Bayesian analysis in nuclear physics

Ken Hanson
T-16, Nuclear Physics; Theoretical Division
Los Alamos National Laboratory

Tutorials presented at LANSCE
Los Alamos Neutron Scattering Center
July 25 – August 1, 2005

This presentation available at http://www.lanl.gov/home/kmh/

LA-UR-05-5680
Goals of tutorials

My aim is to

• present overview of Bayesian and probabilistic modeling
• cover basic Bayesian methodology relevant to nuclear physics, especially cross section evaluation
• point way to how to do it

• convince you that
 ► Bayesian analysis is a reasonable approach to coping with measurement uncertainty

• Many thanks to my T-16 colleagues
 ► Gerry Hale, Toshihiko Kawano, Patrick Talou
Outline – three tutorials

1. Bayesian approach
 probability – quantifies our degree of uncertainty
 Bayes law and prior probabilities

2. Bayesian modeling
 Peelle’s pertinent puzzle
 Monte Carlo techniques; quasi-Monte Carlo
 Bayesian update of cross sections using Jezebel criticality expt.

3. Bayesian data analysis
 linear fits to data with Bayesian interpretation
 uncertainty in experimental measurements; systematic errors
 treatment of outliers, discrepant data

4. Bayesian calculations
 Markov chain Monte Carlo technique
 analysis of Rossi traces; alpha curve
 background estimation in spectral data
Slides and bibliography

► These slides can be obtained by going to my public web page: http://public.lanl.gov/kmh/talks/
 • link to tutorial slides
 • short bibliography relevant to topics covered in tutorial
 • other presentations, which contain more detail about material presented here

► Noteworthy books:
 • D. Sivia, *Data Analysis: A Bayesian Tutorial* (1996); lucid pedagogical development of the Bayesian approach with an experimental physics slant
 • D. L. Smith, *Probability, Statistics, and Data Uncertainties in Nuclear Science and Technology* (1991); lots of good advice relevant to cross-section evaluation
 • G. D’Agostini, *Bayesian Reasoning in Data Analysis: A Critical Review*, (World Scientific, New Jersey, 2003); Bayesian philosophy
 • A. Gelman et al., *Bayesian Data Analysis* (1995); statisticians’ view
 • W. R. Gilks et al., *Markov Chain Monte Carlo in Practice* (1996); basic MCMC text
Tutorial 2
Bayesian modeling
Peelle’s Pertinent Puzzle (1987)

Overview:

• Paradoxical result produced by strong correlations in uncertainties
• Probabilistic view of PPP
• Specific probabilistic model for PPP elucidates how correlations in uncertainties arise
• Plausible experimental situation consistent with PPP result
• Bayesian approach to coping with uncertainty in model
• With probabilistic modeling, you can go beyond simple linear, additive models
• PPP underlines the need to specify how uncertainties contribute to reported data
Peelle’s pertinent puzzle

• Robert Peelle (ORNL) posed the PPP in 1987:
 Given two measurements of same quantity x:
 \[m_1 = 1.5; \quad m_2 = 1.0, \]
 each with independent standard error of 10% ,
 and fully correlated standard error of 20% .
 Weighted average using least-squares is $x = 0.88 \pm 0.22$

• Peelle asks “under what conditions is this result reasonable?”
• By extension, if this not reasonable, what answer is appropriate?
• PPP is pertinent – its effect has been observed in nuclear data
 evaluation for decades
• Comment – PPP description of errors is ambiguous, which leads
 to numerous plausible interpretations
PPP in cross-section evaluation

• Although the PPP problem may seem academic, it has significant real-world consequences in cross-section evaluation
 ▶ historically, fits to several data sets fall below lowest measurements

from Pronyaev, INDC(NDS)-438, p. 163 (2003)

note large data discrepancies
Standard solution to PPP

• The solution given in PPP is based on standard matrix equations for least-squares result:

 estimated value \(x = (G^T C^{-1} G)^{-1} G^T C^{-1} m \)

 covariance in estimate \(V = (G^T C^{-1} G)^{-1} \)

 where the sensitivity matrix is \(G = [1.0 \ 1.0] \)

 and the measurements are the vector \(m = [1.5 \ 1.0]^T \)

 with covariance matrix \(C = \begin{pmatrix} 1.5^2 \star (0.1^2 + 0.2^2) & 1.5 \star 1.0 \star 0.2^2 \\ 1.5 \star 1.0 \star 0.2^2 & 1.0^2 \star (0.1^2 + 0.2^2) \end{pmatrix} \)

• Result is \(x = 0.88 \pm 0.22 \)

• This result is smaller than both measurements, which seems implausible
Probabilistic view of standard PPP solution

- Consider the probability density function (pdf) for the variables
 \[x = [x_1 \ x_2]^T \]
 \[p(x | m) \propto \exp \left\{ -\frac{1}{2} (x - m)^T C^{-1} (x - m) \right\} \]
 where measurements are \(m = [1.5 \ 1.0]^T \) and their covariance matrix is
 \[C = \begin{pmatrix}
 1.5^2 \ast (0.1^2 + 0.2^2) & 1.5 \ast 1.0 \ast 0.2^2 \\
 1.5 \ast 1.0 \ast 0.2^2 & 1.0^2 \ast (0.1^2 + 0.2^2)
 \end{pmatrix} \]

- For \(x = x_1 = x_2 \) (diagonal of 2D pdf), \(p(x|m) \) is normal distribution centered at 0.88
Probabilistic model for additive error

- Represent common uncertainty in measurements by systematic additive offset \(\Delta: \ x_1 = m_1 + \epsilon_1 + \Delta; \ x_2 = m_2 + \epsilon_2 + \Delta \)
 - where the \(\epsilon_i \) represent the random fluctuations
- Bayes law gives joint pdf for \(x \) and \(\Delta \)
 \[
p(x, \Delta | m) = p(m | x, \Delta) p(x) p(\Delta)
\]
 where priors \(p(x) \) is uniform and \(p(\Delta) \) assumed normal (\(\sigma_\Delta = 0.2 \))
- Writing \(p(x, \Delta | m) \propto \exp\{ -\phi \} \) and assuming normal distributions
 \[
 2\phi = \frac{(x_1 - m_1 - \Delta)^2}{\sigma_1^2} + \frac{(x_2 - m_2 - \Delta)^2}{\sigma_2^2} + \frac{\Delta^2}{\sigma_\Delta^2}
 \]
 where \(\sigma_1 = 0.1 \times m_1; \ \sigma_2 = 0.1 \times m_2; \ \sigma_\Delta = 0.2 \)
- Pdf for \(x \) obtained by integration: \(p(x | m) = \int p(x, \Delta | m) d\Delta \)
- This model equivalent to
 \[
p(x | m) \propto \exp\left\{ -\frac{1}{2} (x - m)^T C^{-1} (x - m) \right\}
 \]
Plausible experimental scenario

- Under what conditions is PPP result reasonable?
- Suppose that
 - measurements made in intervals shown
 - from experience with apparatus, we know background increases linearly in time
 - background subtraction for \(m_1 \) is 1.5 times larger than for \(m_2 \); leads to stated covariance matrix
- For this scenario, the additive model is appropriate, and the PPP solution, 0.88, is the correct answer
Probabilistic model for normalization error

- Represent common uncertainty in measurements by systematic error in normalization factor c: $cx = m_1 + \varepsilon_1$; $cx = m_2 + \varepsilon_2$
 - where the ε_i represent the random fluctuations
- Following same development as before, where prior $p(c)$ assumed normal with expected value of 1 and $\sigma_c = 0.2$
- Writing $p(cx, c \mid m) \propto \exp \{-\varphi\}$
 $$2\varphi = \frac{(cx - m_1)^2}{\sigma_1^2} + \frac{(cx - m_2)^2}{\sigma_2^2} + \frac{(c - 1)^2}{\sigma_c^2}$$
 - where $\sigma_1 = 0.1 \cdot m_1$; $\sigma_2 = 0.1 \cdot m_2$; $\sigma_c = 0.2$
- Divide $p(cx, c)$ by Jacobian $J = 1/c$ to get $p(x, c)$, which is a log-normal distribution
- $p(x)$ obtained by numerical integration: $p(x \mid m) = \int p(x, c \mid m) dc$
- This approach promoted by D. Smith (1991)
Probabilistic view of normalization error

