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Abstract

Deformable geometric models fit very naturally into
the context of Bayesian analysis. The prior proba-
bility of boundary shapes is taken to proportional to
the negative exponential of the deformation energy
used to control the boundary. This probabilistic in-
terpretation is demonstrated using a Markov-Chain
Monte-Carlo (MCMC) technique, which permits one
to generate configurations that populate the prior. One
of many uses for deformable models is to solve ill-
posed tomographic reconstruction problems, which we
demonstrate by reconstructing a two-dimensional ob-
ject from two orthogonal noisy projections. We show
how MCMC samples drawn from the posterior can be
used to estimate uncertainties in the location of the
edge of the reconstructed object.

1. Introduction

Deformable models fit particularly well into the
framework of Bayesian analysis. The smoothness of
deformable models is typically controlled by means of
a deformation energy function that provides a measure
of deviation from smoothness [1]. In the context of
Bayesian analysis, the probability of the correspond-
ing geometric configuration is taken to be the negative
exponential of this energy function [2]. We will em-
phasize this interpretation by showing a set of random
samples of boundary configurations taken from a prior
probability based on a typical form for the deforma-
tion energy. These samples are generated using the
Markov Chain Monte Carlo (MCMC) technique.

This paper deals with the assessment of uncertain-
ties in estimated models, a capability greatly assisted
by the use of Bayesian analysis. The general method
we employ here is to generate a sequence of random
samples of the posterior probability distribution us-
ing MCMC. By fully mimicking the posterior, this se-
quence of samples can be used to assess the uncer-
tainties in estimated models. As an example of the
usefulness of this technique, we consider a problem of
reconstructing an object from projections in two di-

rections under the assumption of a known, constant
interior density. In the analysis, the boundary of the
reconstructed objects are subject to a prior that pro-
motes smoothness. We show how samples from the
posterior can be used to estimate uncertainties in the
location of the boundary of the reconstructed object.

2. Bayesian Analysis

Bayesian analysis is a model-based approach to an-
alyzing data with a strong emphasis placed on uncer-
tainty assessment. Every aspect of modeling is as-
signed a probability that indicates our degree of cer-
tainty in its value. At the lowest level of analysis,
the estimation of the values of parameters for a spec-
ified model, a probability density function (PDF) is
associated with each continuous parameter. Loosely
speaking, the range of a probability distribution in-
dicates the possible range of its associated parame-
ter. The benefit of Bayesian analysis over traditional
methods of uncertainty, or error, analysis is that it per-
mits the use of arbitrary probability distributions, not
just Gaussian distributions, and of arbitrary measures
of uncertainty, not just rms deviation (or variance).
Bayesian analysis reveals the use of prior knowledge
and assumptions, which other kinds of analysis incor-
porate, but do not always make explicit. Furthermore,
it extends analysis to higher levels of interpretation,
e.g., the choice of the strength of the priors used, the
rejection of any particular model, and the selection of
appropriate models [3-5].

Before conducting an experiment, one starts with
some knowledge about the physical object being stud-
ied. In addition one often has a model for the object,
with associated parameters x, that will be used to
analyze the experimental results. In Bayesian anal-
ysis, the uncertainties in what is known beforehand
are expressed in terms of a PDF on the parameters,
p(x), called the prior. This prior knowledge can come
from previous measurements, specific information re-
garding the object itself, or simply general knowledge
about the parameters, e.g., that they are nonnegative.



With the experimental data in hand, the prior is mod-
ified to yield the posterior, which is the PDF p(x|d) of
the parameters given the observed data d, using Bayes
law

p(x|d) o< p(d[x) p(x) - (1)

The probability p(d|x), called the likelihood, comes
from a comparison of the actual data to the data pre-
dicted on the basis of the model of the object. The
predicted data are generated using a model for how
the measurements are related to the object, which we
call the measurement model. Under the assumption
that the data are degraded by uncorrelated and ad-
ditive Gaussian noise, it is appropriate to use the ex-
ponential of —4x? for the likelihood. As usual, x?
is the mean squared difference between the actual and
the predicted measurements divided by the variance of
the measurements. The typical analysis consists of es-
timating the “best” model to explain the data. Often
the model that maximizes the posterior, referred to as
the maximum a posteriori (MAP) estimate is found,
although other estimators can be argued to be more
appropriate in some circumstances. While an estimate
of the best model is the objective of many analyses, it
is only the beginning for the true Bayesian.

The present study is carried out using the Bayes
Inference Engine (BIE). We developed the BIE [6] to
allow one to easily develop complex models for both
the objects under study and the measurement process.

2.1. Geometric Boundary Model

Here we use a deformable model to represent the
boundary of the object to be reconstructed. The ob-
ject’s boundary is approximated in discrete terms as
a finely-divided polygon. The length of the edges of
the polygon can be made short enough to adequately
describe a curve at any degree of resolution desired.

A smoothness constraint on the boundary is
achieved by placing a prior on the curvature of the
boundary. The minus-log-prior is taken to be propor-
tional to [ x%(s) ds, where k(s) is the curvature of the
curve as a function of the arclength along the curve
s. This prior serves to keep the curve smooth because
large curvature is penalized. This form for a prior
has a physical analog in the formula that describes
the potential energy created by bending a stiff rod.
To achieve a prior that is related to the shape of the
curve, not its size, we multiply the integral by the total
arclength of the boundary. From the Bayesian point of
view, the prior is interpreted probabilistically. A spe-
cific probability is assigned to every closed boundary,
which ranks boundary shapes according to their plau-
sibility. This probability expresses the uncertainty

about the possible shapes of the object that we have
before we take data.

For our discrete polygon model, we replace the in-
tegral by a sum of contributions associated with each
vertex in combination with half of each neighboring
edge of the polygon. We use for the minus-log-prior a
discrete approximation to the expression

@&/m/ﬁ@@. (2)

The factor of (27r) =2 is included to normalize the result
to unity for a circle when @ = 1. The parameter «
determines the strength of the prior relative to the
likelihood. The form of Eq. (2) is such that for equal-
sided polygons it is independent of the length of the
sides as the length goes to zero. In addition to the
smoothness constraint, we find it useful to control the
lengths of the sides of the polygon. This control is
accomplished in this study by adding to the above
minus-log-prior an expression that is quadratic in the
deviation of each side of the polygon relative to the
average side length. Further details can be found in
Ref. [7].

3. Markov Chain Monte Carlo

In Bayesian analysis there is often the need to inte-
grate over the posterior. One way to do that is to use
a Monte Carlo technique, i.e. draw random samples
from the posterior, The Markov Chain Monte Carlo
(MCMC) technique provides a means to sample an
arbitrary probability density function (PDF).

A Markov chain is a sequence of states in which
the probability of each state depends only on the pre-
vious state. In MCMC the objective is to generate
a sequence of parameter sets that mimic a specified
PDF, let’s call it g(x), where x is a vector of param-
eters in the relevant parameter space. More precisely,
it is desired that the MCMC sequence be in statis-
tical equilibrium with the target PDF ¢(x), which is
achieved when the MCMC sequence is marked by the
condition of detailed balance:

(x)T(x = x') =q(x) T(x' - x) , (3)

where T'(x — x') is the transition probability for step-
ping from x to x’. This equation essentially requires
that in a very long sequence the number of steps from
x to x’ is identical to the number from x’ to x. For
more information about MCMC, the reader is referred
to the excellent book edited by Gilks et al. [8], which
represents the best available compendium on MCMC.

A desirable attribute of MCMC is that there are
generally no restrictions on the types of PDFs that



Figure 1: The original 2D object used in the example.

can be sampled; no functional form for the PDF is
required. In its basic form, MCMC only requires that
one be able to calculate ¢ = —log (posterior), although
sometimes the gradient of ¢ is used.

3.1. Metropolis Algorithm

One of the simplest algorithms used in MCMC cal-
culations is due to Metropolis et al. [9] This algorithm
ensures detailed balance (3) for each step in the se-
quence. One starts at an arbitrary point in the vector
space to be sampled, xg. The general recursion at any
point in the sequence x;, is as follows:

(1) Pick a new trial sample x* = x;, + Ax,

where Ax is randomly chosen from a symmetric
probability distribution

(2) Calculate the ratio r = q(x*)/q(xx)

(3) Accept the trial sample, that is, set xx41 = x*,

if r>1,
or with probability r, if r < 1,
otherwise don’t accept step; set xpy1 = Xk

Repeat steps (1-3) until sequence is long enough.

4. Example: Uncertainty in a Tomo-

graphic Reconstruction

We demonstrate the usefulness of deformable mod-
els and the versatility of the MCMC technique with
an example of tomographic reconstruction from just
two views. This problem is an extraordinarily diffi-
cult inverse problem. Its solution is made feasible by
employing the prior information that the object being
reconstructed has constant density and consists of a

fairly simple shape with smooth boundaries. Figure 1
displays the object devised for this example. It is fash-
ioned to be representative of a lumen, the cross section
of an artery, possessing a sizable occlusion. The cal-
culations here are based on images with a full width
of 128x128 pixels, arbitrarily set to a size of 4 mm x
4 mm. For better visualization, all the images shown
here display just the central 2.5 mm x 2.5 mm region.
To give the scale of the images, the width and height
of the object are roughly 64 pixels, or about 2 mm.
Two orthogonal views of the object shown in Fig. 1
are generated, one consisting of the vertical projection
and the other of the horizontal. Each projection con-
sists of 128 samples over a distance of 4 mm. Gaussian
noise is added to these projections with an rms devia-
tion of 5% of the peak projection amplitude. For this
simulation, we ignore blur in the measurement system.

4.1. MAP Reconstruction

For reconstruction the object is modeled in terms of
a finely-divided polygon filled with a constant density,
which we assume is known beforehand. The polygon
has 50 sides to approximate a continuous curve. The
parameters in the model consist of the z and y val-
ues of the 50 vertices. The —log(posterior) for this
problem is the sum of —log(likelihood) = 4x? and the
~log(prior) contributions given in Eq. (2) and the prior
of side length. However, the strength of the prior, i.e.
« in Eq. (2), must be specified. Ideally, the hyperpa-
rameter « that is consistent with the data would be
calculated utilizing the next higher level of Bayesian
inference [3]. As we are not yet equipped to do that
in the BIE, we tried several values for o and selected
what seemed to be an appropriate value, a = 5.0.

The MAP reconstruction is obtained by using the
BIE to find the minimum in ¢ = —log (posterior)
with respect to the 100 variables specifying the poly-
gon model. The BIE accomplishes this in an efficient
manner through the use of the Adjoint Differentia-
tion In Code Technique (ADICT) [10] to calculate the
gradient of ¢ with respect to the variables. The ini-
tial object is taken to be a circle of diameter 1.6 mm
= 51 pixels, for which $x? = 396.15 and —log(prior)
= 7.88. At the minimum in ¢, these values are 4x?

= 119.16, and —log(prior) = 18.24. The resulting re-
constructed object compares reasonably well with the
original, as shown in Fig. 2. The maximum discrep-
ancy in the position of the two boundaries is about 3.3
pixels, which occurs in the lower lobe. Over the vast
majority of the perimeter, the reconstructed boundary
lies at most one pixel away from the original.

The reconstruction shown in Fig. 2 is vastly su-



Figure 2: The MAP reconstruction from two orthogo-
nal noisy projections, shown as a grayscale image with
the boundary of the original object superimposed.

perior to one that would be obtained using conven-
tional reconstruction algorithms. For example, see
Ref. [11] for a reconstruction of a similar object from
two views obtained using the multipicative algebraic
reconstruction technique (ART), which yields an im-
age that maximizes entropy and incorporates a non-
negativity constraint. We will now prove the reliablity
of this reconstruction by using MCMC to assess its un-
certainty.

4.2. MCMC Results

The MCMC algorithm described above was used
to generate samples from the posterior of this recon-
struction problem. In our present example, for each
MCMC trial step, the increments in the z and y po-
sition of each of the vertices are independently chosen
from a Gaussian distribution with an rms step size of
0.06 pixels. Since we are drawing vertex step sam-
ples from the space of x and y and the priors outlined
in Sect. 2.1 are stated in the 0, L space, we need to
transform from p(6, L) to p(z,y) using the Jacobian of
the transform to properly evaluate the priors for the
MCMC algorithm. This Jacobian alters the approx-
imately quadratic form of Egs. (2) by adding terms
that are approximately constant for small 6s. We be-
lieve these terms amount to relatively minor adjust-
ments in the values of the priors and so ignore them.

In all, 150,000 trial steps were calculated for a to-
tal computation time of about 16 hours on a DEC-

Figure 3: Three representative samples from the pos-
terior shown as curves on top of the grayscale images
of the MAP reconstruction.

station 250 with a DEC Alpha processor running at
266 MHz; 42049 steps were accepted, yielding an ac-
ceptance rate of about 28%. Three widely-separated
samples from the full MCMC sequence are shown in
Fig. 3. While it is not possible to get a quantitative
estimate of the uncertainty from these three samples,
they provide some indication of the amount of vari-
ation in the shapes that occupy the posterior. The
amount of waviness observed in the boundary is mod-
erate, as can be observed in Fig. 3. The superfluous
waviness compared to the original object is evidence
that @ = 5 is a safe choice, i.e. is weak enough that
it does not exert an undue influence on the shape of
the MAP solution. Comparison to the configurations
from the prior shown in Fig. 1 confirms qualitatively
that the posterior is much narrower that the prior.

