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Overview

Physics simulations codes
» need to be understood on basis of experimental data
» focus on physics submodels

Bayesian analysis

» uncertainty quantification (UQ) 1s central issue

» each new experiment used to improve knowledge of models
Analysis process

» employ hierarchy of experiments, from basic to fully integrated

» goal 1s to learn as much possible from all experiments
Example of analysis process: material model evolution

» material characterization experiments and Taylor impact test

» role of systematic uncertainties

» coping with inadequate model
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Bayesian analysis 1n context of physics simulations

* Goal - describe uncertainties in simulations
» physics submodels
» experimental (set up and boundary) conditions

» calculations (grid size, ...)

* Use best knowledge of physics processes

» rely on expertise of physics modelers and experimental data

« Bayesian foundation

» focus 1s as much on uncertainties in parameters as on their
best value

» use of prior knowledge, e.g., previous experiments
» model checking;
does model agree with experimental evidence?
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Bayesian uncertainty analysis

Uncertainties in parameters are
characterized by probability
density functions (pdf)

Probability interpreted as
quantitative measure of
“degree of belief”

Rules of classical probability
theory apply

Bayes law provides means to
update knowledge about

models as summarized 1n terms

of uncertainty
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Schematic view of simulation code

Tnitial State Simulation 40
Y(0) engine
Model A
o

« Simulation code predicts state of time-evolving system
Y(t) = time-dependent state of system

* Requires as input
» P(0) = initial state of system

» description of physics behavior of each system component;
e.g., physics model A with parameter vector a. (e.g., constitutive relations)

« Simulation engine solves the dynamical equations (PDEs)
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Simulation code predicts measurements

P(t)

Initial State Simulation
Y(0)
Model A
o

Measurement
System Model

Y*(a)
Predicted
Measurements

« Simulation code predicts state of time-evolving system
Y(t) = time-dependent state of system

* Model of measurement system yields predicted measurements
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Mapping between parameters and experiments

space Forward probability space
Original Prediction
uncertainty uncertainty
Inferred
uncertainty Measurement

Inverse probability uncertainty

e Model inference

» if uncertainties in measurements are smaller than prediction
uncertainties that arise from parameter uncertainties, one may be able
to use measurements to reduce uncertainties in parameters

» requires that prediction uncertainties are dominated by uncertainties in
parameters and not by those in experimental set up

» good experimental technique important for Bayesian calibration

May 12, 2003 X-4 Seminar 7



Analysis of hierarchy of experiments

Partially E
integrated
|

Fully
integrated

* Information flow in analysis of series of experiments

* Bayesian calibration —

» analysis of each experiment updates model parameters and their
uncertainties, consistent with previous analyses

» 1nformation about models accumulates
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Graphical probabilistic modeling

Propagate uncertainty through analyses of two experiments

Y, B1Y,, Y,
p(a) @ p(a|Y) m p(a., B| )
p(B)

* First experiment determines B
1

p(a|Y) p(B)
__AL

r A\

o, with uncertainties given by
p(OL | Yl) / )
« Second experiment not only i p(Y,|a, B)

determines [3 but also refines
knowledge of a

* Outcome is joint pdf in o and pa, BIY, Y))

Ba p(aa B | YI,YZ)
(correlations important!)

o
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Bayesian calibration for stmulation codes

* Goal 1s to develop an uncertainty model for the
simulation code by comparison to experimental
measurements

» determine and quantify sources of uncertainty
» uncover potential inconsistencies of submodels with expts.

» possibly introduce additional submodels, as required

* Recursive process

» aim 1s to develop submodels that are consistent with all
experiments (within uncertainties)

» a hierarchy of experiments helps substantiate submodels over
wide range of physical conditions

» cach experiment potentially advances our understanding
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Motivating example

* Problem statement
» design containment vessel using high-strength steel, HSLA 100

» predict depth of vessel-wall penetration for specified shrapnel
fragments at specified impact velocity

» estimate uncertainty in this prediction to estimate safety factor

* Approach

» determine what experiments are needed to characterize
stress-strain relationship for plastic flow of metal

» follow the uncertainty through the analysis of expt. data

» variables to consider: temperature, strain rate, variability in
material composition, processing, behavior
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Hierarchy of experiments - plasticity

Basic characterization experiments - measure
stress-strain relationship at
specific stain and strain rate

T fixed

» quasi-static — low strain rates

» Hopkinson bar — medium strain rates

Partially integrated expts. - Taylor test / Taylor

» covers range of strain rates

log(strain rate)

Hopkinson

» extends range of physical conditions ® ® < (uasi-static

Full integrated expts. Strain
» mimic application as much as possible
» projectile impacting plate
» may involve extrapolation of operating range; so
introduces addition uncertainty