- Consider the probability density function (pdf) for variables \(x = [x_1 \ x_2]^T \)

\[
\chi^2 = \left(\frac{cx_1 - m_1}{m_1 \rho_1} \right)^2 + \left(\frac{cx_2 - m_2}{m_2 \rho_2} \right)^2 + \left(\frac{c-1}{\sigma_c} \right)^2;
\]

\(\sigma_c = \rho_c; \)

where measurements are \(m = [1.5 \ 1.0]^T \)

- also, divide \(p(cx, c) \) by Jacobian \(J = 1/c \) to get \(p(x, c) \),

- for \(x = x_1 = x_2 \) (diagonal of 2D pdf), \(p(x|m) \) is not a simple normal distribution

- max at: \(x_{\text{max}} = 1.074 \)

- posterior mean and rmsd:

\[
x = 1.200 \pm 0.276
\]
Probabilistic model for normalization error

- Compare pdfs for two models for correlated effect:
 - A – additive offset
 - B – normalization factor
- Observe significant difference in two results
 - emphasizes need to know which kind of effect leads to correlation
- Probabilistic modeling is capable of handling a variety of known effects
But which model should we use?

- Ambiguity in specifying source of correlation leads to uncertainty about which model to use.
- Bayesian approach can handle model uncertainty
 \[p(x \mid m) = \int p(x, M \mid m) \, dM \]
 \[= \int p(x \mid m, M) \, p(M) \, dM \]
 \[= \frac{1}{2} p(x \mid m, M_1) + \frac{1}{2} p(x \mid m, M_2) \]
 for two equally likely models \(M_1 \) and \(M_2 \)
- Answer is average **both** pdfs!!
 \[x = 1.04 \pm 0.30 \]

solid black line is average of A and B
An alternative approach

- Devinder Sivia offers an variation on this approach
- Use data to help decide which model to use

\[p(x \mid m) = \sum_i p(x, M_i \mid m) \]

\[= \sum_i p(x \mid m, M_i) p(M_i \mid m) \]

\[= w_1 p(x \mid m, M_1) + w_2 p(x \mid m, M_2) \]

where \(w_i \) is proportional to the evidence integral for \(p(M_i \mid m) \)

- Answer is: \(x = 0.96 \pm 0.27 \)
- Comment: relative weights depend heavily on resp. priors; perhaps not a good situation

Conclusions

• PPP result is consistent with plausible experimental scenario
 ➤ in which correlated (systematic) error contributes additively to result
• Ambiguous statement of the PPP leads to other interpretations
 ➤ some of which yield more plausible answers
• Analysts need better information to analyze data without guessing

• Probabilistic modeling can cope with various known uncertainty effects
Conclusions

• **Experimenters – please provide measurement details**

• Some of the details needed:
 ► specify standard errors as precisely as possible, indicating where uncertainties in their assessment lie
 ► specify components in uncertainties and whether they are
 • independent, or correlated, e.g., systematic errors
 • given relative to measured quantities or inferred values
 • additive (background subtraction) or multiplicative (normalization)

• **Correlation matrix by itself is not enough**

• Another issue in PPP is inconsistency between two measurements: one can cope with this discrepancy by introducing notion that the true errors may differ from quoted errors, i.e., treatment of outliers
Monte Carlo techniques

Monte Carlo – represent pdf by a set of point samples
- Typically use MC to draw samples from posterior for parameters, which are fed into model to get prediction; **predictive distribution**
- Visualization of pdf, uncertainty
- Numerical calculations
 - estimation of mean, standard deviation, correlations
 - integration, marginalization
- Quasi-Monte Carlo – select points with more uniform distribution
 - provide more accurate estimates for fixed number of samples
 - often deterministic point sets
- Markov chain Monte Carlo
 - draw random samples for numerically-defined pdf
 - facilitates inference through numerical calculations
Voronoi analysis

- Voronoi diagram
 - partitions domain into polygons
 - points in ith Voronoi region are closest to ith generating point, x_i
 - boundaries often obtained by geometrical construction
- Monte Carlo technique for Voronoi analysis
 - randomly throw large number of points z_k into region
 - compute distance of each z_k to all generating points $\{x_i\}$
 - z_k belongs to Voronoi region of closest x_j
 - can compute volume, first moment, radial moments, identify neighbors, ...
- Readily extensible to high dimensions
Centroidal Voronoi Tessellation

