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Overview
• Understanding physics simulations codes

► employ hierarchy of experiments, from basic to fully integrated
► role of Bayesian analysis - improve knowledge of models with 

each new experiment 

• Analysis of experimental data to infer parameters of 
Preston-Tonks-Wallace plasticity model for tantalum
► characterize uncertainties in measurement data 
► estimate PTW parameters and their uncertainties
► demonstrate importance of including correlations
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Bayesian analysis in context of physics simulations
• Goal - describe uncertainties in simulations

► physics submodels
► experimental (set up and boundary) conditions
► calculations (grid size, …)

• Use best knowledge of physics processes
► rely on expertise of physics modelers and experimental data

• Bayesian foundation
► focus is as much on uncertainties in parameters as on their 

best value
► use of prior knowledge, e.g., previous experiments and expert 

judgement
► model checking; does model agree with experimental data? 
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Bayesian uncertainty analysis
• Uncertainties in parameters are 

characterized by probability 
density functions (pdf)

• Probability interpreted as 
quantitative measure of 
“degree of belief”

• This interpretation sometimes 
called “subjective probability”

• Rules of classical probability 
theory apply
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Schematic view of simulation code

Simulation
engine

Initial State
Ψ(0)

Model A
α

Ψ(t)

• Simulation code predicts state of time-evolving system Ψ(t)
• Requires as input 

► Ψ(0) = initial state of system
► description of physics behavior of each system component; 

e.g., physics model A with parameter vector α (e.g., constitutive relations)

• Simulation engine solves the dynamical equations (PDEs)
• Uncertainty in Ψ(t) derive from uncertainties in Ψ(0), A, α, and 

calculational errors
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Simulation code predicts measurements

• Simulation code predicts state of time-evolving system 
Ψ(t) = time-dependent state of system

• Model of measurement system yields predicted measurements
• Measurements provide insight about simulation models
• Comparison of experimental to predicted measurements forms 

basis for inference about simulation code and submodels

Initial State
Ψ(0)

Simulation

Model A
α

Ψ(t) Measurement
System Model Y*(α)

Predicted
Measurements
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Analysis of hierarchy of experiments

Exp. 1 A

Exp. 2 A B  

Exp. 3 C Exp. 6
A B 
C D

Exp. 4 D

Partially 
integrated

Fully 
integrated

Basic

Exp. 5 C D  

• Information flow in analysis of series of experiments
• Bayesian calibration –

► analysis of each experiment updates model parameters (represented as A, 
B, C, etc.) and their uncertainties, consistent with previous analyses

► information about models accumulates
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Graphical probabilistic modeling
Propagate uncertainty through analyses of two experiments

α1

β1

p(α | Y1) p(β)

p(α, β |Y1, Y2)

p(Y2 | α, β )

• First experiment determines 
α, with uncertainties given by 
p(α |Y1)

• Second experiment not only 
determines β but also refines 
knowledge of α

• Outcome is joint pdf in α and
β, p(α, β |Y1,Y2) 
(correlations important!)

p(α | Y1)
Exp. 1 α Exp. 2 α β

p(α, β |Y1, Y2)p(α)

p(β)
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Uncertainty quantification for simulation codes
• Goal is to develop an uncertainty model for the 

simulation code by comparison to experimental 
measurements
► determine and quantify sources of uncertainty
► uncover potential inconsistencies of submodels with expts.
► possibly introduce additional submodels, as required

• Recursive process
► aim is to develop submodels that are consistent with all 

experiments (within uncertainties)
► a hierarchy of experiments helps substantiate submodels over 

wide range of physical conditions 
► each experiment potentially advances our understanding
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Taylor impact test
• Propel cylinder into rigid plate
• Measure profile of deformed 

cylinder
• Deformation depends on 

► cylinder dimensions
► impact velocity
► plastic flow behavior of material at 

high strain rate

• Useful for
► validating simulation code (including 

material model)
► improving knowledge of parameters 

in material-behavior model
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Taylor impact test experiment
• Taylor impact test specimen