» Integrated expts. can help reduce model uncertainties
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Analysis of hierarchy of experiments

Basic - Fully integrated

experiments application

Qua51- —» Apphcatlon
Statlc

« Series of experiments to determine plastic behavior of a metal
* Information flow shown for analysis sequence

« Bayesian calibration —

» analysis of each experiment updates model parameters and their
uncertainties, consistent with previous experiments

» information about models accumulates throughout process
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Stress-strain relation for plastic deformation

« Zerilli-Armstrong model describes strain rate- and
temperature-dependent plasticity in terms of

stress o (or s) as function of plastic strain ¢,

o oL
o=, taE,’ +a,exp|| —a; +a,log Py T

e SiIX parameters -

» 2 parameters (a; & a,) specily dependence of stress on strain

» 4 remaining parameters specify additive offset as function of
temperature and strain rate

o /-A formula based on dislocation mechanics model

» may not hold for all materials or all experimental conditions
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Likelihood analysis

e When the errors in each measurement are Gaussian
distributed and independent, likelihood 1s related to chi

squared: : T
1 p(d|a)OCeXp(—%Z ):exp{% ‘ |:[ i (.:zz(a)] j|}

i

* ¥?1is quadratic in the parameters a
T
2 1 A ~ 2/ A
r(@=%(a-a) K(a—a)+ y(a)
» where d is the parameter vector at minimum y? and

K 1s the curvature matrix (aka the Hessian)

* The covariance matrix for the uncertainties in the
estimated parameters 1s

cov(a) = <(a —d)a— &)T> =C=2K"
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Advanced analysis

* Analysis of multiple data sets

» To combine the data from multiple, independent data sets into
a single analysis, the combined chi squared 1s

2 2
Xal = Z Xk
k
» where p(d, | a, I) 1s likelithood from £th data set

 Include Gaussian priors through Bayes theorem
pald,l)oc p(d|a,l) plall)
» For a Gaussian prior on a parameter a 2
(a-a)

—logp(ald,D)=p(a)=1 1" +——
20

a

» where 4 is the default value for a and 6 2 is assumed variance
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Fit ZA model to all data

7 data sets at various 1600
strain rates and temps

1400}

Fit to all data above elastic

region or after first bump & ™
in Hopkinson-bar data 2 1000l
&
Model does not reproduce g
= 800F

stress-strain curves at high

@, & * T
and IOW temperatures oo +++”+“0*MHH +873+K;+3+:0+(+)I:++ pHEbg bt
Fit 1s far from expt. 400 - . . .
0 0.05 0.1 9.15 0.2 0.25
measurements for target True Strain

conditions of room temp.,

: : ZA curves include adiabatic
high strain rate u Inciu labati

heating effect for high strain rates

Uncertainties are highly
correlated fdata supplied by S-R Chen, MST-8
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Repeated experiments

Repeated experiments
» stability of apparatus

HSLA100
1000 . .

900 300 K; 0.001/s |

» indication of random
component of error

800}

7001

» may or may not indicate
systematic error
Figure shows curves 100
obtained from four samples 300
taken from random 200}
positions 1n thick plate 100

600

500

True Stress (Mpa)

Sample-to-sample rms % 5.5 X 515 02 025

deviation 1s around True Strain
20 MPa at strain of 0.1

Treat this variability as

systematic uncertaint
y y fdata supplied by S-R Chen, MST-8
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Types of uncertainties 1n measurements

* Two major types of errors

» random error — different for each measurement
* in repeated measurements, get different answer each time

« often assumed to be statistically independent, but often aren’t
» systematic error — same for each measurement within a group
« component of measurements that remains unchanged
 for example, caused by error in calibration or zeroing
* Nomenclature varies
» physics — random error and systematic error

» statistics — random and bias

» metrology standards (NIST, ASME, ISO) —
random and systematic uncertainties (now)
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Types of uncertainties 1n measurements

* Simple example — measurement of length of a pencil

» random error
* interpolation between ruler tick marks

» systematic error

 accuracy of ruler’s calibration;
manufacturing defect, temperature, ...

 Parallax in measurements

» reading depends on how
personlinesuppenciltip |||||||||||1||||||||||2||||||||||3||||||||||4

0 cm

» random or systematic error?

depends on whether measurements
always made by same person in the
same way or made by different people
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Fit ZA model to selected measurements

Analysis of quasi-static and Hopkinson bar measurementst

Zerilli-Armstrong model
for rate- and temperature-
dependent plasticity

Parameters determined
from Hopkinson bar
measurements and quasi-
static tests

Full uncertainty analysis
— including systematic

effects of offset of each

data set

(6 + 7 parms)

True Stress

fdata supplied by Shuh-Rong Chen
May 12, 2003

_ X
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HSLA100
1200 . .

