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Overview

* Understanding physics simulations codes
» employ hierarchy of experiments, from basic to fully integrated

» role of Bayesian analysis - improve knowledge of models with
each new experiment

* Analysis of experimental data to infer parameters of
Preston-Tonks-Wallace plasticity model for tantalum
» characterize uncertainties in measurement data
» estimate PTW parameters and their uncertainties

» demonstrate importance of including correlations
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Bayesian analysis 1n context of physics simulations

* Goal - describe uncertainties in simulations
» physics submodels
» experimental (set up and boundary) conditions
» calculations (grid size, ...)

* Use best knowledge of physics processes

» rely on expertise of physics modelers and experimental data

* Bayesian foundation

» focus 1s as much on uncertainties in parameters as on their
best value

» use of prior knowledge, e.g., previous experiments and expert
judgement

» model checking; does model agree with experimental data?
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Bayesian uncertainty analysis

Uncertainties in parameters are
characterized by probability
density functions (pdf)

Probability interpreted as
quantitative measure of
“degree of belief”

This interpretation sometimes Parameter value
called “subjective probability”

Probability

Rules of classical probability
theory apply
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Schematic view of simulation code

Tnitial State Simulation 40
Y(0) engine
Model A
o

Simulation code predicts state of time-evolving system ¥(t)

Requires as input
» P(0) = initial state of system

» description of physics behavior of each system component;
e.g., physics model A with parameter vector a. (e.g., constitutive relations)

Simulation engine solves the dynamical equations (PDEs)

Uncertainty in W¥(t) derive from uncertainties in ‘¥(0), A, o, and
calculational errors
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Simulation code predicts measurements

— F(t)
Initial State Simulation
¥(0)
Model A
o

Measurement
System Model

Y*(a)
Predicted
Measurements

Simulation code predicts state of time-evolving system
Y(t) = time-dependent state of system

Model of measurement system yields predicted measurements

Measurements provide insight about simulation models

Comparison of experimental to predicted measurements forms
basis for inference about simulation code and submodels
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Analysis of hierarchy of experiments

Basic

Partially
Integrated

Fully
Integrated

* Information flow in analysis of series of experiments

* Bayesian calibration —

» analysis of each experiment updates model parameters (represented as A,
B, C, etc.) and their uncertainties, consistent with previous analyses

» information about models accumulates
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Graphical probabilistic modeling

Propagate uncertainty through analyses of two experiments

p(a) @p(alYl) mp(a,BIYp Y))
p(B)

* First experiment determines B
1

p(a|Y) p(B)
__AL

r A\

o, with uncertainties given by
p(a | Yl) / )
« Second experiment not only : p(Y,|a, B)

determines 3 but also refines
knowledge of a

* Outcome is joint pdf in a and pa, BIY, Y)

Ba p(aa B | YI,YZ)
(correlations important!)

o
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Uncertainty quantification for sitmulation codes

* Goal 1s to develop an uncertainty model for the
simulation code by comparison to experimental
measurements

» determine and quantify sources of uncertainty
» uncover potential inconsistencies of submodels with expts.

» possibly introduce additional submodels, as required

* Recursive process

» aim 1s to develop submodels that are consistent with all
experiments (within uncertainties)

» a hierarchy of experiments helps substantiate submodels over
wide range of physical conditions

» cach experiment potentially advances our understanding
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Taylor impact test

Propel cylinder into rigid plate

Measure profile of deformed
cylinder
Deformation depends on

» cylinder dimensions

» 1mpact velocity

» plastic flow behavior of material at
high strain rate

Useftul for

» validating simulation code (including

material model) I E—
» improving knowledge of parameters
in material-behavior model
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Taylor impact test experiment

« Taylor impact test specimen
» high-strength steel, HSLA 100
» room temperature, 298 °K
» impact velocity = 245.7 m/s

» dimensions, final/initial
length  31.84 mm /38 mm
diameter 12.00 mm / 7.59 mm

» experiment performed by MST-8
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Taylor test stmulations

