
Adjoint Di�erentiation of Hydrodynamic Codes

Maria L� J� Rightley���� Rudolph J� Henninger��� and Kenneth M� Hanson���

��� XNH� MS�F���
��� XHM� MS�D���
��� DX��� MS�P	�

Los Alamos National Laboratory� Los Alamos� NM ���

April �		�

Abstract

Many problems in physics and modern computing are inverse problems � problems
where the desired output is known� and the task is to �nd the set of input parameters
that will best reproduce that output in a hydrodynamics code �hydrocode�� Optimiza�
tion methods tackle this type of problem� and a central task in applying optimization
methods is to be able to determine the gradient of the output with respect to the
input parameters that are being adjusted� Presented here is the authors� progress
�through the use of adjoint di	erentiation� in obtaining those gradients in the case of
some relatively simple hydrocodes�

� Introduction

When a program simulates a physical system� it does so through the use of a set of
equations and mathematical relationships known as a physical model� This model will
generally contain a number of parameters that in�uence the system� Depending on the
problem of interest� there may be several situations that arise� One such situation is the
inverse problem� where the output �or at least the desired output� is known and it is the
input parameters that need to be determined�

An example of an inverse problem is the �yer�plate experiment� The �yer�plate experi�
ment is conducted to help determine material properties� It can be used to help determine
many material properties� but let us consider one speci�c regime or behavior� spall� When a
material is subjected to certain forces� it will begin to accrue defects or breakage 	 this is the

CNLS Research Highlights (LANL, April, 1998)

phenomenon known as spall� A schematic of the process is shown in Figure
� There are two
plates involved� the �yer�plate and the target plate� The target is initially stationary and
generally thicker than the �yer�plate �but other dimensions are the same�� and the �yer�plate
is sent toward the target plate at high velocity� usually propelled by either a gas gun or high
explosives 	 this is shown in the �rst �line� of the �gure� The �yer�plate impacts the target
plate and begins to push the target plate �second line�� When they impact� a shock wave is
sent out from the impact plane into both materials �denoted by the thicker lines� with the
small arrows indicating direction of movement� not relative velocity�� These shock waves
eventually reach the other �non�impact� boundaries of these two plates� at which point the
shock wave re�ects back into the two plates as rarefaction waves �the third line is supposed
to represent a time just after this has occurred� and one can see that the direction of wave
movement has now reversed in both materials�� These rarefaction waves will continue until
they meet in the target plate �due to the relative widths of the plates that was discussed
above�� The fourth line of the �gure is a time just before this has occurred� When they meet�
they act to pull the material apart at the intersection plane� Depending on the material
strength and the original conditions present� this will happen to varying degrees� When the
interest is not in spall behavior� lower pressures and velocities are used� and spall does not
occur�

Experimentally� the velocity of the leading edge of the target plate �the rightmost edge
in Figure
� is measured� for example� by a method of interferometry such as VISAR� A
window material is usually added at the leading edge of the target plate� and a laser beam
is shined through the window material and re�ects from that leading edge� How that beam
has been altered when it reaches the receiving optics allows the velocity to be determined�
When conditions are changing within the material �i�e�� the initial impact� the spallation 	
especially if the material breaks�� it is understandable that that leading edge velocity will
change� So we end up with a velocity trace at the leading edge� and we want to determine
material parameters� We also have a program �CHARADE
�� for example� that will
simulate the experiment� given certain material input parameters� and produce a calculated
velocity trace� The task is then to adjust the material input parameters to get the best
match of the calculated velocity trace to the experimental velocity trace�

That is a problem of the sort described above as an inverse problem� It is for problems
just like this �among others� that optimization methods are found to be very useful� because
they perform the process of optimizing the parameters for the user� Given an initial guess
for the input parameters� the optimization algorithm with iterate� adjusting the parameters
until some criterion is satis�ed� usually some cost function that is minimized until the cost
function falls below some speci�ed value� There are many optimization algorithms available�
although a popular and useful method of optimization is the Bayesian method �	��� which
has had considerable success in reconstructing radiographic data �� ��� The most e�cient
optimization algorithms �including the Bayesian method� make use of the gradient�s� of the
output with respect to the input parameters� In most cases� the output of interest is a cost
function as just described 	 for the example cited above� it would be probably be a ���type
cost function comparing the experimental and calculated velocity traces� The input param�

�

Flyer Target

Figure
� Flyer Plate Experiment Setup

eters of interest for the example given would be the material parameters relating to spall��
Therefore� a primary component in optimization of an inverse problem is determination of
those gradients� various common methods of obtaining those gradients are discussed in the
next section�

� Gradient Methods

��� Perturbation�Direct Method

One straightforward method is to simply run the program twice� with di�erent values of
the parameter �i�e�� perturbing the value of the parameter�� Dividing the di�erence in the
output by the di�erence in the parameter gives an approximate derivative� or sensitivity�
Problems with this include the fact that it is di�cult to determine a priori what the ap�

�

propriate di�erence in the parameter should be� these sensitivity values may thus vary with
the parameter di�erence in some regimes of parameter values� necessitating multiple runs
to determine convergence of the sensitivities� In addition� at least two program runs are
necessary to calculate each sensitivity� for n parameters� this leads to at least n �
 runs
of the program �more if one cannot magically divine the proper perturbation to use� 	 this
is� therefore� a computationally expensive method� especially for long�running� complicated
programs�

��� Equation�based Methods

Another method is to di�erentiate the equations �di�erential� for example� that make up
the physical model� then combine them to de�ne the needed sensitivities� A concern with
this model is that the sensitivities found do not necessarily represent the gradients of the
quantities calculated in the program� if �nite�di�erence equations are used in the program�
this method doesn�t produce sensitivities of �nite�di�erence equations� it produces the sen�
sitivities of the di�erential equations� Why this would be of great concern can be seen if one
considers that this is part of a larger task� which is to optimize the parameters of the system�
If the adjustments to the parameters are based on something other than what is in the code�
it is possible that convergence to the optimum parameter set �i�e� those that produce the
best calculated �t to the experimental output� would never be achieved� because the adjust�
ments don�t �t the computational system� Whether this mis�t has a signi�cant impact on
the sensitivities or convergence to them is di�cult to determine� but at any rate� one can
not necessarily assume that the values obtained are the sensitivities of the model�code� The
DST method �	
�� is an example of this type of method� where the di�erential equations
associated with a problem are di�erentiated� A closely related method� DSA
�	
��� dif�
ferentiates the di�erence equations instead of the di�erential equations and is more closely
linked to the code�based methods discussed below� Work with these methods by the second
author and others on the MESA�D code has had mixed success
�	
��� and that is one of
the reasons that the straightforwardly code�based methods were considered and attempted�
as a check and counterpoint to the DSA�DST methods�

��� Code�Based Methods

The method of interest in this study was to di�erentiate the code itself in order to determine
the sensitivities that are of interest� thereby avoiding the di�culties that the equation�based
methods can have� There are two ways to do this 	 manually� by examining the code and
producing appropriately programmed derivatives� or automatically� using a tool that will
look at each line of code and produce derivative values automatically� The �rst of these
two ways is bound to be more e�cient� because the concern of the automatic tools is not
e�ciency� it is overall applicability� Both automatic and manual methods were implemented
in this study�

�

� Forward vs� Adjoint Modes of Di�erentiation

Both the code� and equation�based methods can ideally operate in both the forward and
adjoint modes� By forward and adjoint� we mean the direction through the code in which the
derivative values are obtained� A forward mode of di�erentiation would involve determining
the necessary derivatives by following the code�s logic in the forward direction �top to bottom�
front to back�� while for the adjoint mode� the derivatives are determined by following the
code�s logic in the reverse direction �bottom to top� back to front�� Which of these is
more useful depends on the relative numbers of input parameters of interest and output
variables of interest� The forward mode is more e�cient for determining the sensitivity of
many outputs to one or a few input parameters� while the adjoint mode is better suited for
sensitivities of one or a few outputs with respect to many input parameters�

As was mentioned earlier� it is common to provide a cost function that computes the
relative di�erence between a calculated and experimental data set for the problem of op�
timization� If that is done� we have provided ourselves with just one output of interest�
although there are obviously a lot of other variables that contribute� As was also mentioned
above� there may be several parameters of interest �in the example cited� these would the
material parameters related to spall�� This points us in the direction of the adjoint mode�
which was most e�cient for one or a few outputs and many input parameters� More is
discussed about the adjoint mode below� but it should be pointed out that with many of the
automatic di�erentiation tools� both modes are available and were easily implemented� so
that these modes were also used� Given that both modes produced the same results� results
will not be listed independently for each mode�

� Mechanics of Adjoint Di�erentiation

Consider that a program could be represented in terms of a �ow diagram such as that shown
in Figure � below� Granted� this is a simpli�cation� but the principle should still stand for
more complex situations� x is the input� � is the output� presumably the scalar cost function�
and A� B and C are the processes or transforms to which the input is subjected� and the
output of process A is y� and that of B is z� and thus obviously � is the output of C� That
sequence of processes is what is considered the forward calculation�

 A B C ϕx y z

Figure �� Data Flow Diagram of the Forward Calculation

�

x� y and z are general data structures� they can consist of mixed types of data structures�
Some of the data may even be parameters that a�ect the transformations or processes
themselves� There is no loss in generality if they are thought of as being carried along in
the sequence of data structures up to the module at which they are used� In fact� it is
necessary that the input to a process must be all that is required in order to determine
the output of that process� so one could almost consider that the data structures are all of
the data� and the only changes are in variables from input to output of the process is in
variables a�ected by that particular process� With that in mind� these structures can have
high dimensionality� We also do not place any restrictions on the processes� other than that
they be di�erentiable �and functions not obviously di�erentiable can often be handled� also��
By requiring that the input to a process be all that is necessary to produce the output� we
have thus required that each transformation or process is self�contained�

Considering the possibly high dimensionality of the data structures� storing the sensi�
tivity matrices of the transformations� such as

�yj
�xi

for all i and j� is likely to be extremely
costly� because one is multiplying the dimensionalities of x and y� which may already be
large� The chain rule� however� allows the calculation of the output � with respect to the
ith component of x 	

��

�xi

�
X

jk

��

�zk

�zk

�yj

�yj

�xi

�

Even if a process is nonlinear� the expression above amounts to a product of matrices�
each element of which speci�es the di�erential response of an output variable with respect
to a di�erential change of an input variable� The order of summations can be done two
ways� either over j �rst or over k �rst� If the summation is done over j �rst� one is going in
the same direction as the forward calculation and is therefore in the forward mode discussed
above� The data��ow diagram in Figure � illustrates the forward mode process �where the
derivative notation is that the subscript is what the derivative is taken with respect to� so
that yx is the derivative of y with respect to x� and by studying the data �ow diagram
this� one can see how the forward mode is not optimum for a situation with many input
parameters and one output of interest� If x is large� then the results of the �rst summation
��y
�x
� can be very large �dimensionality � dimensionality of x times the dimensionality of y��

and so on through the process until the last step� which reduces just to ��

�x
� � is a scalar� so

 A B C
ϕ

ϕx x x

x
y z

y z

Figure �� Data Flow Diagram of the Forward Derivative Calculation

�

that our �nal result has just the dimensionality of x� while the intermediate results had the
dimensionality of either x � y or x � z� As these data structures can be very large� this
can result in extremely large intermediate results that need to be stored�

Summing over k �rst� on the other hand� yields the adjoint mode� and the sequence of
events goes backwards from �� Figure � illustrates this sequence in a data��ow diagram�
The notation for the derivatives is given in the same way that it was for the forward mode�
The adjoint mode of di�erentiation can be seen to be useful� since � �a scalar� is what
is always being di�erentiated� the dimensionality of the possibly large data structures are
never multiplied together as they are in the forward mode� Instead of storing the matrix
of the adjoint of each process ���

�z
� �z

�y
� and �y

�x
�� only the intermediate data structures given

in the previous sentence are formed and stored� Thus the requirement for storing these
data structures is only about double that required to store the structures for the forward
calculation �the forward calculation structures might also be required for the sensitivity
calculation if the processes are non�linear��

 A B Cϕ ϕ ϕ ϕ
x y z

x y z

Figure �� Data Flow Diagram of the Adjoint Derivative Calculation

This is the basic adjoint di�erentiation technique� and it is the method that is followed in
the manual implementations� but it might not necessarily be exactly the way that the auto�
matic di�erentiation programs do things� The automatic di�erentiation tools are discussed
below�

� Automatic Di�erentiation Tools

Although all of these tools vary� there are some things that they all have in common� All have
two stages involved to get from the original code to an executable code with derivative coding
included� The �rst step is to submit the original code to a precompiler� This precompiler
analyzes the code and modi�es it to include code that calculates the derivatives of interest�
The output of this step is enhanced code� with some calls to external subroutines� The
second step in the process is to compile this enhanced code� including run�time libraries
that satisfy the external subroutine calls �for storage and memory manipulation� usually��
In addition� all the codes considered in this exercise have been written in FORTRAN� and
automatic di�erentiation tools that I have used work on FORTRAN code� ADIFOR has a
version for C� known as ADIC� but TAMC and GRESS� to the authors� knowledge� are only
available for FORTRAN programs�

�

��� ADIFOR

The Automatic DI�erentiation of FORtran �ADIFOR� program was developed jointly by
the Mathematics and Computer Science Division of Argonne National Laboratory �Christian
Bischof� Peyvand Khademi� and Andrew Mauer� and Alan Carle of the Center for Research
on Parallel Computation at Rice University
��� ADIFOR has limited platform availability
for the precompiler stage� and only provides executables� For the libraries� you get source
code that is given for several platforms� and it may be possible to extend use beyond those
platforms by modifying some of the �les� Additionally� ADIFOR currently runs in forward
mode� there is no adjoint mode available�

As for speci�cs of use� ADIFOR has a very speci�c set�up that must be followed� There
are companion �les �to the code to be enhanced� that have to have a speci�c format and
content� ADIFOR requires that the bulk of the problem be in a subroutine� All of the
parameters and outputs of interest must be passed from the main program to the subroutine�
and the activity relating the parameters to the responses must be in the subroutines� Other
variables can be passed to the subroutine� but the parameters and responses must be�
This means that the values of the parameters must be set in the main program� The main
program and major subroutine should also be in separate �les� because of the way that
the precompiling operation works� There are changes to the main program that must be
done manually by the user� in order to seed the gradient values �essentially setting up the
identity matrix mentioned in the mechanics section�� The enhanced code is retrieved from
a newly�created subdirectory and compiled with the proper subdirectories� ADIFOR does
not automatically output the gradients 	 the user needs to do that manually�

��� GRESS

The GRadient Enhanced Software System �GRESS� was developed at Oak Ridge National
Laboratory� and is one of the many codes in the Radiation Shielding Information Center�s
RSIC Peripheral Shielding Routine Collection
��� Jim Hordewel was the primary author�
but is no longer directly involved with GRESS� GRESS provides source for both the precom�
piler and the libraries� although it is apparently platform�speci�c code� it could conceivably
be expanded beyond the speci�c platforms provided� Both forward and adjoint modes are
available�

GRESS� unlike ADIFOR� does not require external �les to give its precompiler command
information� It also does not require splitting the program a certain way� With GRESS you
simply put two kinds of additional programming into the code� precompiler directives and
subroutine calls� Precompiler directives tell the precompiler certain general things� such as
whether to pass comments to the enhanced codes or not ��comments on�o�� or whether
this implementation is to be a CHAIN implementation ��chain�� Subroutine calls are used
to tell the precompiler which variables are to be considered parameters and outputs� or to
de�ne this implementation as an adjoint �ADGEN� one �which works di�erently than when
it is a chain implementation� and doesn�t really explain why�� In the interests of space�

�

speci�c commands beyond these will not be discussed� Su�ce to say that many of the
subroutine calls vary depending on whether adjoint for forward mode is being used� which
implies that switching from one subroutine to another merely involves changing subroutine
calls� GRESS does require the user to move �les around because of its oddities in input and
output �le names� but a short script �le can simplify the process greatly� As with ADIFOR�
it is necessary to compile the enhanced code with libraries� Unlike ADIFOR� in all versions
of GRESS implementation� the gradients and sensitivities are automatically output�

��� TAMC

TAMC�s acronym comes from Tangent�linear and Adjoint Model Compiler ��� �
�� It was
developed by Ralf Giering while a graduate student at the Max Planck Institute for Meteo�
rology� where the primary interest was in applying it to oceanographic simulation codes� He
is currently a postdoc at MIT� and has been successful in applying The precompiler stage
is actually run by sending the forward code by email to Ralf�s computer in Germany� so
platform availability for that stage is unlimited� The source for the libraries is available for
several platforms� The Tangent�linear part of the acronym denotes the forward mode� so
that both modes are available�

In terms of use peculiarities� TAMC is like ADIFOR in that it does require you split
the main program from the subroutine� However� instead of giving the program information
through external �les� TAMC uses Make�les� and information is put in the Make�le� TAMC
is also di�erent in that it does a dependency analysis to determine on which variables the
gradients of interest are dependent� and it only determines adjoint code for those variables�
It is also di�erent in its implementation of the enhanced code� Rather than just adding code
to the forward code� TAMC develops its own forward code and adjoint code separately� and
puts them in two subroutines �presumably of the main code��

As mentioned in Section �� if any of the processes are non�linear� information from the
forward calculation is needed in the adjoint calculation� TAMC will also inform the user
when a variable from the forward calculation is needed for the adjoint calculation in its
output with a RECOMPUTATION WARNING� these warnings can be Level
 or Level ��
depending on the amount of recomputation necessary� The need for this information can
be satis�ed one of two ways� by recomputation of forward results in the adjoint calculation�
or by independent storage� TAMC defaults to recomputation� but the user can also choose
to store the variables independently �via dynamic memory� static memory� common blocks�
or disk �les�� The command to initialize these storage methods and the actual storage
commands are about the only modi�cations that the user ever makes to his code� The main
code� then� to calculate the adjoints� should call �rst the TAMC�generated forward code�
then the TAMC�generated adjoint code� and like ADIFOR� the output of the gradients is
the responsibility of the user�

�

� Implementation and Results

For the �rst two codes listed below� the input problem that was considered was a
�D
�yer�like problem� An instantaneous decrease in the velocity at one boundary �simulating
a reduced �ow� causes a shock� resulting in a
�D shock problem� The �yer is a metal
�copper�like� that uses simpli�ed EOS descriptions and parameters� The premise was to
consider a reasonably physical problem� but to simplify where possible for ease of evaluating
the results�

The output of interest for this problem is an average pressure value �integrated over all
space and time�� The parameters of interest are as follows�

gamma Gruneisen coe�cient
c� nominal sound speed
rho� nominal density
s slope in linear us�up plot

rhobc boundary condition on density
cq quadratic arti�cial viscosity constant
clq linear arti�cial viscosity constant
vic
 initial condition of velocity
vtbc boundary condition of velocity �unchanged boundary�
vbbc boundary condition of velocity �decreased velocity boundary�
rhoic initial condition of density