► high-strength steel, HSLA 100
► room temperature, 298 °K
► impact velocity = 245.7 m/s
► dimensions, final/initial

length      31.84 mm / 38 mm
diameter  12.00 mm  / 7.59 mm

► experiment performed by MST-8  
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Taylor test simulations
• Simulation of Taylor impact test

► cylinder: high-strength steel, HSLA100,
15-mm dia, 38-mm long,
room temperature

► impact velocity = 247 m/s
► CASH - Lagrangian code (X-7)
► Zerilli-Armstrong model for rate-

dependent strength and plasticity
► ignore anisotropy, fracture effects

• Effective total strain exceeds 100%
• Temperature rises more than 400 °C

HSLA 100
247 m/s, 298°K

Temp ( °K)



March 8-11, 2004 Conference on Sensitivity Analysis of Model Output 13

Hierarchy of experiments - plasticity 
• Basic characterization experiments –

measure stress-strain relationship at 
specific stain and strain rate 
► quasi-static – low strain rates
► Hopkinson bar – medium strain rates

• Partially integrated expts. - Taylor test
► covers range of strain rates
► extends range of physical conditions

• Full integrated experiments 
► mimic application as much as possible
► may involve extrapolation of operating range;  

introduces addition uncertainty
► integrated expts. can help reduce model uncertainties in 

their operating range; may expose model deficiencies
lo

g(
st

ra
in

ra
te

)

Strain

Taylor

Hopkinson
quasi-static

application

T fixed



March 8-11, 2004 Conference on Sensitivity Analysis of Model Output 14

Analysis of hierarchy of experiments

Quasi-
Static

Fully integrated
application

Basic 
experiments

• Series of experiments to determine plastic behavior of a metal
• Information flow shown for analysis sequence
• Bayesian calibration –

► analysis of each experiment updates model parameters and their 
uncertainties, consistent with previous experiments

► information about models accumulates throughout process

ApplicationTaylorHopkinson
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PTW model for plastic deformation
• Preston-Tonks-Wallace model 

describes plastic behavior of metals
► provides stress σ (or s) as function of 

plastic strain εp for wide range of 
strain rate and temperature

► nonlinear, analytic formulation

• 7 parameters (for low strain rates) 
plus material-specific constants

• PTW model based on dislocation 
mechanics model
► does not include effects of anisotropy 

or material history
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The model and parameter inference
• We write the model as

► where y is a vector of physical quantities, which is modeled 
as a function of the independent variables vector x and
a represents the model parameters vector

• In inference, the aim is to determine:
► the parameters a from a set of n measurements di of y under 

specified conditions xi

► and the uncertainties in the parameter values

• This process is called parameter inference, model 
fitting (or regression), however, uncertainty analysis 
is often not done, only parameters estimated

( , )y y x a=
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Likelihood analysis  
• When the errors in each measurement are Gaussian 

distributed and independent, likelihood is related to chi 
squared:

• χ2 is quadratic in the parameters  a

► where â is the parameter vector at minimum χ2 and
K is the curvature matrix (aka the Hessian)

• The covariance matrix for the uncertainties in the 
estimated parameters is

( ) ( )2 2T1
2 ˆ ˆ ˆ( ) ( )χ χ= − − +a a a K a a a
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Characterization of chi-squared  
• Expand vector y around y0:

• The derivative matrix is called the Jacobian, J
• Estimated parameters â minimize χ2 (MAP estimate)
• As a function of a, χ2 is quadratic in a – â

► where K is the curvature matrix (aka the Hessian);

• Jacobian useful for finding min. χ2, i.e., optimization

( ) ( )2 2T1
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Advanced analysis
• Analysis of multiple data sets 

► To combine the data from multiple, independent data sets into 
a single analysis, the combined chi squared is 