Temp ( °K)
- 712
[ 671

— 630

« Simulation of Taylor impact test

» cylinder: high-strength steel, HSLA100,
15-mm dia, 38-mm long,
room temperature

— D89

- 247

» 1mpact velocity = 247 m/s

» CASH - Lagrangian code (X-7)

» Zerilli-Armstrong model for rate-
dependent strength and plasticity

— 306

— 465

— 424

» 1gnore anisotropy, fracture effects - 62
o Effective total strain exceeds 100% »

300

« Temperature rises more than 400 °C
HSLA 100

247 m/s, 298°K
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Hierarchy of experiments - plasticity

Basic characterization experiments —
measure stress-strain relationship at
specific stain and strain rate

T fixed

» quasi-static — low strain rates

» Hopkinson bar — medium strain rates

Partially integrated expts. - Taylor test

» covers range of strain rates

log(strain rate)

Hopkinson

» extends range of physical conditions ® ® < (uasi-static

Full integrated experiments Strain
» mimic application as much as possible

» may involve extrapolation of operating range;
introduces addition uncertainty

» integrated expts. can help reduce model uncertainties in
their operating range; may expose model deficiencies
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Analysis of hierarchy of experiments

Ba}sic - Fully integrated
experiments application

Qua51- —» Apphcatlon
Statlc

« Series of experiments to determine plastic behavior of a metal
* Information flow shown for analysis sequence

« Bayesian calibration —

» analysis of each experiment updates model parameters and their
uncertainties, consistent with previous experiments

» information about models accumulates throughout process
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PTW model for plastic deformation

* Preston-Tonks-Wallace model o ETW (Tantalum, T = 300 °K; dwidt = 10° ™)
describes plastic behavior of metals o

800t

» provides stress o (or s) as function of
plastic strain ¢, for wide range of
strain rate and temperature

-\.‘q
o
o

D
o
o

Stress, ¢ (MPa)
n
3

» nonlinear, analytic formulation 200l

» 7/ parameters (for low strain rates)
plus material-specific constants 0

0 0..05 ot Oj_1 O.I15 0.2
« PTW model based on dislocation
mechanics model

» does not include effects of anisotropy
or material history
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The model and parameter inference

* We write the model as
y=y(x.a)
» where y 1s a vector of physical quantities, which 1s modeled

as a function of the independent variables vector x and
a represents the model parameters vector

* In inference, the aim 1s to determine:

» the parameters a from a set of » measurements d; of y under
specified conditions x;

» and the uncertainties in the parameter values
* This process is called parameter inference, model

fitting (or regression), however, uncertainty analysis
1s often not done, only parameters estimated
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Likelihood analysis

* When the errors in each measurement are Gaussian
distributed and independent, likelihood 1s related to chi

squared: : VT
1 p(d|a)OCeXp(—%Z ):exp{% ‘ |:[ i (.:zz(a)] j|}

i

« ¥?1s quadratic in the parameters a
T
2 1 A A 2, A
r(@=%(a-a) K(a—a)+ y(a)
» where d is the parameter vector at minimum y? and

K 1s the curvature matrix (aka the Hessian)

* The covariance matrix for the uncertainties in the
estimated parameters 1s

cov(a) = <(a —a)a— &)T> =C=2K"
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Characterization of chi-squared

Expand vector y around yV:
oy,
7 oa,

0
(a,—a;)+--
0

Vi :yi(xiaa) :yl_o +

a

The derivative matrix 1s called the Jacobian, J
Estimated parameters @ minimize y> (MAP estimate)
As a function of a, y¥? is quadratic in @ — @
7’ (a) = %(a —&)TK(a —&)+;(2(&)
» where K 1s the curvature matrix (aka the Hessian);

(K], =%

* - da j0a, |~
Jacobian useful for finding min. ¥?, i.e., optimization

. K=JAJ"; A=diag(o;”, 0>, 05, ...)
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Advanced analysis

* Analysis of multiple data sets

» To combine the data from multiple, independent data sets into
a single analysis, the combined chi squared 1s

