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Tomographic reconstruction using 3D deformable models
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Abstract. We address the issue of reconstructing the shape of an object with uniform interior
activity from a set of projections. We estimate directly from projection data the position of a
triangulated surface describing the boundary of the object while incorporating prior knowledge
about the unknown shape. This inverse problem is addressed in a Bayesian framework using
the maximuma posteriori (MAP) estimate for the reconstruction. The derivatives needed
for the gradient-based optimization of the model parameters are obtained using the adjoint
differentiation technique. We present results from a numerical simulation of a dynamic cardiac
imaging study. A first-pass exam is simulated with a numerical phantom of the right ventricle
using the measured system response of the University of Arizona FASTSPECT imager, which
consists of 24 detectors. We demonstrate the usefulness of our approach by reconstructing the
shape of the ventricle from 10000 counts. The comparison with an ML-EM result shows the
usefulness of the deformable model approach.

1. Introduction

The present work represents a natural progression of efforts to use geometric models to
perform tomographic reconstruction. These efforts started with the use of simple shapes
(Rossi and Willsky 1984) to interpret projection data, which were extended to deal with
more complicated three-dimensional shapes (Bresler and Macovski 1987, Bzeslér
1989). Deformable models, which are commonly used in medical imaging for tasks such
as segmentation and restoration (Staib and Duncan 1996), have also been used to solve ill-
posed tomographic reconstruction problems (Hanson 1993a, b, €h#dd994). Bayesian
methods can substantially improve the accuracy of the reconstructions obtained from limited
data by making use of prior knowledge concerning the geometrical shape of the object.
Hansonet al (1994), Hanson and Cunningham (1996a,b) and Cunningbtiral
(19944, b) have developed a framework in which such analysis can be easily conducted. The
Bayes inference engine (BIE) is a flexible modelling tool that allows one to interactively
define models of radiographic measurement systems and geometric models of objects. Based
on an object-oriented design, the BIE allows one to create a measurement model, define a
geometric description of the object, and optimize a likelihood or posterior with respect to the
user-selected parametrization. This optimization problem would be intractable without the
knowledge of the gradient of the posterior. Adjoint differentiation (Hanson and Cunningham
1996a) addresses this issue in a very efficient and elegant way.
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We illustrate these methods by reconstructing the shape of an object of uniform
interior activity from a set of projections. We recall the principles of Bayesian analysis
and present the specific characteristics of this 3D problem, as well as the principles of
adjoint differentiation. We discuss the choice of an appropriate model and a meaningful
prior, as well as the appropriate likelihood function. Based on the results of a numerical
simulation, we show the value of this approach in the context of single photon emission
computed tomography (SPECT) dynamic cardiac imaging. The results of the reconstructions
from simulated first-pass data show the advantages of the method in high-noise situations
compared with a reconstruction from a classical activity-based method, specifically the
ML-EM algorithm.

2. Bayesian approach

The Bayesian method is a model-based approach to analysis in which prior knowledge is
integrated with measurements. Given some ditéhe probability of an hypothesis is
given by Bayes'’s law:

P(d|x) P(x)

P(x|d) = P (1)
whereP (x|d) denotes the posterior probabilit®(d|x) the likelihood of the datd given the
hypothesist, and P (x) the prior probability ofx. The denominatoP(d) is the integral of
the numerator over, which properly normalizes the posterior. The maximarposteriori
(MAP) estimate is the value of that maximizesP(x|d). Maximizing the posterior is
equivalent to minimizing the minus-log-posterior function:

px) =—InP(x|d) = —In P(d|x) — In P(x) + constant (2)

keeping only the terms that depend on the optimized variable

Here we reconstruct the shape of an unknown object from a set of projections. The
unknown shape is represented by a geometrical model, which constitutes our hypothesis.
The simulation of the measurement process produces the predicted data. The comparison
of the predicted data with the actual data gives the likelihood of our hypothesis. Prior
knowledge is incorporated as another function of the hypothesis to produce the posterior
function. An optimization procedure yields the MAP estimate parameters specifying the
surface position. In the following sections we discuss these aspects in more detail.

2.1. Object model

We focus on objects of uniform interior activity for which the shape is of interest. We
therefore wish to represent the shape of the external surface of the object rather than the
full volume. There are numerous ways to represent a 2D surface in 3D space. We choose
to represent the objects by a closed, finely divided triangulated surface enclosing a region
of uniform activity.

The simplicity of the triangulated surface model has several advantages. By increasing
the resolution (by increasing the number of vertices), one can represent almost any surface,
even the most contorted. We emphasize that no smoothness constraint is embedded in such
a model. From a Bayesian modelling perspective, a representation that is free of constraints
is desirable because it allows one to apply constraints explicitly in terms of the prior on the
surface (Hansoet al 1997a, b).

As an alternative surface description, spline surfaces can represent a smooth surface with
relatively few parameters. However, they do so only because their surfaces are controlled
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by a fairly strong smoothness constraint. The disadvantage of such descriptions is that they
effectively replace the smoothness control on the surface that can be specified with a prior.
One is then stuck with only a limited means of altering the smoothness of the surface.
Another disadvantage of splines is that the degree of smoothness can only be controlled in
a discrete way, for example, by changing the order of the interpolating polynomial (Hanson
et al 1997Db).

The triangulated surface is not only very flexible, but also the simplest kind of surface
model. As a consequence, the algorithms developed for this structure remain fairly simple,
which is important for adjoint differentiation discussed in section 3.

2.2. Likelihood

In nuclear medicine the number of gamma rays detected in each detector pixel generally
follow a Poisson probability distribution. However, the likelihood for the corrected data
from actual emission scanners is much more complicated than a simple Poisson distribution
(Fessler 1994). For the present purposes we choose to use one-half of a weighted chi-squared
for the minus-log-likelihood

(n; — A;)?

—InPd|x) = Z 5t D) (3)

wheren; is the measured number of counts in ilile detector pixel and; is the expected
number (not necessarily an integer). The sum is over all detector pixels. Essentially, we
are setting the variance 19 + 1, instead of the actual variance of the Poisson distribution,
n;. This expression roughly approximates the Poisson distribution, but more importantly,
it can provide a chi-squared approximation for any minus-log-likelihood distribution by
adjusting the denominator to match the expected variance. The BIE can handle the Poisson
distribution just as well.

The predicted number of counts is obtained by converting the surface description to
a voxelated grid in which each voxel value represents its activity. The system projection
matrix is then used to calculate the expected number of counts in the gamma-ray detectors.

2.3. Prior

The intended application is the reconstruction of the shape of the blood pool within the
heart. In dynamic SPECT the magnitude of the noise implied by the small nhumber of
counts expected in each time frame will significantly degrade the quality of the projection
data. Without regularization the reconstructions are expected to be jagged and spiky. We
therefore incorporate prior knowledge about the expected degree of smoothness of the
reconstructed shape under the assumption that the walls of the heart are fairly smooth.

A good measure of the smoothness of a continuous curve in two dimensions is given
by the integral of the curvature squared along the curve. This integral can be reasonably
approximated for a polygon (Hansat al 1996, 1997a,b). The generalization of this
approach to surfaces in 3D is not straightforward because of the tensorial nature of the
curvature. However, as a first approximation, we use a measure of the smoothness of the
triangulated surface based on comparing the directions of normals of neighbouring triangles.
The expression we use for the minus-log-prior is

—InPkx) = % Y5 ) tar (%’) 4)

ieT jeN(i)
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where T denotes the set of all triangled] (i) denotes the set of the neighbours of the
triangle of indexi, 6; ; denotes the angle between the normals of triangles of indieesl

j, S; is the area of the triangle of indeéxandS is the total surface area. The coefficient
regulates the strength of the prior relative to the likelihood. Since the MAP solution strikes
a balance between the likehood and the priohas a considerable influence on the MAP
reconstruction.

3. Adjoint differentiation

3.1. Motivation

The MAP estimate is found by minimizing the minus-log-posterioin equation (2), with
respect to the parameters that determine the shape of the object, namely the positions of
the vertices of the triangles. For the sake of efficiency, it is desirable to employ gradient-
based methods in this minimization. Therefore, the derivativeg ofith respect to the

model parameters must be computed. Since the models considered involve many thousands
of parameters, a quick way to compute the derivatives okith respect to the model
parameters is required. Adjoint differentiation addresses this issue in a very efficient way
(Hanson and Cunningham 1996a).

3.2. Principle

Consider a sequence of transformatioas,B, andC, that transform a parameter vecter
into a scalary:

:B}i>yli>ZIi>(p (5)

wherey and z are intermediate data structures. One wants to compute the derivatiyes of
with respect to the; in a computationally efficient way. The chain rule for differentiation
gives the derivatives ap with respect tax;:

0@ dp 0zx Ay;
P Dt (6)
Xi I 8Zk ayj E)xi

The essence of adjoint differentiation is to perform the sum on the indices in equation (6)
in the reverse order from that used in the forward calculation. By doing the sunbefore
that onj, sequence (5) is reversed:

e e a B @)
0z Yy ox

where I is the identity vector and¢/dy denotes the gradient vector g¢f wrt y. The
intermediate data structures in sequence (7) are vectors, similar to the ones in (5). For each
forward transformation, an adjoint counterpart exists.

The details of the implementation of adjoint differentiation for the underlying algorithm
required for the present problem may be found in the paper by Besitté (1997).