► where p(dk |a, I) is likelihood from kth data set

• Include Gaussian priors through Bayes theorem  

► For a Gaussian prior on a parameter a

► where ã is the default value for a and σa
2 is assumed variance 

2 2
all k
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Material-characterization experiments
• Data from quasi-static

compression experiments 
tend to be of high quality
► rms ‘noise’ º 0.1%
► thin data set to limit undue 

influence in likelihood 

• Data from Hopkinson-bar
experiments tend to be of 
medium quality
► rms ‘noise’ º 1%

• Observe artifacts in the data
► arise from reflected shocks
► need to account for these

Hopkinson bar

Quasi-static

Ta, 300 °K, 0.1 s-1

5%

5%

Ta, 300 °K, 1300 s-1
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Hopkinson bar measurements 
• Hopkinson-bar data are degraded 

by oscillations, caused by 
reflected shocks and bar 
oscillations

• Treat these fluctuations as a 
random process with a high 
degree of correlation from point 
to point

• Subtract low-order polynomial 
from data to get fluctuations from 
smooth dependence
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Hopkinson bar measurements
• Treat Hop-bar fluctuations as a 

correlated Gaussian process; 
covariance given by

► where x is independent variable, strain
► determine correlation length l and 

exponent p from data
► p @ 2; l @ 0.002  (about 4 samples)

• Realization of random process 
shows behavior similar to data 
fluctuations

• Thin data set to avoid giving data 
undue weight in likelihood

cov( , ) exp
px xy y

λ
⎧ ⎫′−⎪ ⎪⎡ ⎤′ ∝ −⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

Realization from random process

Fluctuations in actual data
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Repeated experiments
• Repeated experiments

► stability of apparatus
► indication of random 

component of error
► may or may not indicate 

systematic error
• Figure shows curves 

obtained from four samples 
taken from different lots

• Sample-to-sample rms dev. 
≈ 8%

• Treat this variability as a
systematic uncertainty
common to each specimen

• Represents an uncertainty in 
initial state

†data supplied by S-R Chen, MST-8
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Types of uncertainties in measurements
• Two major types of errors

► random error – different for each measurement
• in repeated measurements, get different answer each time
• often assumed to be statistically independent, but often aren’t

► systematic error – same for all measurements within a group
• component of measurements that remains unchanged
• for example, caused by error in calibration or zeroing 

• Nomenclature varies 
► physics – random error and systematic error
► statistics – random and bias
► metrology standards (NIST, ASME, ISO) –

random and systematic uncertainties (now)   
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Types of uncertainties in measurements
• Simple example – measurement of length of a pencil

► random error
• interpolation between ruler tick marks

► systematic error 
• accuracy of ruler’s calibration;

manufacturing defect, temperature, …

• Parallax in measurements
► reading depends on how 

person lines up pencil tip  
► random or systematic error? 

depends on whether measurements
always made by same person in the
same way or made by different people 

0 321 4cm



March 8-11, 2004 Conference on Sensitivity Analysis of Model Output 26

Fit PTW model to measurements

• PTW model for rate- and 
temperature-dependent 
plasticity

• Parameters estimated 
from Hopkinson bar 
measurements and quasi-
static tests

• Full uncertainty analysis –
include 3% systematic 
uncertainty in offset of 
each data set (8 + 7 parms)

• ~ 6 iter., ~ 100 func. evals.

Analysis of quasi-static and Hopkinson bar measurements†

†data supplied by S-R Chen, MST-8

PTW curves include adiabatic 
heating effect for high strain rates
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PTW parameters and their uncertainties
Parameters +/- rms error:

y0 = 0.0123 ± 0.0006
y¶ = 0.00164 ± 0.00004
s0 = 0.0164 ± 0.0007
s¶ = 0.00308 ± 0.00005
k = 0.91 ± 0.08
γ = (2.4 ± 2.0)×10-6

