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Overview
• Physics simulations codes

► need to be understood on basis of experimental data
► focus on physics submodels

• Bayesian analysis
► uncertainty quantification (UQ) is central issue
► each new experiment used to improve knowledge of models

• Analysis process
► employ hierarchy of experiments, from basic to fully integrated
► goal is to learn as much possible from all experiments

• Example of analysis process: material model evolution
► material characterization experiments and Taylor impact test
► role of systematic uncertainties
► coping with inadequate model
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Bayesian analysis in context of physics simulations
• Goal - describe uncertainties in simulations

► physics submodels
► experimental (set up and boundary) conditions
► calculations (grid size, …)

• Use best knowledge of physics processes
► rely on expertise of physics modelers and experimental data

• Bayesian foundation
► focus is as much on uncertainties in parameters as on their 

best value
► use of prior knowledge, e.g., previous experiments
► model checking; 

does model agree with experimental evidence? 
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Bayesian uncertainty analysis
• Uncertainties in parameters are 

characterized by probability 
density functions (pdf)

• Probability interpreted as 
quantitative measure of 
“degree of belief”

• Rules of classical probability 
theory apply

• Bayes law provides means to 
update knowledge about 
models as summarized in terms 
of uncertainty
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Schematic view of simulation code

Simulation
engine

Initial State
Ψ(0)

Model A
α

Ψ(t)

• Simulation code predicts state of time-evolving system 
Ψ(t) = time-dependent state of system

• Requires as input 
► Ψ(0) = initial state of system
► description of physics behavior of each system component; 

e.g., physics model A with parameter vector α (e.g., constitutive relations)

• Simulation engine solves the dynamical equations (PDEs)
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Simulation code predicts measurements

• Simulation code predicts state of time-evolving system 
Ψ(t) = time-dependent state of system

• Model of measurement system yields predicted measurements

Initial State
Ψ(0)

Simulation

Model A
α

Ψ(t) Measurement
System Model Y*(α)

Predicted
Measurements
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Mapping between parameters and experiments 

• Model inference 
► if uncertainties in measurements are smaller than prediction 

uncertainties that arise from parameter uncertainties, one may be able 
to use measurements to reduce uncertainties in parameters

► requires that prediction uncertainties are dominated by uncertainties in 
parameters and not by those in experimental set up

► good experimental technique important for Bayesian calibration

Parameter 
space 

Experimental
spaceForward probability

Inverse probability

Prediction 
uncertainty

Measurement 
uncertainty

Inferred  
uncertainty

Original  
uncertainty
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Analysis of hierarchy of experiments

Exp. 1 A

Exp. 2 A B  

Exp. 3 C Exp. 6
A B 
C D

Exp. 4 D

Partially 
integrated

Fully 
integrated

Basic

Exp. 5 C D  

• Information flow in analysis of series of experiments
• Bayesian calibration –

► analysis of each experiment updates model parameters and their 
uncertainties, consistent with previous analyses

► information about models accumulates
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Graphical probabilistic modeling
Propagate uncertainty through analyses of two experiments

α1

β1

p(α | Y1) p(β)

p(α, β |Y1, Y2)

p(Y2 | α, β )

• First experiment determines 
α, with uncertainties given by 
p(α |Y1)

• Second experiment not only 
determines β but also refines 
knowledge of α

• Outcome is joint pdf in α and
β, p(α, β |Y1,Y2) 
(correlations important!)

p(α | Y1)
Exp. 1 α Exp. 2 α β

p(α, β |Y1, Y2)p(α)

p(β)
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Bayesian calibration for simulation codes
• Goal is to develop an uncertainty model for the 

simulation code by comparison to experimental 
measurements
► determine and quantify sources of uncertainty
► uncover potential inconsistencies of submodels with expts.
► possibly introduce additional submodels, as required

• Recursive process
► aim is to develop submodels that are consistent with all 

experiments (within uncertainties)
► a hierarchy of experiments helps substantiate submodels over 

wide range of physical conditions 
► each experiment potentially advances our understanding
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Motivating example
• Problem statement

► design containment vessel using high-strength steel, HSLA 100
► predict depth of vessel-wall penetration for specified shrapnel 

fragments at specified impact velocity
► estimate uncertainty in this prediction to estimate safety factor

• Approach
► determine what experiments are needed to characterize 

stress-strain relationship for plastic flow of metal
► follow the uncertainty through the analysis of expt. data
► variables to consider: temperature, strain rate, variability in 

material composition, processing, behavior
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Hierarchy of experiments - plasticity 
• Basic characterization experiments - measure 

stress-strain relationship at 
specific stain and strain rate 
► quasi-static – low strain rates
► Hopkinson bar – medium strain rates

• Partially integrated expts. - Taylor test
► covers range of strain rates
► extends range of physical conditions

• Full integrated expts. 
► mimic application as much as possible
► projectile impacting plate
► may involve extrapolation of operating range; so 

introduces addition uncertainty
► integrated expts. can help reduce model uncertainties
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Analysis of hierarchy of experiments

Quasi-
Static

Fully integrated
application

Basic 
experiments

• Series of experiments to determine plastic behavior of a metal
• Information flow shown for analysis sequence
• Bayesian calibration –

► analysis of each experiment updates model parameters and their 
uncertainties, consistent with previous experiments

► information about models accumulates throughout process

ApplicationTaylorHopkinson
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Stress-strain relation for plastic deformation
• Zerilli-Armstrong model describes strain rate- and 

temperature-dependent plasticity in terms of 
stress σ (or s) as function of plastic strain εp

• Six parameters -
► 2 parameters (α5 & α6) specify dependence of stress on strain
► 4 remaining parameters specify additive offset as function of 

temperature and strain rate

• Z-A formula based on dislocation mechanics model
► may not hold for all materials or all experimental conditions
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Likelihood analysis  
• When the errors in each measurement are Gaussian 

distributed and independent, likelihood is related to chi 
squared:

• χ2 is quadratic in the parameters a

► where â is the parameter vector at minimum χ2 and
K is the curvature matrix (aka the Hessian)

• The covariance matrix for the uncertainties in the 
estimated parameters is
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Advanced analysis
• Analysis of multiple data sets 

► To combine the data from multiple, independent data sets into 
a single analysis, the combined chi squared is 

► where p(dk |a, I) is likelihood from kth data set

• Include Gaussian priors through Bayes theorem  

► For a Gaussian prior on a parameter a

► where ã is the default value for a and σa
2 is assumed variance 
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Fit ZA model to all data
• 7 data sets at various 

strain rates and temps
• Fit to all data above elastic 

region or after first bump 
in Hopkinson-bar data

• Model does not reproduce 
stress-strain curves at high 
and low temperatures

• Fit is far from expt. 
measurements for target 
conditions of room temp., 
high strain rate

• Uncertainties are highly 
correlated †data supplied by S-R Chen, MST-8

ZA curves include adiabatic 
heating effect for high strain rates
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Repeated experiments
• Repeated experiments

► stability of apparatus
► indication of random 

component of error
► may or may not indicate 

systematic error
• Figure shows curves 

obtained from four samples 
taken from random 
positions in thick plate

• Sample-to-sample rms 
deviation is around 
20 MPa at strain of 0.1

• Treat this variability as
systematic uncertainty

†data supplied by S-R Chen, MST-8
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Types of uncertainties in measurements
• Two major types of errors

► random error – different for each measurement
• in repeated measurements, get different answer each time
• often assumed to be statistically independent, but often aren’t

► systematic error – same for each measurement within a group
• component of measurements that remains unchanged
• for example, caused by error in calibration or zeroing 

• Nomenclature varies 
► physics – random error and systematic error
► statistics – random and bias
► metrology standards (NIST, ASME, ISO) –

random and systematic uncertainties (now)   
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Types of uncertainties in measurements
• Simple example – measurement of length of a pencil

► random error
• interpolation between ruler tick marks

► systematic error 
• accuracy of ruler’s calibration;

manufacturing defect, temperature, …

• Parallax in measurements
► reading depends on how 

person lines up pencil tip  
► random or systematic error? 

depends on whether measurements
always made by same person in the
same way or made by different people 

0 321 4cm
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Fit ZA model to selected measurements

• Zerilli-Armstrong model 
for rate- and temperature-
dependent plasticity

• Parameters determined 
from Hopkinson bar 
measurements and quasi-
static tests

• Full uncertainty analysis 
– including systematic 
effects of offset of each 
data set
(6 + 7 parms)
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Analysis of quasi-static and Hopkinson bar measurements†

†data supplied by Shuh-Rong Chen
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ZA parameters and their uncertainties
Parameters +/- rms error:
α1 = 103 ± 33
α2 = 954 ± 63
α3 = 0.00408 ± 0.00059
α4 = 0.000117 ± 0.000029
α5 = 996 ± 22
α6 = 0.247 ± 0.021

α1         α2          α3        α4        α5       α6
α1      1       -0.083    0.372    0.207   -0.488    0.267  
α2   -0.083    1          0.344    0.311    0.082    0.130  
α3   0.372    0.344      1         0.802    0.453   -0.621  
α4   0.207    0.311    0.802      1         0.271   -0.466  
α5  -0.488    0.082    0.453    0.271     1        -0.860  
α6   0.267    0.130   -0.621   -0.466   -0.860     1 

Correlation coefficients

RMS errors, including 
correlation coefficients, which 
are crucially important!
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Monte Carlo sampling of ZA uncertainty
• Use Monte Carlo technique to draw random samples from 

uncertainty distribution for Zerilli-Armstrong parameters
• Display stress-strain curve for each parameter set 

• Conclude fit faithfully represents data and their errors at 298°K
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Importance of including correlations

• Monte Carlo draws from uncertainty distribution, done 
correctly with full covariance matrix (left) and incorrectly, 
by neglecting off-diagonal terms in covariance matrix 

MC with correlations MC without correlations
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Monte Carlo sampling of ZA uncertainty
• Use Monte Carlo to draw random samples from uncertainty 

distribution for ZA parameters optimized for 298° K
• Show behavior at two temps and out to strain of 50% 

• Does not match 473°K data, >10% error above 20% strain
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Taylor impact test
• Propel cylinder into rigid plate
• Measure profile of deformed 

cylinder
• Deformation depends on 

► cylinder dimensions
► impact velocity
► plastic flow behavior of material at 

high strain rate

• Useful for
► determining parameters in material-

flow model
► validating simulation code 

(including material model)
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Taylor test simulations
• Simulate Taylor impact test

► CASH - Lagrangian code (X-7)
► Zerilli-Armstrong model for rate-

dependent strength and plasticity
► ignore anisotropy, fracture effects
► cylinder: high-strength steel, HSLA100

15-mm dia, 38-mm long
► impact velocity = 247 m/s

• Effective total strain exceeds 100%
• Temperatures rise above 700° K

HSLA 100
247 m/s, 298°K
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Plausible simulation predictions (forward)

Simulation
engine

Initial State
{Ψ(0)}

Model A
{α}

{Ψ(t)}

• Generate plausible predictions for known uncertainties in 
parameters and initial conditions

• Monte Carlo method 
► run simulation code for each random draw from pdf for α,  p(α | .), and 

initial state,  p(Ψ(0) | .)
► simulation outputs represent plausible set of predictions, {Ψ(t)}
► advanced sampling methods useful to reduce number of calcs needed

• Latin Hypercube, Centroidal Voronoi Tesselations, etc.

plausible set of 
predicted dynamic 
states of system

plausible set of 
initial states of 

system
plausible set of 
parameter vectors α
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Monte Carlo example - Taylor test
• Use MC technique to 

propagate uncertainties 
through deterministic 
simulation code 
► draw values of seven parameters 

from correlated Gaussian pdf
► run CASH code for each 

set of parameters

• Figure shows range of 
variation in predicted 
cylinder shape implied by 
uncertainties in ZA parameters 
from previous fit