2 2
Xal = Z Xk
k
» where p(d, | a, I) 1s likelithood from £th data set

 Include Gaussian priors through Bayes theorem
pald,l)oc p(d|a,l) plall)
» For a Gaussian prior on a parameter a 2
(a—a)

~logp(ald,)=p(a)=1 1" +——
20

a

» where 4 is the default value for a and ¢ 2 is assumed variance
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Material-characterization experiments

« Data from quasi-static 2o
. . | Ta, 300 °K, 0.1 st
compression experiments
tend to be of high quality a
» rms ‘noise’ =~ 0.1% i | . | §5
» thin data set to limit undue 320_ Quasi-static
influence 1n likelithood o
« Data from Hopkinson-bar
experiments tend to be of vl Ta 300 °K. 1300 5
medium quality | e
» rms ‘noise’ ~ 1% ¢ aw .
* (bserve artifacts in the data o) AR 0
» arise from reflected shocks :: i x - Hopkinson bar
» need to account for these :: Y -., | | | |

Strain
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Hopkinson bar measurements

« Hopkinson-bar data are degraded
by oscillations, caused by
reflected shocks and bar
oscillations

« Treat these fluctuations as a
random process with a high
degree of correlation from point
to point

« Subtract low-order polynomial
from data to get fluctuations from
smooth dependence
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Hopkinson bar measurements

Fluctuations in actual data

« Treat Hop-bar fluctuations as a
correlated Gaussian process;
covariance given by

, x_xr p
cov(y,y') o exp —[ P }

» where x is independent variable, strain

Residual Stress (MPa)
o

» determine correlation length A and ’ poro o o e o

Strain

exponent p from data Realization from random process
» p=2;1=0.002 (about 4 samples)

» Realization of random process
shows behavior similar to data

A Stress (MPa)

fluctuations
« Thin data set to avoid giving data
undue weight in likelihood

Strain
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Repeated experiments

Repeated experiments
» stability of apparatus

» indication of random
component of error

» may or may not indicate
systematic error
Figure shows curves
obtained from four samples
taken from different lots

Sample-to-sample rms dev.
~ 8%
Treat this variability as a

systematic uncertainty
common to each specimen

Represents an uncertainty in
initial state

500 T T T T

298K, 0.,001/s 0000 s

=

[l

2

(7]

wn

o

n 200 F -2 e Tantalum "A"

g ' ====Tantalum "B"

= "mgyn

— 100 === Tantalum "C
Tantalum "D"

0 0.05 0.1 0.15 0.2
True Strain

0.25

fdata supplied by S-R Chen, MST-8
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Types of uncertainties 1n measurements

* Two major types of errors

» random error — different for each measurement
* in repeated measurements, get different answer each time

« often assumed to be statistically independent, but often aren’t
» systematic error — same for all measurements within a group
« component of measurements that remains unchanged
 for example, caused by error in calibration or zeroing
* Nomenclature varies
» physics — random error and systematic error

» statistics — random and bias

» metrology standards (NIST, ASME, ISO) —
random and systematic uncertainties (now)
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Types of uncertainties 1n measurements

» Simple example — measurement of length of a pencil

» random error
* interpolation between ruler tick marks

» systematic error

 accuracy of ruler’s calibration;
manufacturing defect, temperature, ...

 Parallax in measurements

» reading depends on how
personlinesuppenciltip |||||||||||1||||||||||2||||||||||3||||||||||4

0 cm

» random or systematic error?

depends on whether measurements
always made by same person in the
same way or made by different people
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Fit PTW model to measurements

Analysis of quasi-static and Hopkinson bar measurements’

e PTW model for rate- and 1200 femtalum - PTW.
temperature-dependent

. . 1000t
plasticity _

« Parameters estimated
from Hopkinson bar
measurements and quasi-

| 77 K; 0.001/s

[0 0]
o
o

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
******************
¢¢¢¢¢
ot
4t
4.
44
+

True Stress (MPa)
o)
Q
(@]