85p ]T}
Ot

/ﬁ,«"w 77 K; 0.001/s

il ‘ 4
J I+mfx,»,:.t,.*.:.',....
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1 .
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t 4t
1

400F

1000}

800}

200
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+
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Z A parameters and their uncertainties

Parameters +/- rms error:

al =103 £33 : :

00 =954 + 63 RMS erTors, 1nc1uc.11ng |
o3 = 0.00408 + 0.00059 correlation coefficients, which
a4 =0.000117 + 0.000029 are crucially important!

ad =996 £ 22

a6 =0.247 +0.021

Correlation coefficients

ol o2 o3 o4 ad ab
al 1 -0.083 0.372 0.207 -0.488 0.267
a2 -0.083 1 0.344 0.311 0.082 0.130
a3 0372 0344 1 0.802 0453 -0.621
od 0.207 0.311 0.802 1 0.271 -0.466
aS -0.488 0.082 0453 0.271 1 -0.860
a6 0.267 0.130 -0.621 -0.466 -0.860 1
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Monte Carlo sampling of ZA uncertainty

Use Monte Carlo technique to draw random samples from
uncertainty distribution for Zerilli-Armstrong parameters

Display stress-strain curve for each parameter set

Conclude fit faithfully represents data and their errors at 298°K

1150

1100F

1050F

1000F

True Stress

950F

900F

298 K; 3000 /s
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True Stress

Importance of including correlations

* Monte Carlo draws from uncertainty distribution, done
correctly with full covariance matrix (left) and incorrectly,
by neglecting off-diagonal terms 1n covariance matrix

MC with correlations

1150

1100

1050F

1000F

950F

298 K; 3000 /s 1

02 004 006 0.08 01 0.12 014 016 0.18
True Strain

0.2

1150

1100}

1050

Stress

900

850b//,

800 L L L
002 004 006 0.08 0.1
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Monte Carlo sampling of ZA uncertainty

» Use Monte Carlo to draw random samples from uncertainty
distribution for ZA parameters optimized for 298° K

« Show behavior at two temps and out to strain of 50%

« Does not match 473°K data, >10% error above 20% strain

1200

298 K; 3000/s

1100F

1000}

Stress

900} ;
soot! 7/

i
i 1
700} ¥

600O 0.1 0.2 0.3 0.4 0.5

Strain
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Taylor impact test

Propel cylinder into rigid plate

Measure profile of deformed
cylinder

Deformation depends on
» cylinder dimensions
» impact velocity

» plastic flow behavior of material at
high strain rate

Useful for

» determining parameters in material-
flow model

» validating simulation code
(including material model)
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Taylor test stmulations

« Simulate Taylor impact test
» CASH - Lagrangian code (X-7)

» Zerilli-Armstrong model for rate-
dependent strength and plasticity

- 247

» 1gnore anisotropy, fracture effects

» cylinder: high-strength steel, HSLA100
15-mm dia, 38-mm long

— 306

— 465

— 424

» 1mpact velocity = 247 m/s
o Effective total strain exceeds 100%

— 382

.
« Temperatures rise above 700° K —

HSLA 100
247 m/s, 298°K
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Plausible simulation predictions (forward)

Simulation
engine

Initial State
{Y(0)}

{¥(t)} plausible set of
— predicted dynamic
states of system

plausible set of
initial states of Model A plausible set of
system {o} parameter vectors o

* Generate plausible predictions for known uncertainties in

parameters and 1nitial conditions
* Monte Carlo method

» run simulation code for each random draw from pdf for a, p(a|.), and

initial state, p(\P(0) | .)

» simulation outputs represent plausible set of predictions, {¥(t)}
» advanced sampling methods useful to reduce number of calcs needed
 Latin Hypercube, Centroidal Voronoi Tesselations, etc.
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Monte Carlo example - Taylor test

« Use MC technique to Predictions made with
propagate uncertainties hydrocode CASH
through deterministic o ' '
simulation code

0.55F
» draw values of seven parameters

from correlated Gaussian pdf
» run CASH code for each
set of parameters
* Figure shows range of

variation 1n predicted 0.1
cylinder shape implied by
uncertainties in ZA parameter: ** o 05 i 5
from preVi()us ﬁt Axial Distance (cm)

High-strength steel HSLA 100
fCASH code from Tom Dey, X-7 246 m/s impact velocity, 298°K
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Taylor test experiment

« Taylor impact test specimen
» high-strength steel HSLA 100
» room temperature, 298°K
» impact velocity = 245.7 m/s

» dimensions, final/initial

length

diameter 12.00 mm / 7.59 mm

» experiment performed by

MST-8

May 12, 2003

31.84 mm /38 mm
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Compare simulation with experiment

Compare CASH
predictions of radial

profile with data from osf -

MST-8 experiment

Moderate (~10%)
disagreement in radius
increase 1n bulge region

Radius (cm)

Simulation indicates temp o4

greater than 400°K here

Discrepancy may be

0.35

CASH simulations
compared to experiment

0.55F

o
(%)
T

0.45}F

0 05 1 1.5 2

Axial Distance (cm)

caused by failure of High-strength steel HSLA 100
fdata supplied by Shuh-Rong Chen 246 m/s impact velocity, 298°K
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Fit ZA model to Taylor data

» ZA model parameters can CASH simulations
be fit to Taylor data in compared to experiment
same way as they were to  osf"
basic material character-
1zation data

0.55F

0.5}

(cm)

* Results of previous
analysis used as prior in
this analysis

/2]
=
5
©
¥ 0.45F

0.4}

» Discrepancies reduced,

but requires large shift of °*o o5 1?25( )é 25 5 a5
parameters, inconsistent Fitted impact velocity =
with prior (y? p value = 0) 235 m/s
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Fit ZA model to Taylor data

* Compare stress-strain CASH simulations
inferred ZA model from compared to experiment
Taylor fit with data at 1160
298°K, high strain rate t100]

1050}

 Inconsistent with first fit
to material character-
1zation data

e Conclude that ZA model
does not account for both
material CharaCterization 80802 004 006 008 01 012 014 0416 048 02
and Taylor experiments

1000
td
9501 ¢
U4
' o
VAL
9001 11
/ ‘,‘ &

850 /

High-strength steel HSLA 100
246 m/s impact velocity, 298°K
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Fit including high-strain, high-temp data

Analysis of quasi-static and Hopkinson bar measurementst

Change ZA fit to include
high-strain data at high temps
Observe that stress vs. strain
curves are too flat at 298°K
and not flat enough at high
temps

Conclude that ZA model
can not accommodate
varying temperature
dependence of strain
hardening effect

May 12, 2003
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P
H]lnl }{{*L{lﬂn"'{l..]’hl T I |
4

HI' 1”1 i : T
800f ._"}HHIi;J!!?*”H' iy i i

Al #Hﬂ 473 K; 4000/s

900f

Stress

700 4

600}

873 K; 3800/s

5000 0.05 0.1 0.15 0.2 0.25

Strain
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Monte Carlo sampling of ZA uncertainty

* Draw Monte Carlo samples from uncertainty distribution for
Zerilli-Armstrong parameters for fits to high-strain data

* Conclude that ZA fit optimized for high-strain behavior at high
temps can not match both 298°K and 473°K stress-strain data

1200

1100}

1000} /7 4
il

il
900} Jp'
:: ‘/.‘: [ b e

Stress

goot T/ /4

700} f

600}

5000 0.1 0.2 0.3 0.4 0.5

Strain
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Caveats

Verification of CASH code for Taylor test simulation
» convergence study confirms 0.2 mm x 0.2mm grid 1s OK
» other calculational details — artificial viscosity, etc.

Validation of other submodels

» other submodels required in simulation need to be validated, e.g.,
EOS, elastic response, etc., although these seem OK

Check experimental data
» experiments done by experienced staff, so probably OK

» worth repeating some experiments; under more severe conditions

Consider operating conditions
» Hopkinson bar expt — strain rates < 10* s-!, strains < 25%

» Taylor impact test — strain rates ~ 10° s-!, strains up to 200%
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Possible approaches to cope with bad model

« Use better model to model plastic behavior
» perhaps most preferable approach
» however, sometimes not possible because of
lack of resources; simulation code may not handle new model
* Bayesian calibration (Kennedy and O’Hagan)
» build model of discrepancy between model and data
» however, may not be able to incorporate into simulation code

» 1f not physics based, may result in unphysical behavior

 Increase uncertainties in model parameters
» to encompass mismatch between model and relevant data
» include extra uncertainty to account for bad model

» systematic uncertainty, so may not be reduced thru many meas.
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Conclusions

» Zerilli-Armstrong model does not account for plastic
behavior of HSLA 100 under the operating conditions of
these experiments to better than ~10%

 Full uncertainty analysis in model fitting useful for
» capturing the implications of uncertainties in data
» predicting uncertainties in simulations
» determining when model is inadequate to describe sequence of
experiments
» Regarding uncertainties, one needs to
» 1nclude correlations between uncertainties in each parameter
» keep track sources of uncertainty

» respect difference between random and systematic errors
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