��� Simple	 ��D Code

It was decided that this work should begin on a code with simple mechanics and basic
materials considerations� The code chosen was written to mimic the actions of the popular
code MESA�D in a one�dimensional� much simpli�ed framework� It was approximately ���
lines long� It was submitted to each of the automatic di�erentiators and to the manual
method� and the results for a speci�c set of initial conditions is given below� Much of this
work was done for conditions both with and without energy evolution included in the code�
Because the manual implementation was done only with the energy evolution not included�
those are the results shown here�

�

Table
� Results for simple
�D program

Variable GRESS�A GRESS�F ADIFOR TAMC Manual
gamma ��������E��� ���������E��� ��������� ��������E��� ���������

c�
������E���
�������E���
�������
������
�������
rho� �
������E��� �
�������E��� �
��������E��� �
������E��� �
��������E���
s
�����
E���
�����
�E���
�����
��E���
�����
E���
�����
��E���

rhobc
������E���
�������E���
�������
������
������

cq �������E��� ��������E��� �������� �������E��� ��������
clq �������E��� ��������E��� �������� ������� ��������
vic

�����
E���
�������E���
�������
����
�
�������
vtbc ����
�
�E��� ����
�
��E��� ���
�
��� ����
�
�E��� ���
�
���
vbbc ������
E��� ��������E��� �������� ������
E��� ��������
rhoic
������E���
�������E���
��������E���
������E���
��������E���

As one can see from looking at the numbers in Table
� all of the methods agree excep�
tionally well� the only di�erence really being the number of signi�cant digits output by the
various methods�

��� MESA�D

Once full implementation of the methods was accomplished on the code mentioned above�
work shifted to a one�dimensional version of MESA�D� referred to as MESA
D� Initial
e�orts �including the results posted here� included the further simpli�cation of the strength
being turned o� within the code� but current work by one of the co�authors is very close to
proper operation with the strength model activated� MESA
D is approximately ���� lines
long� The work with MESA
D was somewhat of a side project� and so there was also a
decision made to not implement the manual method on this particular code� because on a
complicated code �as opposed to the simple one�dimensional code that was ��� lines long
and took about a week to adjoint code� this can be a very time�consuming endeavor� and
not to be undertaken without considerable forethought� That is one of the reasons that we
have been so interested in the automatic di�erentiation programs and have been searching
for one that will e�ciently handle the kinds of codes that one runs into on a daily basis at a
national laboratory� The problem described in Section � was again considered for this work
with MESA
D� and the values of input parameters used with the simple�
�D code were used
again here� However� it should be noted that all MESA
D results include energy evolution
and will not therefore agree with the results in Table
� but provide an opportunity to see
what a small change in physics can make to the gradient�sensitivity values� The products of
this e�ort are as follows� where the GRESS results are not listed independently for forward
and adjoint mode�

Table �� Results for MESA
D

Variable GRESS TAMC ADIFOR
gamma
�
����E���
�
����E���
�
����E���

c�
������E���
������
���
��
rho� �������E��� �
������E��� �
������E���
s
������E���
��
���E���
��
���E���

rhobc ������E��� �� ��������
cq ���
�
�E��� �������E��� �������E���
clq ��
����E��� �
��
�� �
�����
vic
 �������E��� ������� ����
��
vtbc ���
����E��� ���
����E��� ���
����E���
vbbc �������E��� ������
E��� �������E���
rhoic
������E���
������E���
�����
E���
e�
������E���
������
������
ebc ���
��
E��� ��� ��

The results for the automatic di�erentiators do not agree as well with each other for
MESA
D as they did for the simple�
D code� The GRESS results are much older �and
obtained from a slightly modi�ed version of the code� than the TAMC and ADIFOR results�
The TAMC and ADIFOR results are� in fact� very recent� and the authors have not had time
to certify that all three are trying to solve the same problem� For example� for ebc� GRESS
disagrees with the other two� however� the value is low� and it is possible that numerical
roundo� is coming in to play with GRESS� but not in TAMC and ADIFOR� Similarly� the
rho values �rhoic� rho�� rhobc� di�er between GRESS and the other two� The most likely
reason for this is that the setting up of the problem di�ers between GRESS and the other
two� but there has not been time to test this� For a more de�nite indication of method
di�erences for the same version of MESA
D� compare the TAMC and ADIFOR results�
There is much better agreement within those two sets of results� although one can observe
that the results are still not as close together as they were for the simple�
D code� In rhobc�
for example� there is a discrepancy between the values� but although the ADIFOR result is
not zero� it is de�nitely a small number� Additional work needs to be done to determine
if GRESS is working on the correct problem� and it also remains to be seen whether these
sort of di�erences would cause signi�cant problems for optimization routines�

��� CHARADE

Progress with CHARADE has not been as fast as with the codes listed above� there are
several reasons for this� First� while CHARADE is only about ���� lines to MESA
D�s
����� its logic is signi�cantly less straightforward than MESA
D�s� Part of this may be

�

involved with the fact that MESA
D is a �nite�di�erence code� while CHARADE is a method
of characteristics code 	 CHARADE avoids introducing numerical viscosity at the cost of
some contortions in programming� Second� CHARADE has three large� two�dimensional
arrays that are very necessary to the adjoint calculation and thus are saved �at least by the
automatic di�erentiators� en masse in more places than one would like� And� �nally� the
�rst author was a postdoc for the duration of most of the work� and is now a sta� member
in another division� this limits the available time left to work on this project� As it is� both
GRESS and ADIFOR have been tried on CHARADE and have failed due to the memory
requirements placed on a system by the enhanced code� Work with TAMC is still in progress
and shows some hope of being able to handle everything with appropriate help� TAMC has
more �exibility of use than either GRESS or ADIFOR� As for manual implementation� it was
and is de�nitely a possibility� but the change in job by the �rst author means that there is
basically no one presently available to complete that task� the manual coding would require
a signi�cant time investment and can not really be accomplished on a part�time basis�

	 Conclusions

This paper has described the e�orts by the �rst author and others to apply code�based
adjoint di�erentiation techniques to a few simple hydrocodes� With e�ciently written code�
the automatic di�erentiators are able to perform well and quickly produce accurate results�
When the code is less e�ciently written� or when the size of the program becomes very
large� the automatic di�erentiators can have problems that are not always solvable� Of the
three� TAMC seems the most sophisticated and �exible� and the authors believe that is
has a promising future in producing adjoint derivatives in realistic codes� It has yet to be
determined if the kinds of di�erences observed between ADIFOR and TAMC for MESA
D
are large enough to have a signi�cant impact on the optimization process�

As for manual implementation� with proper care� it can be implemented on any code�
whether written well or not� The variable of import is the time that is required to set up
and code the adjoint part of the problem� If the code is written systematically� and possibly
with adjointing in mind� the procedure can be made much less painful� In addition� while
the automatic di�erentiators might ultimately fail because of memory considerations� they
are often useful in producing derivative code that can then be used to simplify the process
of manually coding the derivatives �that is� the AD�produced code can be used� at least in
some part� in the manual coding��

�

References

� J� N� Johnson and D� L� Tonks� �CHARADE� A Characteristic Code for Calculating
Rate�Dependent Shock�Wave Response�� Los Alamos National Laboratory Report� LA�

����MS� UC���
� January
��
�

�� K� M� Hanson� �Bayesian Reconstruction Based on Flexible Prior Models�� J� Opt� Soc�
Amer� A� ��� p� ����
���

�� S� J� Press� Bayesian Statistics� Principles� Models� and Applications� Wiley� New York�

����

�� G� S� Cunningham� K� M� Hanson� G� R� Jennings� Jr�� and D� R� Wolf� �An Interactive
Tool for Bayesian Inference�� in Review of Progress in Quantitative Nondestructive
Evaluation� D� O� Thompson and D� E� Chimenti� Eds�� ��A� p� ���� Plenum� New
York�
����

�� K� M� Hanson and G� S� Cunningham� �The Hard Truth�� in Maximum Entropy and
Bayesian Methods� J� Skilling� Ed�� Kluwer Academic� Dordrecht�
����

�� K� M� Hanson and G� S� Cunningham� �Exploring the Reliability of Bayesian Recon�
structions�� in Image Processing� M� H� Loew� Ed�� Proc� SPIE� ����� p� �
��
����

�� K� M� Hanson� �Method to Evaluate Image�Recovery Algorithms Based on Task Per�
formance�� J� Opr� Soc� Amer� A� �� p� ���
����

�� K� M� Hanson� �Introduction to Bayesian Image Analysis�� in Image Processing� M� H�
Loew� Ed�� Proc� SPIE� ��	�� p� �
��
����

�� E� M� Oblow� �Sensitivity Theory for Reactor Thermal�Hydraulics Problems�� Nucl�

Sci� Eng��
�� p� ��� �
�����

�� D� G� Cacuci� C� F� Weber� E� M� Oblow and J� H� Marable� �Sensitivity Theory for
General Systems of Nonlinear Equations�� Nucl� Sci� Eng�� ��� p� �� �
�����

� D� G� Cacuci� P� J� Maudlin and C� V� Parks� �Adjoint Sensitivity Analysis of
Extremum�Type Responses in Reactor Safety�� Nucl� Sci� Eng�� ��� p�

� �
�����

�� P� J� Maudlin� C� V� Parks and C� F� Weber� �Thermal�Hydraulic Di�erential Sensitivity
Theory�� ASME paper No� ���WA�HT���� presented at the ASME Annual Winter
Conference �
�����

�� C� V� Parks and P� J� Maudlin� �Application of Di�erential Sensitivity Theory to a
Neutronic�Thermal Hydraulic Reactor Safety Code�� Nucl� Technol�� ��� p� �� �
��
��

�� C� V� Parks� �Adjoint�Based Sensitivity Analysis for Reactor Applications��
ORNL�CSD�TM���
� Oak Ridge National Laboratory�
����

�

�� R� J� Henninger� P� J� Maudlin� and E� N� Harstad� �Di�erential Sensitivity Theory
Applied to the MESA Code� � Proceedings of the Joint AIRAPT�APS Meeting on
High Pressure Science and Technology� p�
��
� Colorado Springs� CO �June ���July ��

�����

�� P� J� Maudlin� R� J� Henninger� and E� N� Harstad� �Application of Di�erential Sen�
sitivity Theory to Continuum Mechanics�� Proc� ASME Winter Annual Meeting
����
p� ��� New Orleans� Louisiana �November ���December ��
�����

�� R� J� Henninger� P� J� Maudlin� and E� N� Harstad� �Di�erential Sensitivity Theory
Applied to the MESA�D Code for Multi�Material Problems� � Proceedings of the APS
Meeting on Shock Compression of Condensed Matter� p� ���� Seattle� WA� �August�

�����

�� C� Bischof� A� Carle� P� Khademi� and A� Mauer� �The ADIFOR ��� System for the Au�
tomatic Di�erentiation of Fortran �� Programs�� Argonne National Laboratory Report
ANL�MCS�P��
�

�� �
�����

�� J� E� Horwedel� E� M� Oblow� B� A� Worley� and F� G� Pin� �GRESS ��� Gradient En�
hanced Software System�� Oak Ridge National Laboratory RSIC Peripheral Shielding
Routine Collection Report PSR���
 �
�����

��� R� Giering� �Tangent Linear and Adjoint Model Compiler Users Manual�� Manual Ver�
sion
�
� TAMC Version �����
����

�
� R� Giering and T� Kaminski� �Recipes for Adjoint Code Construction�� Technical Re�
port �
�� Max�Planck�Institut for Meterologie�

�

