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Goals of tutorials

My aim is to
« present overview of Bayesian and probabilistic modeling

* cover basic Bayesian methodology relevant to nuclear physics,
especially cross section evaluation

e point way to how to do it

e convince you that

» Bayesian analysis 1s a reasonable approach to coping with
measurement uncertainty

* Many thanks to my T-16 colleagues
» Gerry Hale, Toshihiko Kawano, Patrick Talou



Outline — four tutorials

1. Bayesian approach
probability — quantifies our degree of uncertainty
Bayes law and prior probabilities
2. Bayesian modeling
Peelle’s pertinent puzzle
Monte Carlo techniques; quasi-Monte Carlo
Bayesian update of cross sections using Jezebel criticality expt.

3. Bayesian data analysis

linear fits to data with Bayesian interpretation
uncertainty in experimental measurements; systematic errors
treatment of outliers, discrepant data

4. Bayesian calculations
Markov chain Monte Carlo technique
analysis of Rossi traces; alpha curve
background estimation in spectral data



Slides and bibliography

» These slides can be obtained by going to my public web page:
http://public.lanl.gov/kmh/talks/

* link to tutorial slides
« short bibliography relevant to topics covered in tutorial

« other presentations, which contain more detail about material presented here

» Noteworthy books:

* D. Sivia, Data Analysis: A Bayesian Tutorial (1996); lucid pedagogical
development of the Bayesian approach with an experimental physics slant

* D. L. Smith, Probability, Statistics, and Data Uncertainties in Nuclear
Science and Technology (1991); lots of good advice relevant to
cross-section evaluation

* G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Review,
(World Scientific, New Jersey, 2003); Bayesian philosophy

* A. Gelman et al., Bayesian Data Analysis (1995); statisticians’ view

 W.R. Gilks et al., Markov Chain Monte Carlo in Practice (1996); basic
MCMC text 5



Uncertainty quantification

We need to know uncertainty in data:

To determine agreement among data, or between data and theory

Inference about validity of models requires knowing degree of
uncertainty
We typically assume uncertainty described by a Gaussian pdf
» often a good approximation
» width of Gaussian characterized by its standard deviation ¢
» o provides the metric for uncertainty about data

. . . . . ]
» when combining measurements, weight by inverse variance o

Nomenclature — uncertainty or error?
» error — state of believing what 1s incorrect; wrong belief; mistake
» uncertainty — lack of certainty, sureness; vagueness

» uncertainty analysis seems to convey appropriate meaning 6



History of particle-properties measurements

Plots show histories of two
“constants” of fundamental particles

Mass of W boson

» logically ordered history

» all within error bar wrt last (best?)
measurement

Neutron lifetime
» disturbing history
» periodic jumps with periods of
extreme agreement

» most earlier measurements disagree
with latest ones

» plot demonstrates possible
sociological and psychological
aspects of experimental physics
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Neutron fission cross section data for 23°Pu

Graph shows 16 measurements

of fission cross-section for
239Py at 14.7 MeV

Data exhibit fair amount of
scatter

Quoted error bars get smaller
with time

Minimum X2 = 44.6, p = 10
indicates a problem

» dispersion of data larger than
quoted error bars

» outliers?; three data contribute
24 to X2, more than half

239Pu, 14.7 Mev
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Neutron fission cross-section data

243Am fission
Cross section

Fission Cross Section (b)

Neutron Energy (MeV)
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plot from P. Talou

* Neutron cross sections measured by many experimenters

>

>

>

>

sometimes data sets differ significantly

often little information about uncertainties, esp. systematic errors

many directly measure ratios of cross sections, e.g., *Am/ >>°U

a thorough analysis must go back to original data and consider all

discrepancies
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Bayesian analysis of experimental data

« Bayesian approach

>

focus 1s as much on uncertainties in parameters as on their best
(estimated) value

provides means for coping with Uncertainty Quantification (UQ)
quantitative support of scientific method

use of prior knowledge, e.g., previous experiments, modeling
expertise, subjective

experiments should provide decisive information
model-based analysis

model checking —
does model agree with experimental evidence?