θ = 0.0145 ± 0.0002

y0 y¶ s0 s¶ k γ θ
y0 1       0.186    0.988   0.400    0.687  -0.464   -0.182 
y¶ 0.186      1        0.208   0.913    0.142   0.022   -0.140
s0 0.988    0.208       1      0.432    0.713  -0.496   -0.299  
s¶ 0.400    0.913    0.432      1       0.443  -0.263   -0.257
k 0.687    0.142    0.713   0.443      1      -0.935   -0.119  
γ -0.464    0.022  -0.496  -0.263  -0.935      1        0.087  
θ -0.182  -0.140  -0.299  -0.257  -0.119    0.087       1

Correlation coefficients

Minimum chi-squared fit yields 
estimated PTW parms. and rms errors, 
including correlation coefficients, 
which are crucially important!
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Monte Carlo sampling of PTW uncertainty
• Use Monte Carlo technique - draw random samples from 

complete uncertainty distribution for PTW parameters
• Display stress-strain curve for each parameter set (at three temps)
• Conclude that fit faithfully represents data and their errors
• This procedure confirms the analysis and model
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Importance of including correlations

• Monte Carlo draws from uncertainty distribution, done 
correctly with full covariance matrix (left) and incorrectly 
(right), by neglecting off-diagonal terms in covariance matrix 

MC with correlations MC without correlations
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Future work: Taylor impact experiment
• Next step in plan to validate PTW model is to proceed to 

next level of hierarchy of experiments
• Analyze data from Taylor impact experiments

► need to use simulation code 
► use posterior distribution from foregoing analysis as prior
► determine posterior distribution for Taylor data
► check consistency with Taylor data
► check consistency with prior
► resolve discrepancies or cope with model deficiencies 

• Then proceed to analysis of more complex experiments, 
which extend the operating range, e.g., flyer -impact 
experiments
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Plausible simulation predictions (forward)

Simulation
engine

Initial State
{Ψ(0)}

Model A
{α}

{Ψ(t)}

• Generate plausible predictions for known uncertainties in 
parameters and initial conditions

• Monte Carlo method 
► run simulation code for each random draw from pdf for α,  p(α | .), and 

initial state,  p(Ψ(0) | .)
► simulation outputs represent plausible set of predictions, {Ψ(t)}
► advanced sampling methods useful to reduce number of calcs needed

• Latin Hypercube, Centroidal Voronoi Tessellations, etc.

plausible set of 
predicted dynamic 
states of system

plausible set of 
initial states of 

system
plausible set of 
parameter vectors α
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Summary
• Physics simulations codes

► employ hierarchy of experiments, from basic to fully integrated
► role of Bayesian analysis - improve knowledge of models with 

each new experiment 

• Analysis of experimental data to infer parameters of 
Preston-Tonks-Wallace plasticity model for tantalum
► characterize uncertainties in measurement data 
► estimate PTW parameters and their uncertainties
► demonstrate importance of including correlations



March 8-11, 2004 Conference on Sensitivity Analysis of Model Output 33

Bibliography 
► “Uncertainty quantification of simulation codes based on experimental data,” 

K. M. Hanson and F. M. Hemez, Proc. AIAA Aerospace Conf. (2003)
► “A framework for assessing confidence in simulation codes,” K. M. Hanson 

and F. M. Hemez, Experimental Techniques 25, pp. 50-55 (2001); application 
of uncertainty quantification to simulation codes with Taylor test as example

► “A framework for assessing uncertainties in simulation predictions,” K. M. 
Hanson, Physica D 133, pp. 179-188 (2000); an integrated approach to 
determining uncertainties in physics modules and their effect on predictions

► “Inversion based on complex simulations,” K. M. Hanson, Maximum Entropy 
and Bayesian Methods, pp. 121-135 (Kluwer Academic, 1998); describes 
adjoint differentiation and its usefulness in simulation physics

► “Uncertainty assessment for reconstructions based on deformable models," K. 
M. Hanson et al., Int. J. Imaging Syst. Technol. 8, pp. 506-512 (1997); use of 
MCMC to sample posterior

These and related papers available at http://www.lanl.gov/home/kmh/