Predictions made with 
hydrocode CASH

High-strength steel HSLA 100
246 m/s impact velocity, 298°K†CASH code from Tom Dey, X-7
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Taylor test experiment
• Taylor impact test specimen

► high-strength steel HSLA 100
► room temperature, 298°K
► impact velocity = 245.7 m/s
► dimensions, final/initial

length      31.84 mm / 38 mm
diameter  12.00 mm  / 7.59 mm

► experiment performed by 
MST-8  
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Compare simulation with experiment 
• Compare CASH 

predictions of radial 
profile with data from 
MST-8 experiment

• Moderate (~10%) 
disagreement in radius 
increase in bulge region

• Simulation indicates temp 
greater than 400°K here

• Discrepancy may be 
caused by failure of 

CASH simulations 
compared to experiment

†data supplied by Shuh-Rong Chen
High-strength steel HSLA 100
246 m/s impact velocity, 298°K
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Fit ZA model to Taylor data
• ZA model parameters can 

be fit to Taylor data in 
same way as they were to 
basic material character-
ization data 

• Results of previous 
analysis used as prior in 
this analysis 

• Discrepancies reduced, 
but requires large shift of 
parameters, inconsistent 
with prior (χ2 p value ≈ 0)

CASH simulations 
compared to experiment

Fitted impact velocity = 
235 m/s
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Fit ZA model to Taylor data
• Compare stress-strain 

inferred ZA model from 
Taylor fit with data at 
298°K, high strain rate

• Inconsistent with first fit 
to material character-
ization data

• Conclude that ZA model 
does not account for both 
material characterization 
and Taylor experiments

High-strength steel HSLA 100
246 m/s impact velocity, 298°K

CASH simulations 
compared to experiment
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Fit including high-strain, high-temp data

• Change ZA fit to include 
high-strain data at high temps

• Observe that stress vs. strain 
curves are too flat at 298°K 
and not flat enough at high 
temps

• Conclude that ZA model 
can not accommodate 
varying temperature 
dependence of strain 
hardening effect

Analysis of quasi-static and Hopkinson bar measurements†
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Monte Carlo sampling of ZA uncertainty
• Draw Monte Carlo samples from uncertainty distribution for 

Zerilli-Armstrong parameters for fits to high-strain data
• Conclude that ZA fit optimized for high-strain behavior at high 

temps can not match both 298°K and 473°K stress-strain data
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Caveats
• Verification of CASH code for Taylor test simulation 

► convergence study confirms 0.2 mm x 0.2mm grid is OK
► other calculational details – artificial viscosity, etc.

• Validation of other submodels
► other submodels required in simulation need to be validated, e.g., 

EOS, elastic response, etc., although these seem OK 

• Check experimental data
► experiments done by experienced staff, so probably OK
► worth repeating some experiments; under more severe conditions

• Consider operating conditions
► Hopkinson bar expt – strain rates < 104 s-1, strains < 25%
► Taylor impact test – strain rates ~ 105 s-1, strains up to 200%
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Possible approaches to cope with bad model
• Use better model to model plastic behavior

► perhaps most preferable approach
► however, sometimes not possible because of 

lack of resources; simulation code may not handle new model

• Bayesian calibration (Kennedy and O’Hagan)
► build model of discrepancy between model and data
► however, may not be able to incorporate into simulation code
► if not physics based, may result in unphysical behavior

• Increase uncertainties in model parameters
► to encompass mismatch between model and relevant data
► include extra uncertainty to account for bad model
► systematic uncertainty, so may not be reduced thru many meas.
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Conclusions
• Zerilli-Armstrong model does not account for plastic 

behavior of HSLA 100 under the operating conditions of 
these experiments to better than ~10%

• Full uncertainty analysis in model fitting useful for
► capturing the implications of uncertainties in data
► predicting uncertainties in simulations
► determining when model is inadequate to describe sequence of 

experiments

• Regarding uncertainties, one needs to
► include correlations between uncertainties in each parameter
► keep track sources of uncertainty
► respect difference between random and systematic errors
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