4. Results

To demonstrate the effectiveness of the approach, we reconstruct the shape of a computer
model of a right ventricle from numerically simulated data. In the context of a first-pass
exam, the radioisotope density in the blood pool in the right ventricle can be considered as
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homogeneous. The ventricle can therefore be represented as an object with uniform interior
activity. The simulation is based on the University of Arizona FASTSPECT imaging system
(Klein et al 1995). This system consists of 24 pinhole gamma-ray cameras surrounding the
volume being imaged. Each camera has a resolution of 64 by 64 pixels. The system
response of the scanner has been measured by moving a source the size of one voxel,
(2 mmY, through the active volume and recording the response of each of the 24 detector
planes. The size of the voxel grid is 489x 37.

(a) (b) ()

Figure 1. The original object, a numerical phantom representing the right vent@glend
reconstructions obtained for = 6 (b) anda = 10 (¢).

We use a numerical model of the right ventricle as our object of study. The phantom,
shown in figure 1, consists of a very finely triangulated surface containing 30 048 triangles
and 15026 vertices. We simulate a single 50 ms frame from a dynamic study with a total
of 10000 counts in all 24 detectors using a Poisson distribution. Such a low-count situation
is expected for a single frame of an actual dynamic first-pass exam. Figure 2 shows two of
the 24 projections. The number of counts per pixel varies from 0 to 9, with an average of
0.5. The reconstruction task is to determine the position of the ventricle surface from the
measured emission data. The surface determination may be used to estimate the volume of
the ventricle. In a dynamic exam, the surface position versus time may provide even more
useful diagnostic information concerning cardiac function.

The reconstruction is obtained by deforming a surface to minimize the minus-log-
posterior. Starting with a triangulated sphere containing 2562 vertices and 5120 triangles,
the positions of the vertices of the triangles and the magnitude of the uniform interior activity
are varied. The MAP estimate is obtained in about 50 global iterations (line searches) of
a variable metric optimization technique (Dennis and Schnabel 1983). Figure 1 shows
reconstructions obtained for various valuesxofObviously, the choice ok influences the
smoothness of the reconstruction.

Figure 3 shows contours obtained by slicing the phantom and the reconstruction in an
arbitrary plane. Again, we notice the influence of the choicexain the reconstruction.

The maximum error on the position of the surface has approximately the width of a voxel
(i.e. 2 mm). The total volume of the reconstructed objectofet 8 is within 6% of that of
the original phantom.

Figure 3 also shows a slice through the estimated activity of an ML-EM reconstruction
(Shepp and Vardi 1982) after 30 iterations. This ML-EM result compares well visually
with our estimated contours. The voxels at the edge of the ventricle in this activity-based
reconstruction contain reduced activity. Because of this effect and the rather large size of
the voxels, it is difficult to estimate the position of the boundary of the blood pool from this
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Figure 2. Simulated projection data for two of the 24 detectors.

(a) Q)

() (d)

Figure 3. Slices through the original and the reconstructions (wider linexfer6 (@), « = 8
(b), « = 10 (c), and the ML-EM reconstructiord].
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ML-EM result. Thus, we find it difficult to make a direct quantitative comparison between
our results and those obtained by the conventional ML-EM algorithm. One benefit of our
surface representation is that it provides subvoxel localization, although such accuracy is
perhaps not achieved in this low-count simulation.

5. Discussion

This work illustrates how deformable models can be used to solve ill-posed, three-
dimensional tomographic reconstruction problems. The results demonstrate the usefulness
of deformable models within the context of the Bayesian approach.

The potential complexity of geometric shapes implies the existence of multiple local
minima in the minus-log-posterior functional that we employ here. Therefore, the surface
model must be properly initialized to obtain a sensible reconstruction. There are several
approaches to overcoming this problem. One approach, applicable to clinical situations, is
to start with a generic model that describes an ‘average’ patient. An alternative general and
robust method that works well for relatively simple scenes is to employ a multiresolution
optimization. One starts by optimizing the geometric shape at coarse resolution, realized
by blurring the intermediate voxel representation. Then one proceeds to optimize at finer
and finer resolutions (Cunninghaat al 1996). In any case, whatever method is employed
for overcoming the initialization problem, it must be thoroughly tested on clinical data to
verify its efficacy.

Potential complications that might arise in analysing real data include non-uniform
interior activity, the presence of activity outside the ventricle, and scatter background. An
advantage of our model-based approach is that it can readily accommodate deviations from
the simplifying assumptions that we have made in our analysis. For example, if the blood
pool activity is non-uniform, our model can be augmented to include non-uniform activities
inside the ventricle surface. Similarly, the presence of activity outside the ventricle or
contributions from scatter can be handled by extending the model. The flexibility built into
the BIE makes it easy to alter the analysis models.

Many issues need further attention. The selection of the strength of the prior is a crucial
issue and an automatic selection of it from the data is currently being investigated. A prior
penalizing high values of the derivative of the curvature rather than the curvature itself
seems desirable. The reconstruction of a real object, such as a CardioWest total artificial
heart, from actual data taken at the University of Arizona will better validate the approach.
Time-evolving problems will also be addressed in the future.
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