Sk[�t + ��]j�=0

= Ffih�ktF�1f�Hktg + i�hktF��f�Hktgg;
with Hkt = pe{(�t+�k) and hkt = F�1fHktg. Note that zkt =

F�1fZktg is real-valued. Consequently,

hgt; �i =
X
k
hzkt; ih�ktF�1f�Hktg + i�hktF��f�Hktgi

=
X
k
hi�H�

ktFfhktzktg; �i + h�; i�H�

ktFfhktzktgi
=

X
k
hi�H�

ktFfhktzktg + iHktF�fhktzktg; �i;

and hence,

gt = 2
X
k
Imag[H�

ktFfhktF�1fF �Rktgg]:
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Basic Algorithms for Unconstrained Optimization

Goal: Compute x� = arg min J(x).

Quasi-Newton / Line Search Algorithm

k := 0;

x0 := initial guess for x�;

begin quasi-Newton iterations

gk := rJ(xk); % compute gradient

Compute SPD approx Bk to Hess J(xk);

dk := �B�1
k gk; % compute quasi-Newton step

�k+1 := argmin�>0 J(xk + �dk); % line search

xk+1 := xk + �k+1dk; % update approx solution

k := k + 1;

end quasi-Newton iterations

Newton / Trust Region Algorithm

k := 0;

x0 := initial guess for x�;

�0 := initial trust region radius;

begin quasi-Newton iterations

gk := rJ(xk); % compute gradient

Compute solution sk to trust region subproblem

mins J(xk) + gTk s +
1
2s

THess J(xk) s

subject to

jjsjj � �k

xk+1 := xk + sk; % update approx solution

k := k + 1;

end quasi-Newton iterations

11



Limited Memory BFGS / Line Search Algorithm

Let xk = (�k
1; : : : ; �

k
T ; f

k) denote approximate minimizer at iter-

ation k, and suppose Bk � Hess J(xk). The usual BFGS recursion

for the Bk's give rise to the following recursion for the B�1
k 's:

B�1
k+1 =

0
B@I � yks

T
k

yTk sk

1
CAB�1

k

0
B@I � sky

T
k

yTk sk

1
CA + sks

T
k

yTk sk
; (1)

where

sk = xk+1 � xk; yk = rJ(xk+1)�rJ(xk):
Bk+1 is guaranteed to be SPD provided that Bk is SPD and

yTk sk > 0: (2)

Remarks

� \Curvature condition" (2) can be guaranteed with a properly

implemented line search.

� Using recursion (1), system Bk+1s = �g can be solved using

a sequence of vector dot products and one computation of the

form B�1
0 v.

� Initial Hessian approx B0 can be modi�ed at each iteration k.

� \Limited memory" means that at most m vector pairs

f(sk; yk); : : : ; (sk�m+1; yk�m+1)g are stored.

� Asymptotic convergence rate for full BFGS is superlinear. Rate

for the limited memory variant is linear.
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Newton/CG/Trust Region

Key Idea: To approximately solve Trust Region subproblem

min
s
mk(s) subject to jjsjj � �k;

where

mk(s) = J(xk) + gTk s +
1

2
sTHks;

apply CG iteration to minimize mk(s), or equivalently, use CG to

solve

Hks = �gk: (3)

Key Fact: Let s� denote CG iterates for (3). If s0 = 0 and Hk is

SPD, then for � = 0; 1; : : :,

jjs�+1jj > jjs�jj;
mk(s�+1) < mk(s�)

Stop CG iteration when any of the following occur:

� jjs�+1jj � �k.

� CG residual jjHks�+1 + gkjj � �k, where �k denotes stopping

tolerance.

� Nonnegative curvature detected, i.e., dT�Hkd� < 0, where d�
denotes CG descent direction.
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Trust Region Geometry
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Preconditioning / Hessian Initialization

In�nite Dimensional Results.

� CG iteration for (I +K)x = y, K compact, converges superlin-

early [Daniel, SINUM, 1967].

� Broyden iteration (quasi-Newton method for nonlinear systems)

converges superlinearly provided initial Jacobian is compact per-

turbation of Jacobian at solution [Kelley and Sachs].

Structure of Hessian of regularized least squares function

Hess J [�1; : : : ; �T ; f ] = Hls +Hreg

Hessian of the regularization function has block diagonal form

Hreg =

2
6666666666664

�L 0 0 � � � 0

0 �L 0 . . . ...

0 . . . . . . . . . 0
... . . . 0 �L 0

0 : : : 0 0 
I

3
7777777777775

Hessian of the least squares �t-to-data term has \block arrow" form

Hls =

2
6666666666664

H�1�1 0 0 � � � H�1f

0 H�2�2 0 . . . H�2f
... . . . . . . . . . ...

0 � � � 0 H�T�T H�T f

Hf�1 Hf�2 � � � Hf�T Hff

3
7777777777775

and

Hff =
TX
t=1

KX
k=1

S�[�t + �k]S[�t + �k]:
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Numerical Results

Reconstructions obtained with 2 phase diversity channels and one

time frame using the Newton / CG / trust region (NCGTR) method.

Reconstructions obtained with L-BFGS are nearly identical.
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Algorithmic Details

� Hreg is used as the initial Hessian for L-BFGS and as the pre-

conditioner for NCGTR.

� Previous m = 10 vectors sk; yk were saved with L-BFGS.

� Previous step length was used to initialize the L-BFGS line

search.

� Image/Phase screen size was n = 1282 = 16384 pixels.

� CG residual stopping tolerance proportional to jjrJ(x)jj3=2.
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Numerical Performance

L-BFGS / Line Search Results
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Cost Comparison

Gradient Norm vs. Iteration
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Importance of Hessian Initialization
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Stars (�) indicate initial L-BFGS Hessian B0 = I .

Circles (o) indicate B0 = Hreg.
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Conclusions

� Hessian initialization can make a dramatic di�erence in perfor-

mance of L-BFGS.

� Steihaug's Newton / CG / Trust Region algorithm is competitive

with limited memory BFGS for this application.
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