Visual observation of the replayed MCMC sequence
indicates that it takes several hundred steps in the se-
quence for the boundary to move from plus to mi-
nus one standard deviation about the mean posi-
tion, a distance of a few pixels. Roughly speaking,
one might expect that it would take on the order of
[2/(0.06v/2)]? ~ 500 random steps of rms radial dis-
tance 0.06v/2 pixels to move a total distance of two
pixels.

A quantitative estimate of the characteristics of the
posterior is obtained by averaging over the MCMC se-
quence. Such an average of the grayscale image of the
object is shown in Fig. 4, which is calculated as an



Figure 4: The average of the grayscale images for full
MCMC sequence of samples from the posterior with
the contour for the MAP reconstruction shown as a
dotted line.

overlap of the boundary interior with the pixels of a
512x512 image for increased resolution. Of course, it
does not make sense to average the positions of the
vertices, because there is nothing to keep the poly-
gon from slipping around the boundary of the object,
which has no bearing on the actual object shape. The
average MCMC image in Fig. 4 represents the poste-
rior mean image, which may be interpreted as a prob-
ability image; the value of each pixel is the posterior
probability that the pixel lies inside the boundary of
the object. The amount of blur in the edge of the
object indicates the variability in the position of that
edge allowed by the posterior, i.e. the uncertainty in
edge location.

Another way to summarize the uncertainty in
boundary position is to display those pixels in the
MCMC average image whose value lies between 0.025
and 0.975. When we do this for the present example,
we find that indeed 92% of the original boundary lies
inside the 95% credible interval [7].

Figure 4 also shows that the MAP reconstruction
(the model that maximizes the posterior) appears to
be consistent with the contour at half the amplitude
of the posterior mean image. This result suggests
that the posterior probability distribution is symmet-
ric about its maximum. From the shape of the edge
profile of the posterior average we tentatively conclude
that the posterior may approximately be a multivari-

ate Gaussian distribution, despite the nonlinear rela-
tion between the vertex parameters and the measure-
ments.

An important feature of the MCMC technique is
that any feature that one wishes to characterize, e.g.,
the average edge position and its uncertainty in the
above example, is not conditional on the other param-
eters in the model. In the terms of probability theory,
MCMC provides marginalized results, which means
that the dependence on the uncertainties in “nuisance
variables” is integrated out. In the context of the
above example, the uncertainty in the edge position
deduced for any particular location of the boundary is
independent of the uncertainties in edge positions for
the rest of the boundary.

5. Discussion

We have demonstrated their usefulness for solving
a limit-angle tomographic problem of reconstructing a
simple object from two views and have used MCMC
to assess the uncertainties associated with the recon-
struction.

We have not addressed in much detail the subject
of selection of the hyperparameter . We have cho-
sen « on the basis of the degree of variation observed
in the MCMC samples of the posterior, which indi-
cates that the prior is not restricting the smoothness
of the boundary very much. Since the value of « af-
fects the width of the prior probability distribution, it
influences the posterior uncertainty. Therefore, it is
imperative to place more emphasis on understanding
how to choose hyperparameters [3,12]. We note that
this problem is not confined to Bayesian analysis.

Another limitation of the present study is that «
is fixed. A more appropriate approach would be to
consider o as a parameter that should be determined
from the data, which goes by the name of empirical
Bayesian analysis. By including « in the list of vari-
ables to be sampled in the MCMC process, the uncer-
tainty in o would be taken into account in the overall
uncertainty analysis.

In regard to our use of a polygon to represent a
smooth curve, one would ideally like to reduce the
length of the polygon sides to a size where this dis-
cretization does not affect the results. However, in
the present formalism, shorter sides can lead to an in-
creasing frustration of the MCMC algorithm, for ex-
ample, because of the prior on side length. The result
is that one is forced to use increasingly smaller MCMC
steps, which leads to a reduced efficiency of the algo-
rithm. One approach to overcoming this problem is
to limit the direction of trial steps of each vertex to
be along the bisector of angle between neighboring



sides, somewhat like the suggestion of Lobregt and
Viergever[13]. Another approach avoids the use of the
prior on polygon side length by using adaptable dis-
cretization, either on an edge-by-edge basis[13] or by
routinely resampling the full polygon boundary to cre-
ate equal-length sides. Another means that warrants
investigation is to use a multiresolution representation
of the boundary. The advantage would be that one
could adjust the size of the MCMC steps at each reso-
lution to improve the overall efficiency of the posterior
sampling algorithm.
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