» Goal is to estimate model parameters and their uncertainties

10



Bayesian approach to model-based analysis

* Models
» used to describe and analyze physical world
» parameters inferred from data

* Bayesian analysis

» uncertainties in parameters described by probability density
functions (pdf)

» prior knowledge about situation may be incorporated

» quantitatively and logically consistent methodology for making
inferences about models

» open-ended approach
 can incorporate new data
 can extend models and choose between alternatives

11



Bayesian approach to model-based analysis

« Bayesian formalism provides framework for modeling
» choice of model is up to analyst (as in any analysis)
» many ways to do it

» calling an analysis Bayesian does not distinguish it

« Because it is a Bayesian analysis does not necessarily mean 1t
1s a good analysis; 1t can also be bad or mnappropriate

12



Uncertainties and probabilities

Uncertainties 1in parameters are
characterized by probability density

functions (pdf) Probability density function

Probability interpreted as quantitative
measure of “degree of belief”

This interpretation 1s referred to as
“subjective probability”

Probability
density

» different for different people with
different knowledge

, , Parameter value
» changes with time

» 1n science, we seek consensus, avoid bias

Rules of classical probability theory apply

» provides firm foundation with mathematical

rigor and consistency s



Subjective probability can be quantitative

Example — coin toss

Hypothesis: for a specific coin,
fraction of tosses that come up

heads = 50%

Hypothesis seems so reasonable
that you might believe 1t 1s true

On basis of this subjective
probability, you might be willing
to bet with 1:1 odds

Before any tosses, you might have
a prior as shown

After 50 tosses, you would know
better whether coin 1s fair

Relative probability

After 50 tosses

0.5
Fraction heads
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Coherent bet quantifies subjective probability

A property of the Gaussian distribution 1s that random draws from
it will fall inside the interval from -6 to +6¢ 68% of time

Suppose, on basis of what you know, you specify the standard
error 6 of your measurement of a quantity, assuming Gaussian

If you truly believe 1n the value of 6 you have assigned, you should
be willing to accept a bet, randomly chosen between two options:

» 2:1 bet that a much more accurate measurement would differ from
your measured value by less than one ¢

» OR 1:2 bet that a much more accurate measurement would differ
from your measured value by more than one ¢

Y our willingness to take bet either way makes this a coherent bet
As physicists, we should make honest effort to assign uncertainties
in this spirit, and communicate what we have done

15



Rules of probability

Continuous variable x; p(x) 1s a probability density function (pdf)
Normalization: [ p(x)dx =1
Decomposition of joint distribution into conditional distribution:

p(x,y)=p(x|y)p(y)

where p(x|y) is conditional pdf (probability of x given y)
» if p(x|y)= p(x), xis independent of y

Bayes law follows:

p(x|y)p(y)

p(x)

p(y|x)=

Marginalization:
p(x)= [ p(x.y)dy = [ p(x] ») p(»)dy

1s probability of x, without regard for y (nuisance parameter) 16



Rules of probability

* Change of variables: 1f X transformed into z, z = f(X), the pdf in
terms of Z 1s

p(2)=]3] "' p(x)

where J 1s the Jacobian matrix for the transformation:

( Oz, Oz, )
J=| : .
0z, 0z,

\a_x3 @_xw




Bayesian analysis of experimental data

« Bayesrule dla,/)p@all
ald.n_ P@laD p@lD

>

p(d|7)
where

d is the vector of measured data values
a 1s the vector of parameters for model that predicts the data

p(d | a, I) is called the likelihood (of the data given the true model
and 1ts parameters)

p(a|l)is called the prior (on the parameters a)

p(a| d, I) is called the posterior — fully describes final uncertainty
in the parameters

I stands for whatever background information we have
about the situation, results from previous experience,
our expertise, and the model used

denominator provides normalization: P(d)= [ p(d |a) p(a)da
1.e., 1s integral of numerator 18



Auxiliary information — /

All relevant information about the situation may be brought to bear:
e Details of experiment

» laboratory set up, experiment techniques, equipment used

more

subjective

» potential for experimental technique to lead to mistakes
» expertise of experimenters

» Relationship between measurements and theoretical model
« History of kind of experiment

« Appropriate statistical models for likelithood and prior

e Experience and expertise

* We usually leave [ out of our formulas, but keep 1t in mind

19



Likelithood

Form of the likelihood p(d |a, /) depends on how we model the
uncertainties in the measurements d

Choose pdf that appropriately describes uncertainties in data
» Gaussian — good generic choice
» Poisson — counting experiments
» Binomial — binary measurements (coin toss ...)