- Plot shows 13 random points (·) and the centroids of their Voronoi regions (×)
- A point set is called a Centroidal Voronoi Tessellation (CVT) when the generating points \(z^j \) coincide with the centroids their Voronoi regions; a CVT minimizes
\[
\sum_j \int_{V_j} |z^j - x|^2 \, dx
\]
- Algorithm (McQueen)
 - start with arbitrary set of generating points
 - perform Voronoi analysis using Monte Carlo
 - move each generating point to its Voronoi centroid
 - iterate lasts two steps until convergence
- Final CVT points are uniformly distributed
CVT for multi-variate normal distribution

- CVT algorithm works for an arbitrary density function, e.g., a normal distribution
- In above MC algorithm for Voronoi analysis, simply draw random numbers from desired distribution
- Plots show starting random point set and final CVT set
- Radii of points are rescaled to achieve desired average variance along axes
- CVT points appear uniformly distributed within constraint of adhering to unit-variance normal distribution
- This kind of distribution may have benefits for MC calculations and visualizations
Sampling from correlated normal distribution

• Want to draw samples from multi-variate normal distribution with known covariance C_x

• Important to include correlations among uncertainties, i.e., off-diagonal elements

• Algorithm:
 ▶ perform eigenanalysis of covariance matrix of d dimensions
 \[C_x = U\Lambda U^T \]
 where U is orthogonal matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues
 ▶ draw d samples from uncorrelated unit-variance normal distr., ξ_i
 ▶ scale this vector by $\lambda_i^{1/2}$
 ▶ transform vector into parameter space using the eigenvector matrix
 ▶ to summarize, fluctuations are given by: $\Delta x = U\Lambda^{1/2}\xi$
Sampling from correlated normal distribution

Proof of algorithm:

- Want to draw samples from multi-variate normal distribution with specified covariance C_x

- Algorithm:

 fluctuations given by: $\Delta x = U \Lambda^{1/2} \xi$

 where ξ_i randomly drawn from uncorrelated normal pdf and U and Λ come from an eigenanalysis of C_x: $C_x = U \Lambda U^T$

 where U is orthogonal matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues

- Proof:

 Covariance of an ensemble of x vectors is

 $$C = \left\langle \Delta x \Delta x^T \right\rangle = \left\langle U \Lambda^{1/2} \xi \xi^T \Lambda^{1/2} U^T \right\rangle$$

 $$= U \Lambda^{1/2} \left\langle \xi \xi^T \right\rangle \Lambda^{1/2} U^T = U \Lambda U^T = C_x$$

 thus, the fluctuations Δx have the desired covariance
Neutron cross sections

- Plot shows
 - measured fission cross sections for neutrons on 239Pu; red data points
 - inferred cross sections; blue line
 - weighted average in 30 energy bins (groups); green histogram

- PARITSN code simulates neutron transport based on multigroup, discrete-ordinates method
 - uses 30 energy bins (groups)
 - calculates criticality for specified configuration of fissile-material
 - establish dependence of criticality experiment to cross sections
Neutron cross sections - uncertainties

- Analysis of measured cross sections yields a set of evaluated cross sections
- Uncertainties in evaluated cross sections are $\sim 1.4-2.4\%$
- Covariance matrix important
- Strong positive correlations caused by normalization uncertainties in each experiment

![Standard error in cross sections](image1)

![Correlation matrix](image2)
JEZEBEL – criticality experiment

- **JEZEBEL experiment (1950-60)**
 - fissile material 239Pu
 - measure neutron multiplication as function of separation of two hemispheres of material
 - summarize criticality with neutron multiplication factor, $k_{\text{eff}} = 0.9980 \pm 0.0019$
 - very accurate measurement

- Our goal – use highly accurate JEZEBEL measurement to improve our knowledge of 239Pu cross sections
JEZEBEL – sensitivity analysis

- PARITSN code calculates k_{eff} on basis of neutron cross sections
- Sensitivity of k_{eff} to cross sections found by perturbing cross section in each energy bin by 1% and observing increase in k_{eff}
- Observe that 1% increase in all cross sections results in 1% increase in k_{eff}, as expected
Bayesian update

- For data linearly related to the parameters, the Bayesian (aka Kalman) update for Gaussian distributions is

\[
C_1^{-1} x_1 = C_0^{-1} x_0 + S_y^T C_y^{-1} S_y (y - y_0)
\]

\[
C_1^{-1} = C_0^{-1} + S_y^T C_y^{-1} S_y
\]

- \(x_0\) and \(x_1\) are parameter vectors before and after update
- \(C_0\) and \(C_1\) are their covariance matrices
- \(y\) and \(C_y\) are the measured data vector and its covariance
- \(y_0\) is the value of \(y\) for \(x_0\)
- \(S_y\) is the matrix of the sensitivity of \(y\) to \(x\); \(\partial y / \partial x\)

- For the JEZEBEL case, \(y\) is a scalar (\(k_{\text{eff}}\)), \(C_y\) is a scalar (variance), and \(S_y\) is a vector
Updated cross sections

- Plot shows uncertainties in cross sections before and after using JEZEBEL measurement
- Modest reduction in uncertainties; follows energy dependence of sensitivity
- Correlation matrix is significantly altered
- Strong negative correlations introduced by integral constraint of matching JEZEBEL’s k_{eff}
 - reduction in uncertainties in future prediction depends on how closely its sensitivity matches JEZEBEL’s
Linear-response model – output uncertainty

• Assume outputs of a model are linearly related to perturbations in the inputs,
 \[\delta y = S_y^T \delta x \]
 where \(S_y \) is sensitivity matrix \(\frac{\partial y}{\partial x} \)

• The covariance in the output \(y \) is
 \[C_y = S_y^T C_x S_y \]
 when output \(y \) is a scalar,
 the covariance \(C_y \) is a scalar (variance),
 and \(S_y \) is a vector

• If linear model is sufficient and one knows \(S_y \), then predictive distribution is easily characterized

• For complex simulations, \(S_y \) is not usually known
Uncertainty in subsequent simulations

- Our goal is to use updated cross sections in new calculations
 - expect that integral constraint will reduce uncertainties
- Demonstrate usefulness of quasi-MC in form of CVT point sets by “predicting” k_{eff} measured in JEZEBEL
 - for this demo, assume linear model with known sensitivity vector
 - under this assumption, we can calculate exact answer and compare to MC-style sampling to obtain predictive distribution
- For a new physical scenario, we would not have sensitivity vector and would have to do full simulation calculation
 - thus, only a modest number of function evaluations can be done
Accuracy of predicted k_{eff} and its uncertainty

- Prediction based on liner model with known sensitivities
 - only 30 sample sets allowed for neutronics calc. because of time
 - check accuracy of predicted mean and standard deviation
- Conclude – CVT is more accurate than random sampling

Performance summary from 1000 runs, each with set of 30 sample vectors; ‘rot’ indicates single sample set randomly rotated to achieve each new one

<table>
<thead>
<tr>
<th></th>
<th>est. mean k_{eff} (avg.)</th>
<th>est. std. dev. k_{eff} (avg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rms dev.</td>
<td>rms dev.</td>
</tr>
<tr>
<td>random</td>
<td>0.99788</td>
<td>0.00037</td>
</tr>
<tr>
<td>random-rot</td>
<td>0.99824</td>
<td>0.00010</td>
</tr>
<tr>
<td>CVT-rot</td>
<td>0.99796</td>
<td>0.00001</td>
</tr>
<tr>
<td>exact-linear</td>
<td>0.99796</td>
<td>-</td>
</tr>
</tbody>
</table>
Summary

In this tutorial:

• Peelles’ pertinent puzzle
 ► impact on cross-section evaluation
 ► probabilistic modeling; additive and multiplicative systematic effects
 ► experimenters need to provide more than correlation matrices

• Monte Carlo
 ► generation of samples with specified covariance matrix
 ► quasi-Monte Carlo – more uniformly spaced points than random
 ► Centroidal Voronoi Tessellation (CVT) algorithm

• Bayesian updating of cross sections to include integral data
 ► JEZEBEL criticality experiment
 ► integral constraint results in negative correlations
 ► CVT point set improves prediction accuracy