) 400} ... e e S

Statlc teStS “Hnl":‘u.”“”“ mil Lﬁi%:,Kz,z:;O’OIS
. . 200l I - 1273 K; 3000/s
 Full uncertainty analysis —

: 0 : | | | | |
InCIUde 3 A) SyStematIC OO 0.05 0.1 015 02 0.25 0.3
uncertainty in offset of True Strain
each data set (8 + 7 parms) PTW curves include adiabatic

. heating effect for high strain rates
e ~ 6 1ter., ~ 100 func. evals. J J

fdata supplied by S-R Chen, MST-8
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PTW parameters and their uncertainties

Parameters +/- rms error:
y, =0.0123 £ 0.0006
Yoo = 0.00164 £ 0.00004 Minimum chi-squared fit yields

— + .
Sp =0.0164 £0.0007 estimated PTW parms. and rms errors,

s., = 0.00308 £ 0.00005

K
i
0

=0.91+0.08 | 1atiolf
= (2.4 £ 2.0)x10 which are crucially important!

=0.0145 £ 0.0002

including correlation coefficients,

Correlation coefficients

Yo
Yo 1
y., 0.186
sy 0.988
s 0.400

(00}

k 0.687

y -0.464 0.022 -0.496 -0.263 -0.935 1 0.087
0 -0.182 -0.140 -0.299 -0.257 -0.119 0.087 1

Ve So S, K Y 0
0.186 0.988 0.400 0.687 -0.464 -0.182
1 0.208 0913 0.142 0.022 -0.140
0.208 1 0432 0.713 -0.496 -0.299
0913 0.432 1 0.443 -0.263 -0.257

0.142 0.713 0443 1 -0.935 -0.119
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Monte Carlo sampling of PTW uncertainty

Use Monte Carlo technique - draw random samples from
complete uncertainty distribution for PTW parameters

Display stress-strain curve for each parameter set (at three temps)
Conclude that fit faithfully represents data and their errors
This procedure confirms the analysis and model
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Importance of including correlations

* Monte Carlo draws from uncertainty distribution, done
correctly with full covariance matrix (left) and incorrectly
(right), by neglecting off-diagonal terms 1n covariance matrix

MC with correlations

700
" 298K;3000/s
" ,_/_""I"—'.'_—-
/:,_mwmﬂﬂ
L
600 ﬁw.‘*h d
& 500t |
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» ‘H”
8 400F , ot
a N ¥
g
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Future work: Taylor impact experiment

* Next step 1n plan to validate PTW model 1s to proceed to
next level of hierarchy of experiments

* Analyze data from Taylor impact experiments
» need to use simulation code
» use posterior distribution from foregoing analysis as prior
» determine posterior distribution for Taylor data
» check consistency with Taylor data
» check consistency with prior
» resolve discrepancies or cope with model deficiencies

* Then proceed to analysis of more complex experiments,
which extend the operating range, ¢.g., flyer -impact
experiments
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Plausible simulation predictions (forward)

Simulation
engine

Initial State
{¥(0)}

{¥(t)} plausible set of
— predicted dynamic

states of system

plausible set of
initial states of Model A plausible set of
system o} parameter vectors o

* Generate plausible predictions for known uncertainties in

parameters and 1nitial conditions
* Monte Carlo method

» run simulation code for each random draw from pdf for a, p(a|.), and

initial state, p(\P(0) | .)

» simulation outputs represent plausible set of predictions, {¥(t)}

» advanced sampling methods useful to reduce number of calcs needed

 Latin Hypercube, Centroidal Voronoi Tessellations, etc.
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Summary

* Physics simulations codes
» employ hierarchy of experiments, from basic to fully integrated

» role of Bayesian analysis - improve knowledge of models with
each new experiment

* Analysis of experimental data to infer parameters of
Preston-Tonks-Wallace plasticity model for tantalum
» characterize uncertainties in measurement data
» estimate PTW parameters and their uncertainties

» demonstrate importance of including correlations
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