Outliers exist

» likelithood should have a long tail, 1.e., there is some probability of
large fluctuation

Systematic errors
» caused by effects common to many (all) measurements

» model by introducing variable that affects many (all)
measurements; then marginalize it out

20



Priors

Noncommittal prior
» uniform pdf; p(0) = const. when 0 1s offset parameter
» uniform in log(0); p(log 0) = const. when 0 is scale parameter
» choose pdf with maximum entropy, subject to known constraints
Physical principles
» Cross sections are nonnegative = p(0) =0 when 6 <0
» 1nvariance arguments, symmetries
Previous experiments
» use posterior from previous measurements for prior
» Bayesian updating
Expertise
» elicit pdfs from experts in the field, avoiding common info sources

» elicitation, an established discipline, may be useful in physical
sciences 21



Priors

e Conjugate priors

|

for many forms of likelihood, there exist companion priors that
make 1t easy to integrate over the variables

these priors facilitate analytic solutions for posterior

example: for the Poisson likelithood in n» and A, the conjugate prior
1s a Gamma distribution in A with parameters a and 3, which
determine the position and width of the prior

conjugate priors can be useful and their parameters can often be
chosen to create a prior close to what the analyst has in mind

however, 1n the context of numerical solution of complicated
overall models, they loose their appeal

22



Posterior

» Posterior p(a | d, 1)
» net result of a Bayesian analysis
» summarizes our state of knowledge
» 1t provides fully quantitative description of uncertainties

» usual practice 1s to characterize posterior in terms of an
estimated value of the variables and their variance

 Visualization

» difficult to visualize directly because it 1s a density
distribution of many variables (dimensions)

» Monte Carlo allows us to visualize the posterior through 1t
effect on the model that has been used 1n the analysis

23



Visualization of uncertainties

Visualization plays an important role in developing an
understanding of a model and communicating its consequences

Monte Carlo 1s often a good choice — choose sets of
parameters from their uncertainty distribution and visualize
corresponding outputs from the model

Random sampling from posterior 1s typically done

Quasi-random sampling 1s noteworthy alternative; it provides
more uniform sets of samples

24



Probability in weather forecasting

* Metrological forecast for Oct. 30, 2003 for Casper, Wyoming

« 22 predictions of 564 line (500 mb) obtained by varying input
conditions; indicate plausible outcomes

* Density of lines conveys certainty/probability of winter storms

7 days

ahead . X = I'. Low-pressure ahead

564 line; predictive Computer
projections

of winter storms of 564 line

4 days
ahead

what happened?
20-inches of snow!

National Geographic,
June 2005
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Posterior — quantitative results

« Quantitative results are obtained by characterizing the posterior:

X= <x> = jxp(x)dx

* mean minimizes quadratic cost function

» mean (first moment):

» maximum (peak position); same as mean 1f pdf symmetric

» standard deviation (second moment): 5 — \/ J' ( X — < x>)2 p(x)dx
e standard error

» covariance matrix:  cov(x,y)=C _ = I(x— <x>)( y— < y>) p(x,y)dxdy
e correlation matrix: corr(x, y) = ny = O'jy /o, o,
» credible (confidence) interval, e.g., 95% credible interval
* Means for estimating these include:
» can use calculus 1f posterior 1s in convenient analytic form
» second-order approximation around peak (numerical)

» Monte Carlo (numerical) 26



Higher-order inference

* One can make inferences about models, not just parameters

e The posterior for a model 1s
p(M |d)= [ p(a,M |d)da= p(a,M |d)da

OC:p(d a,M) p(a,M)da

=p(M)| p(d]a,M)p(a|M)da
» the final integral is the normalizing denominator 1n original
Bayes law for p(a|d); it is called the evidence

» while the evidence 1s not needed for parameter inference, it
is required for model inference

» May be used for model selection, e.g., deciding between two or
more models

» €.g2., how many terms to include 1n a functional analysis -



Summary

In this tutorial:

* Need for uncertainty quantification

* Bayesian fundamentals

>

>

>

subjective probability, nevertheless quantifiable
Bayesian use of probability theory

posterior sampling

visualization of uncertainties — Monte Carlo

higher-order inference
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